R. A. Anthes, Data Assimilation and Initialization of Hurricane Prediction Models, Journal of the Atmospheric Sciences, vol.31, issue.3, pp.702-719, 1974.
DOI : 10.1175/1520-0469(1974)031<0702:DAAIOH>2.0.CO;2

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Advances in Mathematics, vol.30, issue.1, pp.33-76, 1978.
DOI : 10.1016/0001-8708(78)90130-5

U. M. Ascher, S. J. Ruuth, and B. T. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM Journal on Numerical Analysis, 1995.

M. I. Asensio and L. Ferragut, On a wildland fire model with radiation, International Journal for Numerical Methods in Engineering, vol.166, issue.1, pp.137-157, 2002.
DOI : 10.1002/nme.420

D. Auroux and J. Blum, Back and forth nudging algorithm for data assimilation problems, Comptes Rendus Mathematique, vol.340, issue.12, pp.873-878, 2005.
DOI : 10.1016/j.crma.2005.05.006

URL : https://hal.archives-ouvertes.fr/inria-00189644

S. Balay, W. D. Gropp, L. C. Mcinnes, and S. B. , Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries, Modern Software Tools in Scientific Computing, pp.163-202, 1997.
DOI : 10.1007/978-1-4612-1986-6_8

G. Bellettini, P. Colli-franzone, and M. Paolini, Convergence of front propagation for anisotropic bistable reaction-diffusion equations, Asymptotic Analysis, vol.15, pp.3-4325, 1997.

R. Bellman and K. J. Aström, On structural identifiability, Mathematical Biosciences, vol.7, issue.3-4, pp.329-339, 1970.
DOI : 10.1016/0025-5564(70)90132-X

M. Bendahmane and H. K. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue. Networks and Heterogeneous Media, pp.185-218, 2006.

R. P. Beyer and R. J. Leveque, Analysis of a One-Dimensional Model for the Immersed Boundary Method, SIAM Journal on Numerical Analysis, vol.29, issue.2, 1992.
DOI : 10.1137/0729022

J. Blum, F. Dimet, and I. M. Navon, Data Assimilation for Geophysical Fluids, Handbook of Numerical Analysis: Computational Methods for the Atmosphere and the Oceans, 2008.
DOI : 10.1016/S1570-8659(08)00209-3

URL : https://hal.archives-ouvertes.fr/inria-00391892

M. Boulakia, J. Gerbeau, and E. Schenone, Reduced-order modeling for cardiac electrophysiology. Application to parameter identification, International Journal for Numerical Methods in Biomedical Engineering, vol.51, issue.10, pp.727-744, 2012.
DOI : 10.1002/cnm.2465

URL : https://hal.archives-ouvertes.fr/hal-00644396

A. Boulanger, P. Moireau, B. Perthame, and J. Sainte-marie, Data assimilation for hyperbolic conservation laws: A Luenberger observer approach based on a kinetic description, Communications in Mathematical Sciences, vol.13, issue.3, pp.587-622, 2015.
DOI : 10.4310/CMS.2015.v13.n3.a1

URL : https://hal.archives-ouvertes.fr/hal-00924559

Y. Bourgault, Y. Coudì, and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Analysis: Real World Applications, vol.10, issue.1, pp.458-482, 2009.
DOI : 10.1016/j.nonrwa.2007.10.007

URL : https://hal.archives-ouvertes.fr/hal-00101458

M. Burger, B. Hackl, and W. Ring, Incorporating topological derivatives into level set methods, Journal of Computational Physics, vol.194, issue.1, pp.344-362, 2004.
DOI : 10.1016/j.jcp.2003.09.033

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Cencini, C. Lopez, and D. Vergni, Reaction-Diffusion Systems: Front Propagation and Spatial Structures, The Kolmogorov Legacy in Physics -Lecture Notes in Physics, pp.187-210
DOI : 10.1007/978-3-540-39668-0_9

T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on Image Processing, vol.10, issue.2, pp.266-277, 1991.
DOI : 10.1109/83.902291

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Chapelle, K. Charpentier, N. Claude, M. Fragu, V. Mallet et al., Documentation for Verdandi 1

D. Chapelle, N. C??ndeac??ndea, M. De-buhan, and P. Moireau, Exponential Convergence of an Observer Based on Partial Field Measurements for the Wave Equation, Mathematical Problems in Engineering, vol.2012, 2012.
DOI : 10.1016/j.matpur.2008.09.002

