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Abstract

In-network caching is an important solution for content offloading from con-
tent service providers. However despite a rather high maturation in the defi-
nition of caching techniques, minor attention has been given to the strategic
interaction among the multiple content providers. Situations involving multi-
ple Content Providers (CPs) and one Internet Service Provider (ISP) having
to give them access to its caches are prone to high cache contention, in par-
ticular at the appealing topology cross-points. In this paper, we propose
a resource allocation and pricing framework to support the network cache
provider in the cache allocation to multiple CPs, for situations where CPs
have heterogeneous sets of files and untruthful demands need to be avoided.
As cache imputations to CPs need to be fair and robust against overclaim-
ing, we evaluate common proportional and max-min fairness (PF, MMF)
allocation rules, as well as two coalitional game rules, the Nucleolus and the
Shapley value. We find that the naive least-recently-used-based cache alloca-
tion approach provides proportional fairness. Moreover, the game-theoretic
rules outperform in terms of content access latency the naive cache alloca-
tion approach as well as PF and MMF approaches, while sitting in between
PF and MMF in terms of fairness. Furthermore, we show that our pricing
scheme encourages the CPs to declare their truthful demands by maximizing
their utilities for real declarations.

Keywords: In-network Caching, Information Centric Networking,
Mechanism Design, Game Theory, Cache Allocation.
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Figure 1: Representation of segmented and unsegmented caches with many
content providers (CPs).

1. Introduction

With the advent of broadband and social networks, the Internet became
a worldwide content delivery platform ([1, 2]), with high bandwidth and
low latency requirements. To meet the always increasing demand, contents
are pushed as close as possible to their consumers and Content Providers
(CP) install dedicated storage servers directly in the core of Internet Service
Provider (ISP) networks [3]. However, the TCP/IP protocol suite uses a
conversational mode of communication between hosts that can be considered
not appropriate for content delivery [2]. Therefore, a complex machinery is
developed (around the Domain Name System, DNS, protocol and the Hyper-
Text Transfer Protocol, HTTP) to compensate the limitations of the TCP/IP
protocol suite. Conscious of the mismatch between the network usage and
its conception, the research community recently proposed the concept of in-
network caching (e.g., Information Centric Networking (ICN) [2, 4]). For
instance, in ICN, content objects can be accessed and delivered natively by
the network according to their name rather than relying on IP addresses [2].
Hence, this technology removes the concept of location or topology from
communication primitives and uses the notion of contents and their name
instead. These contents can therefore be found potentially anywhere in the
network, moved or replicated at different locations [5, 4, 6].

ISP networks then become native distributed storage systems, i.e., net-
work cache providers that can directly sell caching capabilities to content
providers instead of hosting their servers. However, it is most probable that
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the storage demand exceeds the total ISP storage offer, at least for the con-
tent caching locations the closest to the users. So far, the contention is solved
by considering each storage as one autonomic and self managed cache (e.g.,
using a LRU, least-recently-used, mechanism), as depicted in the rightmost
part of Figure 1. With this approach CPs are unable to provision their own
infrastructure accurately as they cannot predict what contents will be cached
by the ISP as it depends on the workload of the other CPs using the ISP
infrastructure.

In this paper, we propose to address this contention situation by segment-
ing the storage on a per-content provider basis, as depicted in the leftmost
part of Figure 1. Each content provider receives a portion of the storage
space depending on its storage demand. For this, based on application of
results in economics and game theory to the target problem, we propose a
2-step mechanism design ([7, 8]) that computes a fair and rational sharing
of resources between CPs. The first step relies on a content cache allocation
algorithm where, as a function of content cache demands coming from CPs,
the network cache provider decides the imputation of cache spaces to CPs.
The second step uses a predefined payment rule by auctions to decide the
selling price of the storage unit in the network; its purpose is to prevent
content providers from lying about their true demands.

The paper is organized as follows. Section 2 presents an overview of
related works. In Section 3, we analytically introduce the context of our
work: Section 3.2 presents the resource allocation problem by modeling it as
a cooperative game, and Section 3.4 develops our pricing scheme based on
mechanism design theory. Section 4 presents the implementation of our pro-
posed pricing scheme for the different cache imputations. Section 5 compares
the proposed cache allocation rules with other schemes. Finally, Section 6
concludes the paper.

2. Background

Several researches have recently proposed various cache allocation solu-
tions. Rossi and Rossini compare the in-network caching performance in
homogeneous (i.e., where the routers have the same overall cache size) and
heterogeneous cache deployments (i.e., where the routers have not the same
cache size) [9]. In the latter case, they propose to allocate cache capacity
proportionally to the router centrality metric measured according to differ-
ent criteria: degree, stress, betweenness, closeness, graph and eccentricity
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centrality. Authors of both [9] and [10] show that allocating cache capac-
ity across the network in a heterogeneous manner slightly improves network
performance compared to the homogeneous manner; however, the benefits
of heterogeneous deployments become apparent with larger networks (e.g.,
more than 100 nodes). Moreover, Wang et al. study the influence of content
popularity distribution on network performance showing that (i) for uni-
formly distributed content demands (e.g., catch-up TV), pushing caches into
the core yield better performance while (ii) highly skewed popularity request
patterns (e.g., YouTube, mobile VoD system or Vimeo) are better served by
edge caching [10]. This latter point is confirmed by Fayazbakhsh et al. [11].

Recently, there has been significant interest in applying game theory to
the analysis of communication networks, with the aim to identify rational
strategic solutions for multiple decision-maker situations. Indeed, as op-
posed to mono-decision maker problems, game-theoretic approaches adopt
a multi-agent perspective to account for different objective functions and
counter objections to rationally non justified solutions [12]. Thus far, many
papers from the literature have tackled game-theoretic approaches for cache
allocation using non-cooperative game theory. These papers consider servers
or routers or networks as selfish entities seeking to maximize their own profit
at the expense of globally optimum behavior. For example Pacifici and Dan
study a non-cooperative game to characterize the problem of replication of
contents by a set of selfish routers aiming to minimize their own costs [13].
In the same context, Chun et al. characterize the caching problem among
selfish servers using a non-cooperative game [14]. For each content in the
network, selfish servers have two possible actions: either caching the content
if all its replicas are located too far away or not caching it if one of its repli-
cas is located at a nearby node. As in [13], they show the existence of pure
strategy Nash equilibrium of the caching game.

