Skip to Main content Skip to Navigation
Journal articles

An Optimal Lower Bound on the Communication Complexity of Gap-Hamming-Distance

Amit Chakrabarti 1 Oded Regev 2
2 CASCADE - Construction and Analysis of Systems for Confidentiality and Authenticity of Data and Entities
DI-ENS - Département d'informatique de l'École normale supérieure, Inria Paris-Rocquencourt, CNRS - Centre National de la Recherche Scientifique : UMR 8548
Abstract : We prove an optimal $\Omega(n)$ lower bound on the randomized communication complexity of the much-studied gap-hamming-distance problem. As a consequence, we obtain essentially optimal multipass space lower bounds in the data stream model for a number of fundamental problems, including the estimation of frequency moments. The gap-hamming-distance problem is a communication problem, wherein Alice and Bob receive $n$-bit strings $x$ and $y$, respectively. They are promised that the Hamming distance between $x$ and $y$ is either at least $n/2+\sqrt{n}$ or at most $n/2-\sqrt{n}$, and their goal is to decide which of these is the case. Since the formal presentation of the problem by Indyk and Woodruff [Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, 2003, pp. 283--289], it had been conjectured that the naïve protocol, which uses $n$ bits of communication, is asymptotically optimal. The conjecture was shown to be true in several special cases, e.g., when the communication is deterministic or when the number of rounds of communication is limited. The proof of our aforementioned result, which settles this conjecture fully, is based on a new geometric statement regarding correlations in Gaussian space, related to a result of Borell [Z. Wahrsch. Verw. Gebiete, 70 (1985), pp. 1--13]. To prove this geometric statement, we show that random projections of not-too-small sets in Gaussian space are close to a mixture of translated normal variables.
Document type :
Journal articles
Complete list of metadata

https://hal.inria.fr/hal-01111554
Contributor : Brigitte Briot <>
Submitted on : Friday, January 30, 2015 - 3:25:19 PM
Last modification on : Tuesday, May 4, 2021 - 2:06:02 PM

Links full text

Identifiers

Collections

Citation

Amit Chakrabarti, Oded Regev. An Optimal Lower Bound on the Communication Complexity of Gap-Hamming-Distance . SIAM Journal on Computing, Society for Industrial and Applied Mathematics, 2012, 41 (5), pp.1299-1317. ⟨10.1137/120861072⟩. ⟨hal-01111554⟩

Share

Metrics

Record views

210