URL : https://hal.archives-ouvertes.fr/inria-00619504

D. Chapelle, A. Collin, and J. Gerbeau, A SURFACE-BASED ELECTROPHYSIOLOGY MODEL RELYING ON ASYMPTOTIC ANALYSIS AND MOTIVATED BY CARDIAC ATRIA MODELING, Mathematical Models and Methods in Applied Sciences, vol.23, issue.14, pp.2749-2776, 2013.
DOI : 10.1142/S0218202513500450

URL : https://hal.archives-ouvertes.fr/hal-00723691

D. Chapelle, M. Fragu, V. Mallet, and P. Moireau, Fundamental principles of data assimilation underlying the Verdandi library: applications to biophysical model personalization within euHeart, Medical & Biological Engineering & Computing, vol.4, issue.7, pp.1-13, 2012.
DOI : 10.1007/s11517-012-0969-6

URL : https://hal.archives-ouvertes.fr/hal-00760887

D. Chapelle, A. Gariah, P. Moireau, and J. Sainte-marie, A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems ??? Analysis, assessments and applications to parameter estimation, ESAIM: Mathematical Modelling and Numerical Analysis, vol.47, issue.6, pp.471821-1843, 2013.
DOI : 10.1051/m2an/2013090

URL : https://hal.archives-ouvertes.fr/hal-00834397

N. C??ndeac??ndea, A. Imperiale, and P. Moireau, Data assimilation of time under-sampled measurements using observers, application to wave-like equations. ESAIM: Control, Optimisation and Calculus of Variations, 2014.

T. Colin, A. Iollo, O. D. Lombardi, and . Saut, SYSTEM IDENTIFICATION IN TUMOR GROWTH MODELING USING SEMI-EMPIRICAL EIGENFUNCTIONS, Mathematical Models and Methods in Applied Sciences, vol.22, issue.06, pp.137-157, 2012.
DOI : 10.1142/S0218202512500030

P. Colli-franzone, L. Guerri, and S. Rovida, Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations, Journal of Mathematical Biology, vol.25, issue.4, pp.121-176, 1990.
DOI : 10.1007/BF00163143

C. Franzone and L. F. Pavarino, A PARALLEL SOLVER FOR REACTION???DIFFUSION SYSTEMS IN COMPUTATIONAL ELECTROCARDIOLOGY, Mathematical Models and Methods in Applied Sciences, vol.14, issue.06, pp.883-911, 2004.
DOI : 10.1142/S0218202504003489

P. Colli-franzone, L. F. Pavarino, and B. Taccardi, Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models, Mathematical Biosciences, vol.197, issue.1, pp.35-66, 2005.
DOI : 10.1016/j.mbs.2005.04.003

C. Franzone and G. Savaré, Degenerate evolution systems modeling cardiac electric field at micro and macroscopic. Evolution Equations, Semigroups and Functional Analysis, Progress in Nonlinear Differential Equations and Their Applications, pp.49-78, 2002.

A. Collin, J. Gerbeau, M. Hocini, M. Ha¨?ssaguerreha¨?ssaguerre, and D. Chapelle, Surface-Based Electrophysiology Modeling and Assessment of Physiological Simulations in Atria, pp.352-359, 2013.
DOI : 10.1007/978-3-642-38899-6_42

URL : https://hal.archives-ouvertes.fr/hal-00815974

C. Corrado, J. Gerbeau, and P. Moireau, Identification of weakly coupled multiphysics problems. Application to the inverse problem of electrocardiography, Journal of Computational Physics, vol.283, pp.271-298, 2015.
DOI : 10.1016/j.jcp.2014.11.041

URL : https://hal.archives-ouvertes.fr/hal-01091751

M. Courtemanche, R. J. Ramirez, and S. Nattel, Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model, American Journal of Physiology, vol.275, issue.1

M. Cristofol, I. Kaddouri, G. Nadin, and L. Roques, Coefficient determination via asymptotic spreading speeds, Inverse Problems, vol.30, issue.3, p.35005, 2014.
DOI : 10.1088/0266-5611/30/3/035005

URL : https://hal.archives-ouvertes.fr/hal-01072248

C. Dapogny, C. Dobrzynski, and P. Frey, Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems, Journal of Computational Physics, vol.262, pp.358-378, 2014.
DOI : 10.1016/j.jcp.2014.01.005