Motivated by the intuition that forms of collaboration between different
network cache providers could yield an enhancement in network performance,
in [15] the authors propose a game whereby the routers behave as rational
selfish agents that seek to minimize their aggregate content access cost. Go-
ing beyond routers, [16] describes how content providers could shape their
content access prices and discounts to favor the emergence of cache space
distribution overlays across independent networks, toward the formation of
incentive-prone overlay equilibria.

Under a similar rationale, yet a broader context, in this paper we investi-
gate how the network cache provider provider, modeling CPs as players of a
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game, can design a cache allocation framework so that cache imputations to
CPs are strategically fair and robust against cache space over-claiming, while
outperforming legacy approaches in terms of content access latency. Up to
our knowledge, there are no other works precisely addressing this problem,
despite the above-cited works do share similar concerns in cache allocation
and component sharing. As detailed in the following, we propose various
cache allocation rules, including coalitional game theory rules for bankruptcy
situations [17] to solve the atomic cache contention problem, motivated by
the fact that a similar algorithmic approach has shown high performances in
strategic shared spectrum allocation problems [18].

3. Cache Allocation Framework and Rules

In the context of a network cache provider, the cache capacity is used to
host content files in order to enhance users’ quality of experience by decreas-
ing content access latency. Assuming contents are owned by external CPs,
the network cache provider would need to offer a neutral interface to access
its caches, guaranteeing a fair allocation of caches with respect to cache space
demands, which are in turn a function of content popularity. In this section,
we formulate the problem, and then we detail the cache allocation algorithm
and the corresponding pricing framework.

3.1. Problem Formulation

Let us assume that there are n Content Providers (CPs), and each CP
owns a given number of files. With the possibility to cache some files in the
network between them and the users (by renting cache space from the network
cache provider), the CPs can reduce their CAPEX by reducing the load on
their servers and enhance their users’ quality of experience by decreasing
content access latency. Depending on how much cache space each provider
is willing to pay for, the demand for a cache space by each content provider
may not cover all its catalog size. Let di be the cache space demand of the
ith CP, indicated in the following as CP i. Moreover, different files can have
different popularity. In the following ~d denotes the vector of all demands.

We denote by E the global cache space of the network cache provider. We
target the expected situation for an economically viable cache deployment in
which the network cache provider receives more demands than what it can
satisfy, i.e.,

Pn
i=1 di � E. If this was not the case, i.e., if the total demand is

less than the available space, then the network cache provider would be able
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to allocate for every CP the exact space demanded. Contention would likely
still manifest for at least those few best nodes that are at the most attractive
cross-points of users’ demands (as far as these few best nodes would not be
able alone to satisfy the whole demand).

In this context, there is a competition in accessing the network caches.
Even if unlikely, the risk from a network cache provider perspective is that
CPs partially ally between each other, forming sub-coalitions when designing
their respective demands. To be robust to such behavior and avoid the
formation of oligopolies, the network cache provider shall take into account
the possible sub-coalitions in the allocation of cache sizes to CPs, designing an
appropriate pricing framework. More precisely, the network cache provider
(e.g., ICN provider) has to:

1. decide on the allocation rule, i.e., how to assign cache space to each CP
based on CPs individual content cache size demands.

2. decide on the payment rule, i.e., how to fix prices for the allocated space
given by step 1.

To emphasize the need of these two separate provisioning rules, let us
explain the rationale with the following three interaction cases (unrealistic,
naive, and wise cases). First, let us consider the (unrealistic) case where the
network cache provider announces that the space is given for free for the
highest demand: every CP would then have an incentive to announce a very
high demand, lying on the value of their real needs, to get free space. Suppose
now another (more realistic, but naive) case with an announced fixed price
per unit of cache: also in this case, because the space is limited, each CP
has an incentive to announce a higher untruthful demand so that it can get
more space. In order to avoid these situations, the network cache provider
should (wisely) design both steps in advance to make sure that the outcome
of the overall scheme is a desired one. For this purpose, we propose to adopt
mechanism design theory concepts [7]. In particular, we refer to approaches
for single-dimensional environments to make sure that the allocation scheme
provides strong performance guarantees (as explained hereafter, performance
guarantees are based on fairness criteria), and at the same time it provides
strong incentives for the CPs to be truthful in communicating their real
demand.

The allocation and payment rules are interrelated in general. However,
the mechanism design theory successfully deals with the two steps in a con-
secutive manner. First we suppose that the CPs are communicating their
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truthful demand. Based on these demands, we design a cache allocation
scheme giving each CP its share of the limited resource E. Then, we design
a payment rule for the CPs such that the dominant strategy for the CPs is
to send their real demand (i.e., with no incentives to lie about it). Under
this approach, the network cache provider can shape a strategic allocation
making its provisioning architecture rationally acceptable and attractive for
additional CP customers.

3.2. Cache Allocation to Content Providers

An allocation rule is a function f having as an input the demands of the
CPs (the demand vector ~d 2 Rn

+) and the total available cache space E 2 R+,
and giving as output an imputation vector ~x 2 Rn

+ containing the cache space
portion to allocate to each CP (i.e., the values in ~x ranges between 0 and E

such that
Pn

i=1 xi = E), i.e., f : (~d; E)! ~x.

Let ~d�i be the vector of demands of all the CPs other than i. With a
little abuse of notation, let us indicate the imputation for CP-i. as xi =
fi(di; ~d�i; E). For convenience, we also define x̄i = xi=E as the normalized
imputation, i.e., the proportion of E allocated to CP-i. Let us give the
following definition.

