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Abstract

We present a novel approach for the decimation of trian-
gle surface meshes. Our algorithm takes as input a triangle
surface mesh and a set of planar proxies detected in a pre-
processing analysis step, and structured via an adjacency
graph. It then performs greedy mesh decimation through
a series of edge collapse, designed to approximate the local
mesh geometry as well as the geometry and structure of
proxies. Such structure-preserving approach is well suited
to planar abstraction, i.e., extreme decimation approxi-
mating well the planar parts while �ltering out the others.
Our experiments on a variety of inputs illustrate the po-
tential of our approach in terms of improved accuracy and
preservation of structure.

1 Introduction

With recent advances on automated pipelines for geomet-
ric acquisition and processing, it is now routine to gener-
ate massive surface meshes of complex, large-scale scenes.
This motivates the need for extreme mesh simpli�cation
methods aimed at generating meaningful levels of details.
Although the automated simpli�cation of surface meshes is
a mature research topic with a wide range of methods [19],
the extreme simpli�cation of complex meshes has received
less interest and remains notoriously di�cult for the main
following reasons:

� Structure. For extreme simpli�cation minimizing a
local geometric error metric is not su�cient: the
structure comes into play and in particular the coarse-
scale structures must be detected and preserved.

� Filtering. Extreme simpli�cation involves �ltering,
i.e., \forgetting" small-scale details, and not just min-
imizing an exhaustive geometric error metric. Ex-
treme simpli�cation thus shares some goals with the
process of abstraction which involves �ltering among
other structure-aware principles.

� Defects. Geometric noise and topological defects
are present in complex meshes generated by auto-

mated pipelines such as dense photogrammetry. Be-
yond hampering simpli�cation, such defects add fur-
ther hurdles to the detection of coarse-scale struc-
tures. This calls for methods that are resilient to im-
perfect structure detection.

In this work we focus on the automated, coarse and
structure-preserving decimation of surface triangle meshes
(not necessarily 2-manifold).

1.1 Related Work

Related work ranges from mesh decimation to abstraction
through approximation. We further focus our review on
approaches that preserve a notion of structure.

Decimation. Edge collapse is the most common mesh
decimation operator and led to very e�cient and reliable
algorithms [11, 18]. When using a local geometric er-
ror metric, the greedy mesh decimation approaches are
in general not satisfactory for extreme simpli�cation as
the successive erroneous approximations may accumulate.
A common example is when small but visually important
details are progressively removed from the input scene.
In addition, the structures may not be preserved during
decimation unless explicitly detected. In general however,
the quality of outputs is highly dependent on the quality
of the initial structure detection. A wide range of vari-
ants have also been proposed to control the global er-
ror [3,4,7{9,12,14,23,27] but global error bounds do not
imply structure preservation.

Approximation and Remeshing. Mesh optimization
approaches [10, 13] are devised to reach a better tradeo�
between model �delity and conciseness. Such approaches
are also shown suitable to feature-sensitive remeshing, as
vertices automatically migrate onto sharp features when
using appropriate error metrics. Feature-sensitive remesh-
ing can also be achieved via resampling after detection [5].
Marinov and Kobbelt [20] proposed an integral error met-
ric designed to derive a subdivision control mesh whose
structure is properly adjusted and aligned to the major ge-
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Figure 1: Overview. Our algorithm simpli�es dense triangle surface meshes via a structured set of planar proxies (left)
that guides the decimation process while preserving the structure. At coarse complexity (here 50 vertices), common
mesh decimation approaches (middle) fail to reach low approximation error (see colored meshes) while preserving
structure (see closeups). Error curves are depicted by Figure 7.

ometric features. The structure is thus preserved to some
extend, only via the error metric.

Abstraction and Structure. Abstraction is the process
of computing recognizable visual depictions of known ob-
jects via compact descriptions such as a handful of charac-
teristic primitives [21]. Abstraction, which involves �lter-
ing and regularization, is especially relevant for the extreme
simpli�cation of urban scenes that requires removing small-
scale details such as cars, chimneys or plants. Abstraction
is also related to structure-aware shape processing [22].

There is no unique or universally accepted de�nition of
structure. It may relate to the graph of sharp features [5],
or to the global inter and intra semantic relations among
the parts of shape rather than on the local geometry [22].
Structure-aware shape processing usually consists in two
steps: structure detection and processing that uses the
detected structure information.

In our context the structure is generated by a pre-
processing step that detects a set of planar parts - re-
ferred to as proxies - and estimates their adjacency via a
proximity graph. The structure is thus formed by the de-
composition - possibly incomplete - into planar parts as
well as by the adjacency relationships between associated
proxies. The detection of proxies is performed at a spa-
tial scale induced by a user-speci�ed error tolerance from
planarity. The spatial scale may be very large for parts
such as facades of buildings. As in general two adjacent
proxies meet at a sharp crease, the structure is not un-
related to sharp features but our approach departs from
direct feature detection as follows:

� The detection of sharp creases is already an ill-posed
problem - see Figure 12 - and our quest for structure-
aware geometry processing con
icts with the unavoid-
able imperfect structure detection when dealing with
defect-laden meshes derived from measurement data.
In addition, what we need ranges from feature recov-
ery to shape completion [24] through feature regular-
ization [6] as we target extreme simpli�cation. Our
experiments show that proceeding by greedy decima-
tion is substantially more robust than performing a
one-step projection onto the planar proxies.

� We assume that the structure is contained in the
graph of proxies. We then aim at preserving to some
extend the graph during decimation but the geomet-
ric error term associated to proxies also automatically
favors sharp features during decimation.

We choose to consider only planar primitives, omitting
cylinders, conics and other primitives as planes are expres-
sive enough to represent most parts of man-made shapes
and yield close formula for our error metric. In particular,
we observed that roughly 80% of a large-scale urban scene
(shown Figure 19) is composed of planar parts.