URL : https://hal.archives-ouvertes.fr/hal-01110395

M. C. Delfour and J. Zolésio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization (Advances in Design and Control). SIAM, second edition, 2011.
DOI : 10.1137/1.9780898719826

B. Engquist, A. Tornberg, and R. Tsai, Discretization of Dirac delta functions in level set methods, Journal of Computational Physics, vol.207, issue.1, pp.28-51, 2005.
DOI : 10.1016/j.jcp.2004.09.018

G. Evensen, Data Assimilation ? The Ensemble Kalman Filter, 2007.

B. Fabrèges and B. Maury, Approximation of Single Layer Distributions by Dirac Masses in Finite Element Computations, Journal of Scientific Computing, vol.197, issue.2, pp.25-40, 2013.
DOI : 10.1007/s10915-013-9723-y

S. C. Ferreira-jr, M. L. Martins, and M. J. Vilela, Reaction-diffusion model for the growth of avascular tumor, Physical Review E, vol.65, issue.2, p.21907, 2002.
DOI : 10.1103/PhysRevE.65.021907

S. Göktepe and E. Kuhl, Computational modeling of cardiac electrophysiology: A novel finite element approach, International Journal for Numerical Methods in Engineering, vol.27, issue.2, pp.156-178, 2009.
DOI : 10.1002/nme.2571

P. Haldenwang and D. Pignol, Dynamically adapted mesh refinement for combustion front tracking, Computers & Fluids, vol.31, issue.4-7, pp.589-606, 2002.
DOI : 10.1016/S0045-7930(01)00064-0

S. Haney, P. Thompson, T. Cloughesy, J. Alger, and A. Toga, Tracking tumor growth rates in patients with malignant gliomas: A test of two algorithms, Am. J. Neuroradiol, vol.22, issue.1, pp.73-82, 2001.

D. M. Harrild and S. H. Craig, A computer model of normal conduction in the human atria, Circulation Research, vol.87, pp.25-36, 2000.

M. Hintermüller and W. Ring, An Inexact Newton-CG-Type Active Contour Approach for the Minimization of the Mumford-Shah Functional, Journal of Mathematical Imaging and Vision, vol.20, issue.1/2, pp.19-42, 2004.
DOI : 10.1023/B:JMIV.0000011317.13643.3a

C. Hogea, C. Davatzikos, and G. Biros, An image-driven parameter estimation problem for a reaction???diffusion glioma growth model with mass effects, Journal of Mathematical Biology, vol.10, issue.3, pp.793-825, 2008.
DOI : 10.1007/s00285-007-0139-x

J. E. Hoke and R. A. Anthes, The Initialization of Numerical Models by a Dynamic-Initialization Technique, Monthly Weather Review, vol.104, issue.12, pp.1551-1556, 1976.
DOI : 10.1175/1520-0493(1976)104<1551:TIONMB>2.0.CO;2

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol.105, pp.103-165, 2003.

V. Jacquemet, An Eikonal Approach for the Initiation of Reentrant Cardiac Propagation in Reaction&#x2013;Diffusion Models, IEEE Transactions on Biomedical Engineering, vol.57, issue.9, pp.2090-2098, 2010.
DOI : 10.1109/TBME.2010.2051156

C. K. Jones, Stability of the travelling wave solution of the FitzHugh-Nagumo system. Transactions of the, pp.431-469, 1984.

J. Keener and J. Sneyd, Mathematical Physiology, 2004.
DOI : 10.1007/978-0-387-75847-3

J. P. Keener, An eikonal-curvature equation for action potential propagation in myocardium, Journal of Mathematical Biology, vol.30, issue.7, pp.629-651, 1991.
DOI : 10.1007/BF00163916

A. N. Kolmogorov, I. G. Petrovsky, and N. S. Piskunov, Etude de l'´ equation de la diffusion avec croissance de la quantité dematì ere et son applicationàapplication`applicationà unprobì eme biologique, Mosc. Univ. Bull. Math, 1937.