Definition 1. (Monotone Allocation Rule) An allocation rule is monotone

if for each (~d; E) and for each CP-i the following statement holds:

If d0i > di; then fi(d
0
i;
~d�i; E) � fi(di; ~d�i; E); (1)

In other words, fixing all the other CPs demands ~d�i, if the demand of
CP i increases from di to d0i, then the imputation xi should not decrease.
Monotonicity plays an important role in designing the payment rule (we get
back to this issue in Section 3.4).

The allocation of resources to those claiming higher demands than what
is available is referred to in the literature as a bankruptcy problem (the term
derives from the evident connection with the problem of bankruptcy where
a person or other entity cannot repay the debts claimed by creditors). For
this reason, in the following we sometimes refer to the CPs as claimants, or
the total available cache space to partition as the estate.

There are different possible approaches from the literature that can be
used as allocation rules for a bankruptcy situation. We present thereafter
the most common.
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3.2.1. Allocation by Proportional Fairness (PF)

Proportional fairness distributes the resources proportionally to the de-
mands subject to total space constraint [19], i.e.,

fi(~d; E)

di
=
fj(~d; E)

dj
for any pair of CPs (i; j):

It is straightforward to note that PF is monotone.

3.2.2. Allocation by Max-Min Fairness (MMF)

MMF maximizes the profit of the lowest claimant, then it maximizes the
second lowest demand in the game, and so on [20]. Formally, if we order the
CPs according to their increasing demand, i.e., d1 � d2 � � � � � dn, then
MMF allocates the available space E as follows:

fi(~d; E) = min

 
di;

E �
Pi�1

j=1 fj(
~d; E)

n� i+ 1

!
for i = 1; : : : ; n:

Intuitively, MMF gives the lowest claimant (assuming mini di � E
n

) its
total demand and evenly distributes unused resources to the other users. It
is also straightforward to note that MMF is monotone.

Both MMF and PF allow computing fair imputations without consid-
ering the possibility that CPs could ally when formulating their demands.
Alternatively, game theoretic allocation rules can be attractive toward the
computation of a strategically fair imputation. Before presenting some game-
theoretic allocation rules, let us formally define the bankruptcy game for our
settings where the CPs are the players.

Definition 2 (Bankruptcy Game [17]). A bankruptcy game, denoted by
G(N ; v), is a cooperative game where N represents the set of claimants of
the bankruptcy situation (i.e., the CPs with jN j = n) and v is the character-
istic function of the game given in Eq. (2) that associates to each coalition S
its worth defined as the part of the estate (i.e., the global cache space), not
claimed by its complement.

v(S) = max(0; E �
X
i2NnS

di) ;8S � Nnf;g (2)

where E � 0 is the estate that has to be divided among the members of N ,
S is a coalition of players, and

Pn
i=1 di � E.
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After defining the characteristic function of each possible coalition in the
game by Eq. (2), then f(~d; E) gives the imputation using well known fair-
ness concepts in cooperative games. Imputations for cooperative games are
essentially qualified with respect to the satisfaction of individual and coali-
tional rationality constraints, desirable properties and existence conditions.
Among them, the Shapley value and the Nucleolus are attractive allocation
rules that give a unique imputation while satisfying desirable properties.

3.2.3. Allocation by Shapley Value

The Shapley Value [21] is the center of gravity of the core1 of a bankruptcy
game. It is defined as:

fi(~d; E) =
X

S�Nnfig

jSj!(jN j � jSj � 1)!

jN j!
[v(S [ fig)� v(S)] (3)

In other terms, the Shapley value is computed by averaging the marginal con-
tributions of each player in the game in each strategic situation (i.e., players’
permutation). The Shapley value has been already proposed for a variety of
situations in networking, such as inter-domain routing [22] and network se-
curity [23], because it shows desirable properties in terms of correct modeling
of null player situations, symmetry, individual fairness, and additivity.

Moreover, the Shapley value allocation rule for bankruptcy games is
monotone because Eq. (3) can be rewritten using equation (2) as follows:

fi(bi;~b�i; E) =
X

S�Nnfig

�S�S(bi); (4)

where �S = jSj!(jN j�jSj�1)!
jN j! and:

�S(bi) =

(
bi if bi � max(0; E �

P
j2NnfS;ig bj)

max(0; E �
P

j2NnfS;ig bj) otherwise
(5)

so by fixing ~b�i, the function �S(bi) is a non-decreasing function in bi for any
set S. Thus the Shapley value allocation is monotone.

1The core of a game contains the imputations satisfying coalitional rationality and e�-
ciency constraints, such that no player or coalition gains by seceding from the grand coali-
tion, i.e., the core is a stable set. The core in general might not exist, but for bankruptcy
games it does (i.e., it is not empty).
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3.2.4. Allocation by Nucleolus

The Nucleolus [24] is the unique consistent solution in bankruptcy games
that minimizes the worst inequity. The Nucleolus lies in the core and it is
computed by minimizing the largest excess of different coalitions of the game.
The excess is expressed as:

e
�
f(~d; E); S

�
= v(S)�

X
j2S

xj ;8S � N (6)

This excess measures the amount by which the coalition S falls short of its
potential v(S) in the imputation ~x.

To give the formal definition of the Nucleolus for bankruptcy games, de-
noteO(~y) = (e(~y; S1); e(~y; S2); : : : ; e(~y; S2n)), where e(~y; Sk) � e(~y; Sk+1); k =
1; : : : ; 2n � 1. Among all the imputations ~y satisfying:

Pn
i=1 yi = v(N ) = E,

the Nucleolus gives the unique imputation ~x such that O(~x) <L O(~y) 8~y,
where <L is the lexicographic order.2 In other terms, the Nucleolus is the
solution that improves the situation of the player in the worst case; so it in-
troduces a degree of fairness in its imputation. It is monotone thanks to the
intrinsic consideration of individual rationality constraints. The Nucleolus is
used for instance in strategic transmission computation ([25, 26, 18]) because
it satisfies desirable properties, e.g., it improves the situation of the player
that is worst off while being consistent (i.e., no player or group of players can
gain more by unilaterally deviating from an imputation).