1.2 Contributions and Overview

Our main contribution is a structure-aware mesh decima-
tion algorithm robust to imperfect detection of coarse-scale
structures. It takes as input a surface triangle mesh and
a set of planar proxies pre-detected, and generates as out-
put a simpli�ed mesh where coarse-scale structures are
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preserved via an error metric and speci�c rules. Our ap-
proach is hybrid in the sense that it combines mesh dec-
imation with the preservation of geometry and structure
induced by the proxies:

� The geometry of planar proxies is added to the local
error metric used for edge collapses during decima-
tion. This adds to the local scales the larger scales of
planar parts, in accordance to the coarse-scale struc-
tures induced by the proxies. Such large scales (1)
promote abstraction as vertices automatically migrate
toward the proxies during decimation, (2) improve re-
silience to noise and (3) reduce the accumulation of
local erroneous approximations during decimation.

� The structure of proxies is preserved during decima-
tion by not performing edge collapse operators that
violate a set of structure-preserving rules detailed be-
low.

These two novel technical ingredients are both robust
and e�ective at generating coarse levels of details from
complex scenes. We can simplify unstructured parts such
as trees in a urban scene while preserving structured parts
such as the main facades of buildings. Figure 1 provides
an overview of our algorithm.

2 Background

Simplicial complexes. Let P � R3 denote a �nite set
of points. A simplex is a non-empty simplex� � P, of
dimension its number of elements minus1. Let � be a
non-empty subset ofP. � is a face of� if � � � and
a coface of� if � � � . A simplicial complexK (also
referred to as a mesh) is a collection of simplices that
contain all faces of its simplices. The set of its simplices
of dimension0=1=2 is denoted byVK =EK =TK and re-
ferred to as respectively its vertices, edges and triangles.
For a simplex� 2 K and a set of simplicesS, we de-
note by S(� ) = f � 2 S j � \ � 6= ;g the set of simplices
intersecting� . For example, the set of triangles intersect-
ing e is denoted byTK (e). When the context is clear
we omit K in the notation, for instance,TK (e) is sim-
ply denoted byT( e). We also use the notationv0v1 : : : vk

instead off v0; v1; : : : ; vk g to denote the simplex with ver-
tices v0; v1; : : : ; vk . We are primarily dealing with simpli-
cial complexes that approximate2-dimensional manifolds,
but are also dealing with non-manifold meshes. We de�ne
a boundary edge as an edge having exactly one triangle
in its cofaces. The set of boundary edges is denoted by
E@ K. The point of P associated to a vertexv is denoted
by v = [ vx vy vz ] or ~v = [ vx vy vz1] for its homogeneous
counterpart. The length of an edgee is denoted byjej
and the area of a trianglet is denoted byjt j.

Planar proxies. We assume that the input mesh exhibits
near-planar parts that can be detected by common shape
detection approaches [6, 15, 25]. These near-planar parts
are represented by planar proxies. More speci�cally, a
planar proxy' consists of a set of vertices and a plane
ax + by+ cz+ d = 0 represented as a vector' = [ a b c d],
wheren = [ a b c] is the unit normal vector to the plane.
Figure 5 illustrates a mesh with its detected proxies and
Figure 2 depicts a small set of proxies. For each planar
proxy ' , the set of simplices� 2 K such that all vertices
of � contain ' in their proxies is referred to as the mesh
restricted to ' and denoted byK j ' (Figure 2). For every
simplex� 2 K , we denote asProxies(� ) the set of proxies
' such that� 2 K ' . In other words,Proxies(� ) is the set
of proxies that contain� in their restricted mesh. Our ap-
proach is intended to be general so that a triangle or vertex
can be assigned to none or an arbitrary number of proxies.
For instance, the set of proxiesProxies(t) that contain a
triangle t 2 TK may contain 0, 1 or more proxies.

A mesh with its set of proxies is depicted by a colored
mesh as shown by Figure 5, where each proxy is assigned
a random color. A trianglet of the mesh is depicted in
gray whent does not belong to any proxy, that is when
Proxies(t) = ; . When t belongs to several proxies the
color of t is assigned the color of the proxy whose normal
is closest to the normal oft.

Except for Figure 17, planes are always detected by a
region-growing approach that we now detail. In a pre-
processing step, we estimate the local tangent plane and
planarity score at each trianglet by linear least squares
�tting of a plane over a point set chosen as a subset of
the mesh vertices within a local neighborhood. The lat-
ter is set either to the vertices oft in the noise-free case,
or to a larger combinatorial neighborhood (all vertices at
distance at most 2 in the graph of the mesh from the ver-
tices of t) for noisy data sets (Figures 3 and 17). We
then grow iteratively the regions, one region at a time,
always seeding from the unconquered triangle with best
planarity score. Each region is grown over adjacent tri-
angles, one triangle at a time, while remaining under a
normal and distance error tolerance. More speci�cally, we
accept an adjacent triangle when its normal deviates less
than the user-speci�ed normal tolerance to the seed plane,
and its maximum distance to the seed plane is under the
user-speci�ed distance tolerance. The seed plane is not
recomputed during growing. After growing a region we
reject it if its area is smaller than a user-speci�ed parame-
ter (otherwise every triangle could be detected as a planar
proxy). Finally, upon termination we merge the adjacent
regions that are near coplanar.