E. Konukoglu, O. Clatz, B. H. Menze, B. Stieltjes, M. Weber et al., Image Guided Personalization of Reaction-Diffusion Type Tumor Growth Models Using Modified Anisotropic Eikonal Equations, IEEE Transactions on Medical Imaging, vol.29, issue.1, pp.77-95, 2010.
DOI : 10.1109/TMI.2009.2026413

URL : https://hal.archives-ouvertes.fr/inria-00616100

S. Lakshmivarahan and J. M. Lewis, Nudging Methods: A Critical Overview, Data Assimilation for Atmospheric, Oceanic, and Hydrologic Applications, 2008.
DOI : 10.1007/978-3-642-35088-7_2

F. Dimet and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, vol.109, issue.2, pp.97-110, 1986.
DOI : 10.1111/j.1600-0870.1986.tb00459.x

C. D. Levermore and J. X. Xin, Multidimensional Stability of Traveling Waves in a Bistable Reaction???Diffusion Equation, II, Communications in Partial Differential Equations, vol.44, issue.11-12, pp.11-121901, 1992.
DOI : 10.1002/cpa.3160390103

X. Li and C. Xu, Infinite-dimensional Luenberger-like observers for a rotating body-beam system, Systems & Control Letters, vol.60, issue.2, pp.138-145, 2011.
DOI : 10.1016/j.sysconle.2010.11.005

URL : https://hal.archives-ouvertes.fr/hal-00647239

D. G. Luenberger, An introduction to observers, IEEE Transactions on Automatic Control, vol.16, issue.6, pp.596-602, 1971.
DOI : 10.1109/TAC.1971.1099826

J. Mandel, L. S. Bennethum, J. D. Beezley, J. L. Coen, C. Douglas et al., A wildland fire model with data assimilation, Mathematics and Computers in Simulation, vol.79, issue.3, pp.79584-606, 2008.
DOI : 10.1016/j.matcom.2008.03.015

C. C. Mitchell and D. G. Schaeffer, A two-current model for the dynamics of cardiac membrane, Bulletin of Mathematical Biology, vol.65, issue.5, pp.767-793, 2003.
DOI : 10.1016/S0092-8240(03)00041-7

P. Moireau and D. Chapelle, Erratum of article " Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems " . ESAIM: Control, Optimisation and Calculus of Variations, pp.406-409, 2011.

P. Moireau and D. Chapelle, Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems. ESAIM: Control, Optimisation and Calculus of Variations, pp.380-405, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00550104

P. Moireau, D. Chapelle, and P. L. Tallec, Joint state and parameter estimation for distributed mechanical systems, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.6-8, pp.6-8659, 1987.
DOI : 10.1016/j.cma.2007.08.021

URL : https://hal.archives-ouvertes.fr/hal-00175623

P. Moireau, D. Chapelle, and P. L. Tallec, Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging, Inverse Problems, vol.25, issue.3, p.35010, 2009.
DOI : 10.1088/0266-5611/25/3/035010

URL : https://hal.archives-ouvertes.fr/hal-00358914

V. Moreau-villéger, H. Delingette, M. Sermesant, H. Ashikaga, E. Mcveigh et al., Building maps of local apparent conductivity of the epicardium with a 2D electrophysiological model of the heart, IEEE Transactions on Bio-Medical Engineering, issue.8, pp.531457-1466, 2006.

I. M. Navon, Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography, Dynamics of Atmospheres and Oceans, vol.27, issue.1-4, pp.55-79, 1998.
DOI : 10.1016/S0377-0265(97)00032-8

I. M. Navon, Data Assimilation for Numerical Weather Prediction: A Review, Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, 2009.
DOI : 10.1007/978-3-540-71056-1_2

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, 2002.
DOI : 10.1115/1.1760520

URL : http://dx.doi.org/10.1016/s0898-1221(03)90179-9

A. M. Pertsov, J. M. Davidenko, R. Salomonsz, W. T. Baxter, and J. Jalife, Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle, Circulation Research, vol.72, issue.3, pp.631-650, 1993.
DOI : 10.1161/01.RES.72.3.631

M. Potse, B. Dubé, J. Richer, A. Vinet, and R. M. Gulrajani, A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart, IEEE Transactions on Biomedical Engineering, vol.53, issue.12, pp.2425-2435, 2006.
DOI : 10.1109/TBME.2006.880875

C. Ramanathan, R. J. Ghanem, P. Jia, K. Ryu, and Y. Rudy, Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia, Nature Medicine, vol.10, issue.4, pp.422-428, 2004.
DOI : 10.1038/nm1011

K. Ramdani, M. Tucsnak, and G. Weiss, Recovering the initial state of an infinite-dimensional system using observers, Automatica, vol.46, issue.10, pp.1616-1625, 2010.
DOI : 10.1016/j.automatica.2010.06.032

URL : https://hal.archives-ouvertes.fr/hal-00529834

J. Rauch and J. Smoller, Qualitative theory of the FitzHugh-Nagumo equations, Advances in Mathematics, vol.27, issue.1, pp.12-44, 1978.
DOI : 10.1016/0001-8708(78)90075-0

P. J. Riggan and R. , Airborne remote sensing of wildland fires, Wildland Fires and Air Pollution. Developments in Environmental Science, 2009.