3.3. Cache allocation algorithm

The total cache space in the network is formed from the collection of
the router caches. These caches are distributed in heterogeneous locations
in the network. For example, it might be more convenient for CPs to be
allocated a cache space closer to the end users (thus their contents are closer
to clients reducing content access latency). Therefore, it is important that the
network cache provider distributes a homogeneous cache space to CPs (every
unit of cache space should have the same value from the content providers
perspective). In this respect, the cache provider should cluster routers that
have similar properties for CPs. According to [9] and [10], three commonly

2We say that a vector ~u is lexicographically larger than ~v (denoted by ~v <L ~u) if there
exists k such that ui = vi for all i 2 f1; 2; : : : ; k � 1g and uk > vk.
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accepted criteria for grouping the routers are: the proximity to the user-
network edge, the router degree, and the router centrality (betweenness).
More precisely, the contention metrics that we investigate are defined as
follows:

� Router Proximity to network edge (RP): the number of hops separating
a router from network edge.

� Router Degree (RD): the number of links incident to a router.

� Router Betweenness (RB): the number of times a node is along the
shortest path between two other nodes.

Following the ranking of routers according to the contention metric, we
propose the following allocation algorithm that can be performed upon sig-
nificant changes of content providers’ demands.

Algorithm 1 Cache Allocation Algorithm

1: Form clusters of routers by grouping together those having the same
contention metric, and order these clusters from the highest importance
(in terms of total cache space in each cluster of routers) to the lowest
one;

2: Take the cluster with the highest importance and apply the allocation
rule to routers of the cluster;

3: Decrease the demand of each CP by the amount allocated in the cluster;
4: Take the next cluster and apply the allocation rule;
5: Stop when all clusters are treated or there is no remaining demand.

For the game-theoretic allocation rules, this corresponds in iterating a
game G(N ; v) differing in that, at each iteration:

� N includes all the CPs, but with different demands di.

� The available cache size (E), varies as a function of the cluster size
and the capacities of routers in the cluster. For instance, if the cache
capacity of each router is given by Cr, the corresponding estate is given
by: E =

P
r2Rc

Cr where Rc is the set of routers in the cluster c.

It is worth noting that since the routers within the same cluster have the
same contention metric, the allocated cache space to each CP in a cluster
can be evenly allocated from any cache among the routers in that cluster.
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Remark. Algorithmic game theory adds one more requirement to the design
of the system: the complexity of obtaining the allocation should be computa-
tionally efficient. As a matter of fact, the computation of the Shapley value
is generally done using (3); however, in games with a large number of players
the computational complexity of the Shapley value grows significantly. In
our instance this does not cause a real problem because the number of CPs
asking for the resource in a network is typically low (less than 10) and the
complexity of the allocation scheme is a function of the number of CPs (and
not a function of the potentially huge number of content files).

For computing the Shapley value in reasonable time, several analytical
techniques have been proposed such as multi-linear extensions [12], and sam-
pling methods for simple games [27], among others. The process for com-
puting the Nucleolus is however more complex than for the Shapley value.
It is described as follows. First, we start by finding the imputations that
distribute the worth of the grand coalition in such a way that the maximum
excess (dissatisfaction) is minimized. In the event where this minimization
has a unique solution, this solution is the nucleolus.3 Otherwise, we search
for the imputations which minimize the second largest excess. The proce-
dure is repeated for all subsequent excesses, until finding a unique solution
which would be the nucleolus. These sequential minimizations are solved
using linear programming techniques [28].

3.4. Pricing Framework

As already argued, a robust pricing framework needs to be designed by
the network cache provider to ensure true demands are formulated by CPs.
Actually, the same unit of cache space may have different values for the
different CPs, those with higher traffic (i.e., higher demand) are willing to
pay more for a cache space unit to accommodate the high traffic volume.
Taking into account this design goal, in our model we consider that the value
of a unit of cache space for a given CP is a given function of its clients’ traffic.

Along with the fairness of the allocation scheme, the payment rule should
be designed to give strong guarantees that the CPs are truthful in commu-
nicating their real demand. Under this perspective, it becomes natural to
think of the demands as bids (as in auctions), and the cache partitioning as

the allocation outcome from an auction. The demand vector is given by ~d

3For the class of Bankruptcy games, the nucleolus always exists.
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Figure 2: The solid curve (in blue) is the piecewise-linear allocation
function x̄i given by x(z) for CP i when varying its demand from 0 to bi (z
axis). The area above the curve (in red) is the payment rule (price to pay

by the CP).

where di is the (true) demand by CP-i (also considered as the private value

of i). The bid vector is given by ~b where bi is the value communicated by
CP-i to the network cache provider (could be equal to di if i declares the
truth).

The truthful communication of demands should be a dominant strategy.
This is known as the dominant-strategy incentive-compatible (DSIC) prop-
erty [8, p. 415]. The normalized allocation x̄i is the proportion of the full
available cache space allocated to content provider i (i.e., x̄i ranges in the
interval [0; 1]). The payment rule is given by ~p, where pi is the price of the
allocation paid by CP-i. The utility of a content provider is given by:

Ui = Vi(di; fi(bi;~b�i; E))� pi(bi;~b�i; E) (7)

where Vi(di; fi(bi;~b�i; E)) = dix̄i is the value of the allocated space from the

CP-i perspective,4 and pi(bi;~b�i; E) is the price paid. Every CP has the
incentives to maximize its utility.