Edge collapse operator. An edge collapsev0v1 ! v is
the mesh operator that merges the two verticesv0 and v1
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Figure 2: Proxies. Top Left: A mesh and its detected
proxies. Top right: mesh restricted to proxy' with 11
vertices, 18 edges and 11 triangles. Bottom left: nine
edges of the boundary ofK j ' . Bottom right: orthogonal
plane passing throughe 2 E@ Kj ' , used to build a quadric
for the proxy boundary - see Section 3.

to a unique vertexv. Mesh decimation algorithms based on
edge collapses often proceed as follows: (1) For each edge
collapsev0v1 ! v, de�ne a cost related to an error metric
and its corresponding placement strategy devised to �nd a
locally optimal point location forv. (2) Compute an initial
prioritized heap of edge collapse operators with increasing
cost. (3) Iteratively extract the operator with lowest cost
from the heap, compute its optimal location, collapse the
associated edge there and update the prioritized heap for
edges in the local neighborhood. Section 4 provides details
of the cost and optimal location used in our algorithm.
Both rely upon a quadric error metric attached to each
operator that we now de�ne.

3 Error Quadrics

In the original method from Garland and Heckbert [11]
(referred to as GH), the authors associate to each vertex
a quadric which represents an approximation of the error
between the current and the initial mesh. This quadric is
encoded as a 4x4 symmetric matrix, used to compute the
sum of squared distances from a point to a set of planes.
More speci�cally, letP be a planeax + by + cz + d = 0
represented as a vectorP = [ a b c d]. We associate to
this plane the following quadric:

QP = PPT =

0

B
B
@

a2 ab ac ad
ab b2 bc bd
ac bc c2 cd
ad bd cd d2

1

C
C
A

The squared distance of a pointv to P can be written
d(v; P) = vT QP v. An appealing feature of such quadric
is that it can be encoded with only 10 coe�cients and
represent a sum of squared distances from a pointv to a
list of planes(Pi ) as a sum of quadrics:

X
d(v; Pi )2 =

X
~vT Pi Pi

T ~v = ~vT (
X

QP i )~v:

We also use quadrics in our setting but depart from GH
in the sense that we optimize simultaneously for several
criteria by minimizing the sum of squared distances to (1)
the supporting planes of the local mesh triangles, (2) the
planes of the local set of proxies where detected, (3) the
boundary of proxies and (4) the boundary of the mesh.
Each quadric is weighted by an area for scale invariance
and lower sensitivity to the initial mesh density.

Inner quadric. For a trianglet 2 TK , we denote asPt

the supporting plane oft and QP t its associated quadric.
For a planar proxy' we denote asQ' the quadrics de�ned
with the plane of the proxy. Recall that the set of proxies
that contain t is denoted asProxies(t). Each trianglet of
T( e) is associated to a quadricQt :

Qt =

8
><

>:

QP t if Proxies(t) = ;

(1 � � )QP t + �
X

' 2 Proxies( t )

Q' otherwise

The inner quadric of an edgee is de�ned as a weighted
sum:

Qinner(e) =
X

t 2 T( e)

jt jQt :

This quadric is used to compute the cost and optimal
placement for an edge collapse operator. Parameter� ,
referred to as the abstraction parameter, provides a means
to trade mesh versus proxy �delity. For instance when
� = 1 , the vertex is placed at the intersection of proxies
when two proxies pass through edgee. When� = 0 or e is
not associated to any proxy, the quadric only approximates
the local error metric to the mesh. The impact of� on
the decimation is illustrated by Figures 15 and 16. Our
metric is hybrid in the sense that it relies upon both the
local scale of the mesh triangles and the more global scale
of proxies. The latter scale yields an increased robustness
on defect-laden meshes, see Figure 3.

Boundary quadric. For an edgee0 and a planeR � e0,
we denote asQe0;R the quadric associated to the plane
orthogonal toR that containse0. Recall thatE@ K (resp
E@ Kj ' ) is the set of edges ofK (resp. K j ' ) that are
contained in a unique triangle ofK (resp. K j ' ). For a
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Figure 3: Structure-preserving decimation of a mesh corrupted with uniform noise (magnitude 140% of the average edge
length of the mesh). Top: When reaching8 vertices, no more edges are collapsible thanks to the structure-preserving
rules induced by the graph of proxies. Bottom: meshes decimated through the quadric error metric [11] (GH) and
the volume-preserving approach [17] (LT). On such defect-laden meshes the proxy-�tting term also yields an increased
robustness at coarse decimation levels.

boundary edgee0 2 E@ K (resp. e0 2 E@ Kj ' ), we denote
as t0

e the only triangle ofK (resp. K j ' ) passing through
e0. The boundary quadric of an edgee is then de�ned as :

Qbdry(e) =
X

e02 E@ K

jt0
ejQe0;t 0

e
+

X

E@ K j '

jt0
ejQe0;' :

The �rst term prevents over-simplifying the mesh
boundary [11] as without it a planar mesh can be collapsed
to a point at no cost. The second term preserves the shape
of proxies as a proxy' contains via its restricted triangu-
lation K j ' more information than just an in�nite plane
(see Figure 2). We detail next the cost and optimal vertex
placement.

4 Cost and Placement

The original GH algorithm [11] consists of computing an
initial quadric Qv for each vertexv, then summing up
quadrics at each collapse operator. More speci�cally, for
an edge collapsee = v0v1 ! v, the quadric ofe (Qe) is
computed by adding the quadrics of its two vertices, the
optimal vertex locationv being obtained via minimizing
the costvT Qev. This approach keeps this way a memory
of the decimation through adding quadrics. Nevertheless,

it has been observed that memoryless decimation is usually
more e�ective in terms of approximation error [18]. We
thus adopt the memoryless approach and recomputeQe

from the current mesh before each collapse operator.
Decompose the quadric matrixQe as follows:

Qe =
�

A � f
� f T g

�

Minimizing vT Qev involves solving the linear system
Ax = f . However, the determinant ofA vanishes when
the vertices of the star ofe lies in only one or two planes.
Similarly to Lindstrom [16] we deal with degenerate cases
as follows. We compute a singular value decomposition
A = U� V T , then truncate small eigenvalues of� and
store the result in� + :

� +
ii =

(
1=� ii if � ii =� 11 > "
0 otherwise

where � 11 denotes the largest singular value and" is a
parameter set by default to10� 3. Denoting by x̂ the
barycenter of the vertices of the star ofv0 and v1, we
set theSVD solutionof Qe as:

x = x̂ + V � + UT (f � Ax̂):
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Notice that when� � 1 = � + , the SVD solution is similar
to the one of the linear system, i.e.,x = A � 1f .