M. C. Rochoux, B. Cuenot, S. Ricci, A. Trouvé, B. Delmotte et al., Data assimilation applied to combustion, Comptes Rendus M??canique, vol.341, issue.1-2, pp.266-276, 2013.
DOI : 10.1016/j.crme.2012.10.011

O. Runborg, Mathematical models and numerical methods for high frequency waves, Communications in Computational Physics, vol.2, issue.5, pp.827-880, 2007.

F. B. Sachse, Computational Cardiology: Modeling of Anatomy, Electrophysiology and Mechanics, 2004.
DOI : 10.1007/b96841

M. Sermesant, K. Rhode, G. I. Sanchez-ortiz-camara, R. Andriantsimiavona, S. Hegde et al., Simulation of cardiac pathologies using an electromechanical biventricular model and XMR interventional imaging, Medical Image Analysis, vol.9, issue.5, pp.467-480, 2005.
DOI : 10.1016/j.media.2005.05.003

URL : https://hal.archives-ouvertes.fr/inria-00615667

J. A. Sethian, Theory, algorithms, and applications of level set methods for propagating interfaces, Acta Numerica, vol.11, pp.309-395, 1996.
DOI : 10.1007/BF00133570

D. R. Stauffer and J. Bao, Optimal determination of nudging coefficients using the adjoint equations, Tellus A, vol.45, issue.5, pp.358-369, 1993.
DOI : 10.1034/j.1600-0870.1993.t01-4-00003.x

J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K. A. Mardal et al., Computing the Electrical Activity in the Heart, of Monographs in Computational Science and Engineering, 2006.

M. K. Tippett, J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, Ensemble Square Root Filters*, Monthly Weather Review, vol.131, issue.7, pp.1485-1490, 2003.
DOI : 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2

P. Tracqui and M. Mendjeli, MODELLING THREE-DIMENSIONAL GROWTH OF BRAIN TUMOURS FROM TIME SERIES OF SCANS, Mathematical Models and Methods in Applied Sciences, vol.09, issue.04, pp.581-598, 1999.
DOI : 10.1142/S0218202599000300

L. Tung, A bi-domain model for describing ischemic myocardial d-c potentials, 1978.

M. Veneroni, Reaction???diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Analysis: Real World Applications, vol.10, issue.2, pp.849-868, 2009.
DOI : 10.1016/j.nonrwa.2007.11.008

L. A. Vese and F. C. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model, International Journal of Computer Vision, vol.50, issue.3, pp.271-293, 2002.
DOI : 10.1023/A:1020874308076

P. A. Vidard, F. Dimet, and A. Piacentini, Determination of optimal nudging coefficients, Tellus A, vol.43, issue.1, pp.1-15, 2003.
DOI : 10.1034/j.1600-0870.2003.201317.x

URL : https://hal.archives-ouvertes.fr/inria-00325360

R. L. Wahl, L. E. Quint, R. D. Cieslak, A. M. Aisen, R. A. Koeppe et al., Anatometabolic " tumor imaging: fusion of FDG PET with CT or MRI to localize foci of increased activity, Journal of Nuclear Medicine, issue.7, pp.341190-1197, 1993.

J. X. Xin, Multidimensional Stability of Traveling Waves in a Bistable Reaction???Diffusion Equation, I, Communications in Partial Differential Equations, pp.11-121889, 1992.
DOI : 10.1007/BF02761845

Q. Zhang, Adaptive observer for mimo linear time varying systems, IEEETransactions on Automatic Control, pp.525-529, 2002.
URL : https://hal.archives-ouvertes.fr/inria-00072520

H. K. Zhao, T. Chan, B. Merriman, and S. Osher, A Variational Level Set Approach to Multiphase Motion, Journal of Computational Physics, vol.127, issue.1, pp.179-195, 1996.
DOI : 10.1006/jcph.1996.0167

X. Zou, I. M. Navon, and F. Dimet, An Optimal Nudging Data Assimilation Scheme Using Parameter Estimation, Quarterly Journal of the Royal Meteorological Society, vol.116, issue.508, pp.1163-1186, 1992.
DOI : 10.1002/qj.49711850808