Definition 3 (DSIC). The tuple (~x; ~p) is DSIC if: 1) each truth-telling CP

4Since Vi = di�xi, the value of a unit storage is considered proportional to the demand.
In case of a generic function gi(:), di would be replaced by gi(di) and what follows hold
with minor changes.
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is guaranteed a non-negative utility and 2) each CP has as dominant strategy
the communication of its truthful demand, i.e., for all CPs, and for any bi,

Vi(di; fi(di;~b�i; E))� pi(di;~b�i; E) � Vi(di; fi(bi;~b�i; E))� pi(bi;~b�i; E)

Then, the tuple (~x; ~p) is DSIC if when bi = di, this strategy maximizes
the utility of CP-i no matter what the other CPs do. Being that the utility
Ui = dix̄i � pi, for example with the pricing rule pi = bix̄i, no one has an
incentive to communicate the true demand. Because with that pricing rule,
the utility would be Ui = 0 for truth-tellers while it can be increased if
everyone declared a slightly lower demand. This would lead to a situation
where everyone declares a lower demand than their real one. On the other
hand, for a fixed price per storage space (i.e., pi = �x̄i for a given � 2
R+) every CP having di > � has an incentive to increase its communicated
demand (bi) to receive more space increasing its utility. We thus have to
determine what pricing rule ensures that the CPs have no incentives to lie
(given the Shapley and the Nucleolus-based allocation rules). It turns out
that by Myerson’s Lemma [29] from mechanism design theory we can design
the prices to meet our objective:

Theorem 1 (Myerson’s Lemma [29]). If ~x is monotone, then there is a
unique payment rule ~p such that the mechanism (~x; ~p) is DSIC.

The monotonicity is given by Definition 1, and the four presented alloca-
tion rules are monotone as already discussed. The price is given by Myerson’s
Lemma [29] as follows:

pi(bi;~b�i; E) = bi
fi(bi;~b�i; E)

E
� 1

E

Z bi

0

fi(z;~b�i; E)dz (8)

The allocation as function of the demand looks as in Fig. 2. The price can
be interpreted as an area above the curve (as given by Fig. 2). Notice that
by considering this pricing rule, each content provider maximizes its utility
Ui by communicating its true demand no matter what others do, i.e., Ui is
maximized when bi = di for every ~b�i.

Remark. For the Shapley value allocation, the allocation is piece-wise linear
as function of bi and we can identify precisely the points where the curve
in Fig. 2 changes its slope, and thus closed-form pricing equations can be
derived for Shapley value. Closed-form pricing equations can also be derived
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for PF and MMF allocations. The transition points of the curve in the case
of Nucleolus allocation cannot be found in closed-form, and thus we refer to
numerical methods as we demonstrate in the next section.

As a result, the network cache provider can declare a pricing accordingly
to (8) to all the CPs, so that none of the CPs has an incentive to declare a dif-
ferent demand than their real one, and based on these (truthful declarations)
the allocation using the proposed cache allocation algorithm is carried out.
It is important to note that this pricing framework does not necessarily max-
imize the profit for the network cache provider, but it is the unique pricing
rule [29] that provides strong incentives for truthful declaration of demands
by the CPs. Any other pricing rule can cause the CPs to communicate false
demands to maximize their utilities.

Remark. In reality, many companies use business models that do not nec-
essarily maximize their profits. For example, eBay online auctions (using
proxy bidding feature) resembles a theoretical second-price sealed-bid auc-
tion closely. Its purpose is not to maximize the profit of the company but to
have participants bid their real values of the items [30]. Another example is
Google sponsored search auction that identifies which advertisers’ links are
shown and in what order after every search query to Google engine. Also
in this model, Google uses “generalized second price”auction format whose
primary objective is not to maximize the profit, but for bidders to give their
real value for the position of their link (this model gave over 98% of Google
total revenue in 2005 [31]).

4. Pricing Implementation

The pricing rule given in the paper is of the form

pi(bi;~b�i; E) = bi
fi(bi;~b�i; E)

E
� 1

E

Z bi

0

fi(z;~b�i; E)dz (9)

Thus we need to calculate fi(z) = fi(z;~b�i; E) as an intermediate step in
calculation of the price. Closed-form equations can be found for PF, MMF,
and Shapley value. For the case of the Nucleolus, fi can be calculated only
for a given z, so numerical methods are needed to give an approximation of
the price.
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4.1. Proportional Fairness

The allocation for proportional fairness is given by

fi
bi

=
fj
bj

for all CPs i; j;

then since
P

i fi = E we can write

fi(z) =
Ez

z +
P

j 6=i bj
: (10)

Then Z bi

0

fi(z) = Ebi � E(
X
j 6=i

bj) log

 P
j bjP
j 6=i bj

!
;

and the resulting price to pay by CP-i knowing that the bids are b1; : : : ; bn is

P
(prop)
i =

b2iP
j bj
� bi + (

X
j 6=i

bj) log

 P
j bjP
j 6=i bj

!
: (11)

An interesting observation about this pricing rule is that it is independent of
E. Which means that as long as the ratio between the demands is the same,
even if E increased the allocation changes, but the price remains the same.

4.2. Max-Min Fairness

Assuming that the bids are placed in increasing order b1 � b2 � � � � � bn,
then the allocation of max-min is given by

fi(z) = min

 
z;
E �

Pi�1
j=1 fj(

~d; E)

n� i+ 1

!
for i = 1; : : : ; n:

The equation shows that as we increase z from 0 to bi we have

fi(z) =

(
z if z � Ci

Ci if z > Ci;
(12)

where Ci is the critical point when the curve becomes constant to be de-
termined. To find Ci we can calculate fi for any sufficiently large z. This
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sufficient large number can be chosen to be E because
E�

Pi�1
j=1 fj(~d;E)

n�i+1
� E for

any vector b. Then
Ci = fi(E):

We can now calculate the following integral:Z bi

0

fi(z) =

(
b2

i

2
if bi � Ci

C2
i

2
+ (bi � Ci)Ci if bi > Ci;

and the corresponding price for CP-i is

P
(maxmin)
i = bi

min(bi; Ci)

E
� (min(bi; Ci))

2

2E
:

4.3. Shapley value fairness

The allocation for Shapley value is given by equations (4) and (5). In
order to determine the price; equation (4) can be reformulated using Eq. (5)
as follows:

fi(z;~b�i; E) = g(~b�i) +

 X
T2T

�T

!
z (13)

where g(~b�i) is a scalar function independent of z, and T is a relevant set of
the sets T � Nnfig. Equation (13) demonstrates that the curve of Fig. 2 is
piece-wise linear for the Shapley value allocation.