We now detail our approach to compute the optimal
location for v after the collapse operatore = v0v1 !
v. When collapsing the edgee, the set of proxies of
Proxies(v) is de�ned by Proxies(v0) [ Proxies(v1) and
quadric ofe is de�ned by:

Qe = (1 � � )Qinner(e) + �Q bdry(e);

where� 2 (0; 1) is a parameter used to trade boundary for
inner simpli�cation. The optimal location forv is obtained
through searching for the SVD solution ofQe, and the cost
of collapsinge is set to vT Qev. The decimation process
may thus be seen as a progressive deformation of the initial
mesh onto the set of proxies at a rate controlled by the
abstraction parameter� , see Figure 15.

5 Structure-preserving

Structure-unaware decimation algorithms often destroy the
coarse-scale structures at coarse decimation levels (Figures
13 and 21). Our set of proxies is amenable to a structure-
aware decimation algorithm when deriving an undirected
proximity graph.

Graph of proxies. From the set of detected proxies we
compute a graphG = (V G ; EG;� ) where each proxy is
represented as a vertex ofVG . The edgesEG;� of G
consist of pairs of proxies that have a distance from each
other lower than� . More speci�cally, the distance between
two proxies is approximated as the minimum Euclidean
distance between the two point sets of proxies. A clique
� = f P1; : : : ; Pn g of a graphG is a subset of vertices ofG
such that all pairs of vertices of� are connected by edges
of G.

Consider for the moment an abstracted version of a
dense, defect-free input scene where all proxies are cor-
rectly detected and all points lie within their proxy's plane.
The ideal graph of proxies coincides with the proximity
graph such that, e.g., a cube would be structured by a
dual octahedron. Although on real-world data such perfect
graph detection is hopeless, the proximity graph provides
enough information about the structure to devise three
structure-preserving rules: respectively graph, proxy and
corner preservation, as illustrated by Figure 4.

Graph preservation. Two parts that are not connected
in the graph should not be connected during decimation.
We accept an edge collapsev0v1 ! v only if all pairs of
proxies inPv = Pv0 [ Pv1 are edges of the initial edges of
G. This condition may be seen as ameta link condition

P1

P0

P3

P0 P1

P0

P1

P3

P0 P1

P0
P1

v0

v0

v1

v1 v

v

v0v1 ! v
P0

vv0

v1
P1

Figure 4: Structure-preserving rules. Three types of
structure-altering operators prevented when simulating the
edge collapse operatorv0v1 ! v. Top: collapsing would
introduce a new edgeP0P1 into the graph of proxies (de-
picted in pink). Middle: collapsing would degenerate proxy
P1. Bottom: collapsing would degenerate the corner ver-
tex betweenP0, P1 and P3.

that prevents undesirable operations such as joining two
walls of an urban scene that were initially disjoint.

Proxy preservation. When performing a collapse oper-
ator the resulting vertex receives the union of proxies of
the two edge vertices. Thus, proxies are always witnessed
by at least one vertex. However, a proxy may degenerate
into a single vertex or edge during decimation. To prevent
such degeneracy we reject a collapse operator when the
number of vertices forming this proxy after collapse drops
below a user-speci�ed parameter. Although3 are su�cient
to guarantee a valid dimension, we set this parameter to4
in all experiments carried out on urban scenes.

Corner preservation. Corners are visually very notice-
able on scenes made up of large planar parts (Figure 13).
To prevent loosing corners or letting the vertices migrate
far away from corners, we must detect and preserve them
during decimation. Inferring corner is however non trivial
even from the graph of proxies for two main reasons: (1)
initially, corners may not be represented as vertices having
at least 3 proxies, as depicted by Figure 5 (left). (2) cor-
ners may be at the junction of more than three proxies,
as depicted by Figure 6 (left). All intersections of3 of
the proxies are in general distinct as depicted by Figure 6

6



Figure 5: Witnessing corners. Left: initial mesh and num-
ber of proxies assigned to vertices. Notice how only one of
the three corners is initially witnessed after initial detec-
tion. Right: number of proxies assigned to vertices after
decimation. Vertices with 1, 2, 3 and 4 proxies are depicted
respectively as black, blue, yellow and cyan dots.

(right), and we must �nd a single optimal point location
for this cluster of intersections.

One solution is to perform data completion [24], through
a graph cut formulation applied to a discretized space.
However, as our goal di�er from reconstruction we favor an
approach that takes advantage of the scale-space traversal
performed during decimation.

Let us denote byj� j the size of a clique de�ned by its
number of vertices. A clique� is maximal if there is no
clique of G that is distinct from � and contains� . Ob-
serve that when the proxy graphG is ideal, i.e., captures
all inferred proxy edges, every scene corner is represented
by a maximal clique ofG of size at least3. Corners are
likely to attract vertices during the decimation process as
they coincide with the \best" location to minimize the er-
ror metric locally. However, best herein depends on the
current scale and vertices close to corners may be moved
further during decimation. We would like instead to snap
them to corners. We explain next how we infer corners dur-
ing the decimation and how points are chosen to represent
such corners.

Let � be a maximal clique ofG with sizej� j � 3. We
call a vertexv a witness of� if v contains at least three
proxies of� and denote asWitness(� ) the set of witnesses
of � . We also denote asCorners(G) the set of witnessed
maximal cliques ofG of size strictly greater than or equal
to 3. For instance, in Figure 5, only one clique is ini-
tially witnessed (left) whereas three cliques are witnessed
after decimation (right), and thusCorners(G) has respec-
tively one and three elements. We infer corners with the
set Corners(G) (hence corners may be inferred during the
decimation asCorners(G) may grow during the decima-
tion). The �rst time a clique � becomes witnessed (i.e.
becomes a new element ofCorners(G)), we compute a
representing pointp� as follows. We pick one vertexv in

P0

P1
P2

Intersections of the 4 tripletsProxy graph

P4

in clique f P0 ; P1 ; P3 ; P4g

P3

Figure 6: Multiple corners. The graph of proxies has a
clique � with size larger than3. When the planes are not
exactly aligned, intersecting all triplets included in� yields� j � j

3

�
distinct points.

Witness(� ) and set the pointp� to the closest intersec-
tion from v of all the

� j � j
3

�
triplets of planes included in� .

Finally, to prevent vertices from migrating far away from
inferred corners, we reject an edge collapse operator when
the distance of a pointp� to its closest witness vertex
increases after a collapse.

Note that albeit we preserve proxies and corners that
correspond respectively to vertices and maximal cliques of
the proxy graph, we do not add analog structure-preserving
rules for sharp creases that correspond to edges in the
graph. The reason is that (1) removing small crease edges
is sometimes desirable, see e.g. edgeP0P3 depicted by
Figure 6. Adding a rule for longer sharp creases would
thus require de�ning a parameter, and (2) most crease
edges are already preserved even at coarse approximation
with our set of rules and our metric. Other structure-
preserving rules devised to preserve other features such as
boundary corners may be added as well but we found in ex-
periment that adding more rules prevent decimation from
reaching coarse levels of details. We thus opted for a set
of structure-preserving rules that is both small enough to
allow coarse decimation and meaningful to preserve most
salient structures.

6 Experiments

Our method is implemented inC++. As mesh data
structure we use the recent skeleton-blockers (SB) data-
structure [2]. Our main reason for using such data struc-
ture is that it can represent any simplicial complex (not
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necessarily manifold) and is e�cient at performing edge
collapse operators. We compare our approach to the
volume-preserving decimation approach (LT) [18] imple-
mented in the CGAL library, to the GH approach [11] im-
plemented with our SB data structure, and to the Varia-
tional Shape Approximation (VSA) approach [10]. Our
method does not require the input to be manifold but
the LT implementation of CGAL does. We thus con-
vert the input mesh to a2-manifold mesh for compar-
ison with LT. Errors between approximations and input
meshes are computed as the symmetric Hausdor� dis-
tance or symmetric mean distance. The symmetric Haus-
dor� distance between two spacesX and Y is de�ned
as dH (X; Y ) = max f supx 2 X d(x; Y ); supy2 Y d(y; X ) g
and is computed by dense point sampling ofX and Y .
The mean distance has a similar de�nition except that
distances are averaged instead of taking the maximum.
Denote by X 0 and Y 0 the discretization ofX and Y ,
the mean distance betweenX and Y is approximated by
maxf 1

jX 0j � x 2 X 0d(x; Y ); 1
jY 0j � y2 Y 0d(y; X ) g.

All timings are measured on an Intel i7 2.70GHz pro-
cessor with 16GB RAM. Our method is evaluated on vari-
ous designed and real world models with size ranging from
thousands to millions of vertices. Errors and timing are
shown in Table 1 which shows that our sequential imple-
mentation decimates around 2K vertices per second.

Parameters. We set the abstraction parameter� = 0 :8
in all experiments except for Figure 15 where we evalu-
ate the impact of this parameter on the decimation. The
boundary parameter� is set to 0:8. In all experiments
shown the planar proxies are detected using a region-
growing approach [15]. The link condition to preserve
the 2-manifold property is not enforced for models with
non trivial topology as we wish to remove small holes and
handles during decimation. Mesh inversion however is pre-
vented by checking that the normals to all triangles vertex-
incident to the collapsed edge do not vary too much after
collapse. More speci�cally, for every triangle around a ver-
tex about to be collapsed, we check that the angle between
the normal of this triangle and the corresponding triangle
obtained after the collapse (if any) is lower than 150 de-
grees. However, as we take arbitrary simplicial complexes
as input that may not be 2-manifold nor orientable, we
perform the normal-inversion test only when the mesh is
locally orientable.

Designed models. We start by performing a few san-
ity checks on ground truth models designed in Trimble
Sketchup, re-meshed uniformly and corrupted with uni-
form noise. When proxies are well detected, our algorithm
stops as expected to coarse and accurate approximations

GH (50 vertices) LT  (50 vertices) Ours  (50 vertices)

60 80 100 120 140 160 180 200
Number of vertices

0.05
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Figure 7: Comparison. We plot the mean geometric er-
ror against mesh complexity while decimating the church
building shown Figure 1 with Garland-Heckbert (GH),
Lindstrom-Turk (LT) and our method. Our structure pre-
serving rules and metric generates more error at �ne com-
plexities due to abstraction, but lower error at coarse com-
plexities by preserving main structural elements. Note that
the fast increase in the error after 60 vertices is due to the
�ltration of the small tower on the middle of the roof. The
latter does not belong to any proxy, hence is not detected
as a structural element.

(Figures 3, 10 and 11). When the proxy detection step
is imperfect on meshes with ill-de�ned sharp features, the
latter are often recovered during decimation via the proxy
term in the quadrics, and preserved through the structure-
preserving rules. Furthermore, the latter rules provide a
stopping criterion in the sense that no edge is collapsi-
ble upon termination of the decimation. In the exam-
ples shown the �nal mesh is very coarse, visually coher-
ent and close to the minimal complex required to rep-
resent the model or scene without loosing coarse struc-
tures. Structure-unaware methods would require de�ning
an error-based stopping criterion through a trial-and-error
visual inspection process. We found in experiments that
specifying a tolerance error for proxy detection makes it
easier to inspect the quality of proxy detection before dec-
imation. Figure 11 (right) illustrates that when the error
tolerance for proxy detection is larger, the mesh converges
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Original Detected proxies GH Ours

Figure 8: Kitten. This non-developable surface challenges our piecewise planar approximation. From left to right, input
mesh (10,000 vertices), initial planar proxies, mesh simpli�ed with Garland-Heckbert and with our method for a similar
complexity (228 vertices). The right mesh is the output when decimation stops because of the structure-presering
rules. In this case, our algorithm generates an extra mean-error compared to Garland-Heckbert (0.35 vs 0.23) because
our error metric favors close �tting to the initial planes (see close-ups).