For every content provider i and for any set S 2 Nni, we can define a
function qi(S) = max(0; E �

P
j2NnfS;ig bj). Since the domain of definition

of qi(:) has finite elements, then we can define a vector Φ 2 R2n�1
to be the

image of the function (i.e., for any S 2 Nni, there exists an index m such
that Φm = qi(S)). Then each element of this vector corresponds to a set of

CPs without CP-i. Define Θ a vector that has elements �S = jSj!(jN j�jSj�1)!
jN j!

where S is the corresponding set index.
Let us define Φ̂ the vector having the elements of Φ sorted in increasing

order. And define Θ̂ to be the vector having the elements for the correspond-
ing �S (note that Θ̂ is not necessarily in increasing order).

The allocation function fi(z) is piece-wise linear defined on the interval
[0; bi] having fi(0) = 0 and slopes given as follows:

@fi(z)

@z
=

8><>:
P2n�1

j=1 Θ̂j for 0 < z < Φ̂1P2n�1

j=k+1;k=1;:::;2n�1�1 Θ̂j for Φ̂k < z < Φ̂k+1

0 for Φ̂2n�1 < z < bi:

(14)

17



Note that the points that the curve changes its slope are the points z 2 [0; bi]
such that z = Φ̂k. As we know that the function satisfies fi(0) = 0, then
we can use (14) in a recursive way for the exact calculation of the integralR bi

0
fi(z) and the corresponding price.

4.4. Nucleolus fairness

In case of nucleolus, the curve fi(z) is also piece-wise linear with z. But
the critical points for which the slope can change cannot be given in closed
form solution. The integral can then be numerically approximated. Since we
know that the slope cannot change more than 2n�1 times, we can divide the
interval [0; bi] into 2n�1 + 1 equal intervals where the length of an interval is
given by

∆ =
bi

2n�1 + 1
:

Then the integral can be discretized and approximated as follows:Z bi

0

fi(z) �
2n�1X
k=0

�
fi(k∆)∆ +

∆

2
[fi((k + 1)∆)� fi(k∆)]

�
and the resulting price follows directly from (9).

5. Performance Evaluation

We consider a network composed of 25 routers of same caching capacity C
(i.e., homogeneous cache size). We consider two networks with a tree (where
there is only one path from an end-user to a CP) and a partial mesh (where
there can be multiple paths from an end-user to a CP), having both an edge-
to-CP shortest path length up to 6 hops. To have comparable results that
are independent of the CPs’ locations and their connections to the network,
we use symmetric topologies. This is especially important as the results
obtained through assymetric topologies highly depend on the way each CP is
connected to the network. For this aim, in the simulations, the tree topology
consists of connecting the CPs to the root router of the tree while connecting
the end-users to its leaves. Besides, in the partial mesh, the CPs are all
connected to one router in the network, while the end users are connected
randomly to some of the other router nodes of the network.

We include 5 CPs, denoted CP-i for i = 1; : : : ; 5, connected all to the
same router and each supplying different contents (i.e., files). We assume
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that each content j has a uniform size (1 MB for example) and a popularity
Pj 2 [0; 1] reflecting the request frequency made by end-users for the content
(i.e., the number of times end users issue ‘interest’ messages to retrieve the
content) [2]. The sum of all file popularities in the network is equal to 1, i.e.,P

j Pj = 1.
In the simulations, we model a practical network scenario of ICN with

high heterogeneity in content popularity. The popularity of contents in the
network are determined using the Zipf’s law [32] that quantifies the fre-
quencies of occurrence of the contents in the network (we set the Zipf’s law
exponent to 1). Each CP runs the LRU cache replacement policy that we
model using the Che approximation [33].

Contents are always delivered via a shortest path. We recall we assume
that each content is offered by only one CP. To take into account network
cases with a heterogeneous set of demands, we suppose that, among the five
CPs, the CP-1 has the lowest demand d1, and that CP-2, CP-3, CP-4, and
CP-5 have, respectively, three, five, seven and nine times the demand of CP-1.
The overall demand of CP-1 is set to 80 files (i.e., 80 MB).5 The Contention
Level in the network is then computed as: CL = 1� (25C=

P5
i=1 di).

We do compare the results under different allocation rules also for the case
of a network without in-network caching, i.e., in which end user requests need
to go all the way up from the edge to the CP containing the needed file at
the network provider CP edge. Moreover, for the in-network caching cases,
we include a naive cache allocation approach in which there is no router
clustering and there is no CP-specific cache allocation [4]; instead, contents
are delivered following the shortest path and cached on-the-fly by the LRU
caches collocated on the traversed routers. As a reminder, we evaluate the
four allocation schemes listed in Section 3.2: PF, MMF, Shapley Value, and
Nucleolus. The following evaluation focuses on a performance analysis based
on content access latency reduction, on fairness analysis and on the benefits
of declaring truthful demands.

5.1. Content Access Latency

We evaluate the performance of different approaches with respect to the
most important user’s quality of experience metric i.e., the content access

5We note that the demand of the CPs can be, in general, a generic function of the
number of �les, tra�c volume and contents priorities.
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(a) Router Proximity to network edge
(RP)

(b) Router Degree (RD)

(c) Router Betweenness (RB)

Figure 3: Content access latency distributions for a tree topology and with
different router clustering metrics.

latency. We compute the average content access latency (expressed in number
of hops) as a function of the edge-to-content path, and the average hit ratio
on each router along the path as given by the Che approximation [33]. To
model the case of high cache contention situation, we set CL to 80% (i.e., the
total cache space is equal to only 20% of the total CPs demands).