Figure 9: Comparison with VSA. A model of a Fandisk
reconstructed with a voxel-based method (available from
AIM@Shape repository) is decimated to 77 vertices with
our method (top right) and VSA (bottom right). Our
method yields a lower mean error than VSA.

to a coarser approximation. This error tolerance is our
mean to select the desired level of details for the �nal ap-
proximation. The noise robustness of our algorithm for
three di�erent proxy detection approaches is illustrated by
Figure 17. The approaches are: (1) region growing on the
mesh (used by default in all other experiments), (2) re-
gion growing based on the mesh vertices only (adjacency
relationships are derived from a k-nearest neighbor graph
instead of from the triangulation) and (3) RANSAC [25].

Real world models. Results for real-world case are
shown by Figures 1, 9, 18, 15, 20 and 21. On defect-laden
meshes generated via a structure-from-motion reconstruc-
tion pipeline the detection of proxies is substantially harder
(Figure 14). Our results show that even when the detection
of proxies is imperfect we generate meaningful decimated
meshes in terms of both visual coherence (Figure 20 and
21) and objective error metric (Figures 7 and 16). For the
sake of comparison with an abstraction process driven by
the detected proxies, we depict in Figure 21 a mesh gen-
erated by one-step projection of vertices onto the plane
of their closest proxy, where detected. Our experiments
revealed that this approach is too sensitive to the qual-
ity of proxy detection and performs poorly at recovering
clean sharp features, even when followed by decimation.
In other words, our experiments revealed that it is sub-
stantially more robust to traversal the scales progressively
with a dual error metric relating to both the current mesh
and the proxies. Robustness to di�erent proxy detection
and graph parameters is illustrated by Figure 18. Detecting
more proxies provides a means to lower the approximation
error. We can vary the graph proximity parameter� in
a relatively large interval without a�ecting too much the
result.

Limitations. Our decimation approach is both auto-
mated and e�cient as for other greedy methods. Nev-
ertheless, it may not generate perfectly abstracted models
starting from dense defect-laden meshes: the �nal output
meshes may, e.g., not have all their faces perfectly aligned
- albeit close - with abstracted planes. We also observed in
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LT at 115 verticesGH at 115 vertices

5000 vertices

13000 vertices 1300 vertices 115 vertices

500 vertices 220 vertices

GH at 220 vertices LT at 220 vertices

Input mesh

Input mesh

Figure 10: Triumphal Arch (top) and Empire State Building (bottom). Both models have been designed in Trimble
Sketchup, re-meshed uniformly and corrupted with uniform noise (respective magnitude 30% and 15% of the average
edge length of the mesh). From left to right: input mesh with detected planar proxies, mesh decimated with 10%
vertices and �nal mesh obtained when no more edge is collapsible due to structure-preserving rules.
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Decimation after �ne proxy detection Decimation after coarse proxy detection

367 vertices 273 vertices

Figure 11: Chichen Itza. The model (390K vertices) has been designed in Trimble Sketchup, re-meshed uniformly and
corrupted with uniform noise (magnitude 15% of the average edge length). Left: the initial �ne proxy detection step
captures the doors and some details of the entrance statue. Right: a coarser proxy detection step captures only 5
planes on the top of the pyramid. In both cases the structures are well preserved during decimation even at the end
when no edge is collapsible anymore. Results obtained via other methods for this model are illustrated by Figure 13,
and a di�erent closeup on the door is depicted by Figure 12.
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Input mesh EndProxy detected Sharp edges detection
with ReMESH

Figure 12: Chichen Itza (closeup). Closeup on a door of model depicted by Figure 11 and decimation with a small
tolerance error for proxy detection. While sharp features such as crease edges and corners are ill-de�ned in the input
mesh, they are recovered during decimation via the error metric to proxies, then preserved through structure-preserving
rules.

VSA with 450 vertices

GH with 367 vertices

LT with 367 vertices

Figure 13: Comparison. Outputs of VSA, GH and LT when
decimating the Chichen Itza model at coarse resolution.
Unlike our method, structure parts such as stairs or facade
details are already altered at 367 vertices.

experiments that using a richer set of mesh optimization
operators such as edge 
ip, edge split or global vertex relo-
cation would further improve the quality of results. How-
ever, proving termination of such pliant approach would be
an issue and the algorithm complexity would substantially
increase. Another weakness of our approach is the use of
a �xed set of proxies after detection via a single tolerance
error. Performing a simpli�cation of the proxies in tan-
dem with the mesh decimation seems a natural direction
to explore, but this would contradict the current approach
where proxies are used to avoid error accumulation and
improve resilience to defects. Finally, planar proxies are
not adapted to approximate free-form nor non-developable
surfaces as shown by Figure 8.

7 Conclusion

We introduced a mesh simpli�cation approach that com-
bines mesh decimation with �delity to a set of planar prox-
ies detected and structured in an adjacency graph during
a pre-processing step. The common error to the deci-
mated mesh is augmented by an error metric to the proxies
and boundaries of planar parts delineated by proxies. This
error-to-proxy as well as structure-preserving rules derived
from the graph of proxies are used to recover and pre-
serve the coarse-scale structures. Our approach is particu-
larly well suited to the robust simpli�cation of defect-laden
meshes generated by automated reconstruction pipelines
applied to physical scenes composed of man-made objects.

Our experiments show that the decimated meshes pro-
vide meaningful abstractions, and an abstraction parame-
ter provides a means to trade mesh versus proxy �delity.
Compared to direct mesh abstraction through, e.g., pro-
jection onto proxies, the scale-space traversal operated by
the mesh decimation, combined with the aforementioned
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combined metric, reveals substantially more robust at re-
covering the sharp features.

Further work includes the simpli�cation of proxies during
decimation, the use of domain-speci�c semantic rules and
a generalization to non-planar proxies.

Acknowledgments. The authors wish to thank Acute3D
and InterAtlas for providing the urban meshes of Paris.
This work is partially funded by an ERC Starting Grant
\Robust Geometry Processing" (257474).

References

[1] Acute3d, 2010.

[2] D. Attali, A. Lieutier, and D. Salinas. E�cient
data structure for representing and simplifying sim-
plicial complexes in high dimensions.International
Journal of Computational Geometry and Applications
(IJCGA), 22(4):279{303, 2012.

[3] H. Borouchaki and P.J. Frey. Simpli�cation of surface
mesh using hausdor� envelope.Computer Methods in
Applied Mechanics and Engineering, 194(48-49):4864
{ 4884, 2005.

[4] Mario Botsch, David Bommes, Christoph Vogel, and
Leif Kobbelt. GPU-based tolerance volumes for
mesh processing. InPaci�c Conference on Com-
puter Graphics and Applications, pages 237{243.
IEEE Computer Society, 2004.

[5] Mario Botsch and Leif Kobbelt. Resampling feature
and blend regions in polygonal meshes for surface
anti-aliasing. Computer Graphics Forum, 20(3):402{
410, 2001.

[6] Alexandre Boulch, Martin de La Gorce, and Renaud
Marlet. Piecewise-Planar 3D Reconstruction with
Edge and Corner Regularization.Computer Graph-
ics Forum, 33(5):55{64, 2014.

[7] A. Ciampalini, Paolo Cignoni, Claudio Montani, and
Roberto Scopigno. Multiresolution decimation based
on global error. The Visual Computer, 13(5):228{
246, 1997.

[8] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. We-
ber, P. Agarwal, F. Brooks Jr., and W. Wright. Sim-
pli�cation envelopes. Proceedings of SIGGRAPH,
pages 119{128, 1996.

[9] Jonathan Cohen, Dinesh Manocha, and Marc Olano.
Successive mappings: An approach to polygonal mesh

simpli�cation with guaranteed error bounds.Interna-
tional Journal of Computational Geometry and Appli-
cations, 13(1):61{96, 2003.

[10] David Cohen-Steiner, Pierre Alliez, and Mathieu Des-
brun. Variational shape approximation.ACM Trans.
Graph., 23(3):905{914, August 2004.

[11] Michael Garland and Paul S. Heckbert. Surface sim-
pli�cation using quadric error metrics. InProceed-
ings of the 24th annual conference on Computer
graphics and interactive techniques, SIGGRAPH '97,
pages 209{216, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

[12] Andr�e Gu�eziec. Surface simpli�cation inside a toler-
ance volume. Technical Report 20440, IBM, 1996.

[13] Hugues Hoppe, Tony DeRose, Tom Duchamp, John
McDonald, and Werner Stuetzle. Mesh optimization.
In Proceedings of the 20th Annual Conference on
Computer Graphics and Interactive Techniques, SIG-
GRAPH, pages 19{26, 1993.

[14] Alan D. Kalvin and Russel H. Taylor. Superfaces:
Polygonal mesh simpli�cation with bounded error.
IEEE Computer Graphics and Appl., 16(3), May
1996.

[15] Florent Lafarge and Clment Mallet. Creating large-
scale city models from 3d-point clouds: A robust ap-
proach with hybrid representation.International Jour-
nal of Computer Vision, 99(1):69{85, 2012.

[16] Peter Lindstrom. Out-of-core simpli�cation of large
polygonal models. InProceedings of the 27th Annual
Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH '00, pages 259{262, New
York, NY, USA, 2000. ACM Press/Addison-Wesley
Publishing Co.

[17] Peter Lindstrom and Greg Turk. Fast and memory ef-
�cient polygonal simpli�cation. InProceedings of the
Conference on Visualization '98, VIS '98, pages 279{
286, Los Alamitos, CA, USA, 1998. IEEE Computer
Society Press.

[18] Peter Lindstrom and Greg Turk. Evaluation of mem-
oryless simpli�cation. IEEE Transactions on Visual-
ization and Computer Graphics, 5(2):98{115, April
1999.

[19] David Luebke, Benjamin Watson, Jonathan D. Co-
hen, Martin Reddy, and Amitabh Varshney.Level of
Detail for 3D Graphics. Morgan Kaufmann Editions,
2002.

13



[20] Martin Marinov and Leif Kobbelt. Automatic gener-
ation of structure preserving multiresolution models.
Comput. Graph. Forum, 24(3):479{486, 2005.

[21] Ravish Mehra, Qingnan Zhou, Jeremy Long, Alla
She�er, Amy Gooch, and Niloy J. Mitra. Abstraction
of man-made shapes. InACM SIGGRAPH Asia 2009
Papers, SIGGRAPH Asia '09, pages 137:1{137:10,
New York, NY, USA, 2009. ACM.

[22] Niloy Mitra, Michael Wand, Hao (Richard) Zhang,
Daniel Cohen-Or, Vladimir Kim, and Qi-Xing Huang.
Structure-aware shape processing. InSIGGRAPH
Asia 2013 Courses, SA '13, pages 1:1{1:20, New
York, NY, USA, 2013. ACM.

[23] E. Ovreiu, J. G. Riveros Reyes, S. Valette, and
R. Prost. Mesh simpli�cation using a two-sided error
minimization. In International Conference on Image,
Vision and Computing (ICIVC 2012), pages 26{30,
2012.