Fig. 3 and Fig. 4 show the boxplot statistics (max, min, quartiles, median
as a red line, average as a star) of the content access latency for the network
contents using the above mentioned metrics for the tree and partial mesh
topology, respectively. We can notice that:

� Comparing in-network caching approaches to the one without caching,
the former outperforms the latter one for all the cases; e.g., for the
partial mesh topology and using the RD metric, the median content
access latency decreases, from the approach without caching, by 9%
with the game-theoretic approaches, 8% for the MMF, 4% with PF,

20



(a) Router Proximity to network edge
(RP)

(b) Router Degree (RD)

(c) Router Betweenness (RB)

Figure 4: Content access latency distributions for a partial mesh topology
and with different router clustering metrics.

and 2.5% for the naive ICN approach.

� Comparing the naive ICN approach to the router aggregation case with
the four allocation rules, the content access latency decreases with the
latter one for all the cases (e.g., for the partial mesh topology and RD
metric, the median access latency decreases from basic ICN by 3% with
PF, 5.6% with MMF and 6.5% for game-theoretic approaches).

� The game-theoretic approaches, Nucleolus and Shapley value, give very
close performances for the different cases. They outperform the PF and
MMF approaches for all the cases; e.g., for the tree topology and using
the RB metric, the median content access latency is lower by 2.5% with
respect to PF, and by 1.6% with respect to MMF.

� The partial mesh topology outperforms the tree one, likely because it
allows multiple paths between network routers differently than the tree
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(a) Cache size distribution (b) Satisfaction rates

Figure 5: Cache size distribution and satisfaction rates, as a function of the
CP demand, for a partial mesh topology using the RD metric.

topology with a single path from each router to the root.

� The RD router clustering metric outperforms the other metrics for all
the in-network caching cases; e.g., in the mesh topology, the content
access latency for the Nucleolus decreases from the RP by 3% and
1.25% to the RD and RB metrics, respectively. This somehow confirms
previous findings of [9] where RD was shown to be superior to all other
metrics. As a new insight, the gain of RD with respect to RB is less
important than with respect to RP.

All in all, these highlights show that game-theoretic approaches increase
content access performance. It is also worth mentioning that even if naive
LRU driven in-network caching permits to reduce latency, it does not ac-
complish as much one could expect, mostly because of the potentially high
replication of contents in the network [34].

5.2. Fairness of Cache Imputations

In order to further investigate on the cache allocation results, Figure 5
shows the imputation distribution (i.e., the ratio of the cache each CP ob-
tains as a function of the total available cache) as well as the satisfaction rate
(i.e., the ratio of the cache each CP obtains as a function of its demand),
for the different allocation cases (PF, MMF, Nucleolus, Shapley value, and
naive ICN). The partial mesh topology with the RD metric case is consid-
ered (similar results are obtained for the tree topologies). We can observe
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that the Nucleolus and Shapley value give the lowest claimant (i.e., CP-1) an
imputation in-between those obtained by PF and MMF: CP-1 gets by Nucle-
olus and Shapley value 18% and 11% respectively of the total estate, while
PF and MMF give respectively 5% and 20% of the total estate (20% cor-
responds actually to the totality of its demand, indeed the satisfaction rate
of CP-1 is 100% with MMF). The same behavior can be seen also for the
highest claimant (CP-5) whose imputation by Nucleolus and Shapley value
is in-between those of MMF and PF. This indicates that game-theoretic ap-
proaches do not favor low demands as MMF does, or high demands as PF
does, but instead distribute the estate in a way that discourages too greedy
demands at the benefit of lower demands.

It is also worth noting that the naive approach with ICN is closer to the
PF approach than the others. Intuitively, this can be explained by the fact
that as the claim increases, the probability of finding claimant’s files in the
network likely proportionally increases.

Furthermore, in order to qualify the fairness of the solutions, we evaluate
them with respect to two notable fairness indexes: the Jain’s fairness index
(JI) [35] that rates the fairness of a set of values and defined as:

JI =

 
nX
i=1

(xi=di)

!2

=

 
n

nX
i=1

(xi=di)
2

!
(15)

which in fact has been conceived to be better the closer the solution is to the
PF, and the Atkinson’s index (AI) [36] which is one of the commonly used
measure of inequality, computed as follows:

AI = 1� n
nP
i=1

xi

 
1

n

nX
i=1

x
(1��)
i

!1=(1��)

(16)

which conversely has been conceived to be better the closer the solution is
to an even division (AI = 0 means perfect equality while AI = 1 expresses
maximal inequality). � is chosen in practice between 0.5 and 1.5 (we set a
value of 1.5 in our case).

Figure 6 shows the fairness index results, as a function of the contention
level CL. We can state that:

� Fairness indexes confirm the close behavior between naive ICN and PF.
Both appear as independent of the contention level - PF gives the best
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Figure 6: Fairness indexes as a function of the contention level (the lower
the contention level, the higher the available cache size with respect to

demands), for different allocation rules.

for the Jain’s index and the worst for the Atkinson’s one, and naive
ICN gives better Atkinson’s index values than PF.

� Comparing the Nucleolus and the Shapley value for both metrics, the
latter is strictly the closer one to the PF, while the former is closer to
MMF. The gap between them, PF and MMF strictly decreases as the
contention level decreases.

Overall, depending on the desired fairness behavior, PF or MMF, the
network provider can refer to the Shapley as the one closer to PF, and the
Nucleolus closer to MMF, being reassured about the fact that they bring a
gain in terms of content access latency. Simply using the naive ICN approach
would be a good approximation of the PF rule, with however a lower content
access performance.