[24] Ruwen Schnabel, Patrick Degener, and Reinhard
Klein. Completion and reconstruction with primitive
shapes. Computer Graphics Forum (Proc. of Euro-
graphics), 28(2):503{512, March 2009.

[25] Ruwen Schnabel, Roland Wahl, and Reinhard Klein.
E�cient RANSAC for point-cloud shape detection.
Computer Graphics Forum, 26(2):214{226, June
2007.

[26] H-H. Vu, R. Keriven, P. Labatut, and J.-P Pons. To-
wards high-resolution large-scale multi-view stereo. In
Conference on Computer Vision and Pattern Recog-
nition (CVPR), Miami, Jun 2009.

[27] Steve Zelinka and Michael Garland. Permission grids:
practical, error-bounded simpli�cation.ACM Trans-
actions on Graphics, 21(2):207{229, April 2002.

Figure 14: Robustness. Defects such as non-manifoldness,
spurious handles or holes often arise in outputs of auto-
mated urban modeling pipelines. Top: holes due to occlu-
sions. Middle: spurious handles. Bottom: non-manifold
vertices.

14



� = 0 : 99� = 0 : 8

Input mesh (72000 vertices) and detected proxies

� = 0

Mesh decimated to 2500 vertices with di�erent�
� = 0 : 5

Figure 15: Impact of the abstraction parameter� on the
decimation. Top: input mesh and detected proxies. Bot-
tom: meshes decimated with four di�erent values for�
parameter. While the complexity of the output mesh is
identical, larger values for� imply faster removal of de-
tails on proxies during decimation and faster abstraction
as evidenced by the straighter walls for high� and the
curves depicted by Figure 16.

Figure 16: Complexity-distortion. We plot the mean er-
ror between the initial and approximated mesh (top) and
the mean proxy distance (bottom) while decimating the
mesh depicted by Figure 15, with four distinct values for
the abstraction parameter� . The mean proxy distance is
computed as the average distance from vertices to their
associated proxy. Higher values for� yield lower proxy er-
ror but higher error for the approximation compared to the
original mesh.
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Figure 17: Noise robustness for three planar detection methods. A dense mesh of the Denver museum (upper left)
is decimated after being corrupted by various levels of uniform noise. The curves plot the mean error against noise,
measured after the input mesh model (40,000 vertices) is decimated to 270 vertices with Garland-Heckbert (GH) and
our method. We combine our approach with (1) planar proxies detected via RANSAC, region-growing based on the
mesh triangles and region-growing based on the mesh vertices (with a10-nearest neighbors graph). The planar proxies
are detected with the same parameters for all noise values. When the mesh is corrupted with noise, our algorithm with
region growing yields a nearly uniform error in this range and lower than Garland-Heckbert. However, in absence of
noise, our method generates an extra error mainly due to abstraction. RANSAC yields lower results that region-growing
in this case, which is expected since this method is primarily designed to be outlier robust.
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Figure 18: Parameters. We illustrate the impact of the number of proxies and graph distance threshold parameter�
on the decimation. The input model is a part of the mesh shown Figure 19. Top line: di�erent number of proxies
detected. Decimated meshes are then shown by increasing number of proxies (from left to right) and increasing� from
bottom to top. Observe that the quality of results (visual and objective) is stable with respect to� parameter and the
number of pre-detected proxies.
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�g 21

�g 20 top

�g 20 bottom

Figure 19: Paris. Input mesh generated through multi-view stereo reconstruction [1, 26]. The mesh, composed of 12
tiles, covers 1km2 of Paris and comprises 6M vertices. Decimation results are depicted by Figure 20 and compared to
one-step projection by Figure 21.

Input mesh with proxies GH Ours

Figure 20: Comparison on Paris. The input mesh is depicted by Figure 19. From left to right: input mesh with color
attributes related to the proxies, mesh decimated with Garland Heckbert (GH) and with our approach (complexities
are identical). Adding an error metric relating to the scale of proxies tends to reinforce parallelism and co-planarity
which further increases visual coherency.
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LT with 950 vertices

Input mesh with 120,000 vertices Projection on proxies

Ours with 450 verticesOurs with 30,000 vertices

GH with 450 vertices

Figure 21: One-step projection and comparison on Paris. Top left: input mesh with colors associated to planar proxies.
Top right: mesh with vertices projected in one step onto their proxies. Middle left: mesh decimated via Garland-Heckert
(GH) to 450 vertices. Middle right: mesh decimated via Lindstrom-Turk (LT) to 950 vertices. Bottom: mesh decimated
via our approach at 30,000 and 450 vertices. At coarse complexity our method compares well to previous work. The
GH approach tends to preserve uniform density while ours favors the placement of vertices at corners together, the
parallelism and the co-planarity. The LT approach generates high errors at very coarse complexity.
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Input mesh #vertices #simpli�ed vertices #proxies Decimation time (s) Mean error Method
Fandisk 12; 000 81 41 2.9 0.0079 LT

0.94 0.0064 GH
10 0.0076 VSA
5.3 0.0060 Ours

Chichen Itza 392; 000 450 173 85 0.032 LT
44 0.064 GH
600 0.28 VSA
250 0.034 Ours

Triumphal arch 13; 631 115 70 2.9 0.11 LT
0.65 0.33 GH
5.3 0.042 Ours

Church 9,301 50 25 1.6 0.42 LT
0.7 0.33 GH
3.0 0.23 Ours

Paris 5; 927; 613 30; 742 7,392 702 0.59 GH
2; 990 0.52 Ours

Table 1: Performance. We list the number of vertices of the input mesh, number of vertices of the decimated mesh,
number of proxies detected, total decimation time and mean error. Results of VSA and LT are not shown for the last
cases as they could not reach such low complexity.
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