5.3. Utility Maximization by Truthful Declaration

The pricing criteria given in (8) is based on mechanism design theory. Its
objective is to prevent the content providers to lie about their real demand
value. In this subsection we study the utility of the content providers as
function of their declaration. We consider the same simulation scenario where
five CPs whose demands are given as follows:

d = 80� [1; 3; 5; 7; 9]T ;
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(a) Utility of content provider CP1 (b) Utility of content provider CP3

(c) Utility of content provider CP5

Figure 7: The utility of different content providers as a function of their
declared demands. The total available space is E = 1000

where di is the real demand of CP i. The price to pay for the allocated cache
to a CP depends not only on the allocated space, but also on the claimed de-
mand. Given the allocation and the price, the utility of the content provider
is the difference between the value the CP evaluates the allocated space and
the price the CP has to pay for the ISP (given by (7)). Figure 7 shows that,
given that the pricing equation is known to all content providers, if any of
the content providers declares a demand that is different from its real one
(bi 6= di), its utility does not increase. In other terms, the utilities of different
content providers are maximized by announcing their real demands(e.g., the
utility of CP1 is maximized when it declares a truthful demand that is equal
to 80). This shows that the proposed pricing rule gives an equilibrium where
the CPs have no incentives to deviate from declaring their truthful demands
as they will not gain in terms of utility. That encourages all content providers
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to declare their real demands (Theorem 1). The figure also reveals some ro-
bustness properties of these equilibrium points. They show that the Shapley
and PF provide more robust equilibrium than MMF and Nucleolus because
shifting slightly away from the equilibrium point (by declaring slightly dif-
ferent demand than the truthful one) causes the utilities of the Shapley and
PF to strictly decrease which is not always the case for MMF (see CP-3 and
CP-5 utilities) and Nucleolus (see CP-5 utility).

5.4. ISP Profit

We further investigate the pricing rule for the different allocation schemes.
The price is not designed to maximize the ISP profit, but rather to drive the
CP to be truthful. However, different allocation schemes can give different
profit. Figure 8 shows the total profit of the ISP as function of his total
caching space (estate). In particular we identify some interesting points from
the figure:

� The profit due to proportional fairness allocation does not change with
increasing the estate, this is because equation (11) is independent of
E. This shows that PF gives a “monopoly” pricing when the avail-
able cache space (the estate) is small because the ISP pricing in this
case depends only on the CP demands with no considerations to the
available caching space. Therefore, applying such a pricing rule in a
multi-supplier market can lead to clients shifting to another ISP.

� MMF gives the lowest profit for the ISP. This is consistent with the
interpretation that MMF favors, in its allocation, the low demand CPs
that have less purchasing power with respect to CPs with high demand.

� The Shapley allocation provides a better profit than the Nucleolus and
MMF for small estates. The profit is monotonically increasing with the
estate size, however the slope of the profit is higher for low estate sizes
(� 700) then it starts to decrease with high estate sizes.

� The profit due to Nucleolus provides an interesting behavior. It shows
that the ISP profit increases with the estate until a point where it
reaches a maximum, then it decreases again. From the ISP perspective,
this counter-intuitive result shows that adding more cache space in the
network can lead to lower profit. This can be interpreted by the fact
that the pricing of Nucleolus balances between the fairness and the
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Figure 8: The total profit for the ISP for different allocation approaches.

contention level of CPs, so when the available cache size is high, the
prices decrease to achieve fairness. It can also provide the ISP with
an important information about how to dimension his network given
the demands to maximize his profit. According to the figure, in our
network scenario, the ISP should place around a total of 1200 MB
available cache memory to CPs to maximize his profit.

6. Conclusion

Novel technologies are difficult to adopt as it has to be proven that they
are incentive compatible for all the involved stakeholders. In this paper, we
address a multi-stakeholder situation (i.e., involving more than one provider)
that appears as a win-win setting toward ICN deployment, i.e., the case
of an Internet Network Service Provider deploying ICN for external con-
tent providers, offering a neutral interface and pricing to multiple content
providers. The network cache provider hence allocates to external content
providers spaces in its ICN router caches for content delivery.

In this context, we argue that the proper way the network cache provider
shall design the cache allocation framework and model the behavior of ex-
ternal content providers is game theory, so as to qualify and counter-balance
their natural tendency to form oligopolies and to ally to have a stronger po-
sition in getting the available caching resources. We investigate the applica-
tion of well-known concepts from cooperative game-theory showing desirable
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properties, the Nucleolus and the Shapley value, as well as other principles
commonly adopted in networking research, the proportional fairness (PF)
and the max-min fairness (MMF). We propose a cache allocation algorithm,
applied in the context of ICN, that can be performed upon significant changes
of content providers’ demands. This algorithm is able to incorporate these
different allocation rules applying them to clusters of routers ordered with
respect to centrality metrics suggested in the literature. Moreover, we pro-
pose a pricing framework that, taking advantages of the monotonicity of the
presented cache allocation rules, correctly nullifies the threat of malicious
behaviors in formulating content caching demands.

Results from simulations show that the game-theoretic approaches offer
a (not so straightforward) sensible access latency gain with respect to both
PF and MMF, and the naive ICN approach (without cache allocations and
using least-recently-used cache management) to content providers. Among
the Nucleolus and the Shapley value approaches, the former could be con-
sidered more interesting given that it maximizes the ISP profit for a well
dimensioned caching space in the network. In terms of fairness, the Nucle-
olus and the Shapley values sit in-between PF and MMF allocation rules,
balancing their well-known weaknesses and strengths, so that the Shapley
value is close to PF and the Nucleolus very close to MMF. It is also valuable
to report that the naive ICN approach permits to approximate PF with-
out having to compute cache imputation (at the expense, however, of worse
content access performance). Moreover, we show that declaring truthful de-
mands yields better CPs’ utilities for the different cache imputations where
the Shapley and PF are more robust than Nucleolus and MMF in terms of
utility maximization for truthful declaration.

As further work, we are planning to generalize the results to settings
where the content providers have overlapping contents and the contents from
the content providers are dynamic. The positive performance of the game-
theoretic approaches, which balance the strengths and weakness of both PF
and MMF in terms of fairness, opens the way to revisiting former applications
of PF and MMF to other networking situations (scheduling, load-balancing,
resource reservation), in which behind the network decision rational and in-
dependent agents can be identified.
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