N

N

An Effective GGit And Org-Mode Based Workflow For
Reproducible Research

Luka Stanisic, Arnaud Legrand, Vincent Danjean

» To cite this version:

Luka Stanisic, Arnaud Legrand, Vincent Danjean. An Effective Git And Org-Mode Based
Workflow For Reproducible Research. Operating Systems Review, 2015, 49, pp.61 - 70.
10.1145/2723872.2723881 . hal-01112795

HAL Id: hal-01112795
https://inria.hal.science/hal-01112795
Submitted on 3 Feb 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-01112795
https://hal.archives-ouvertes.fr

An Effective Git And Org-Mode Based Workflow
For Reproducible Research

Luka Stanisic, Arnaud Legrand and Vincent Danjean
firstname.lasthame@imag.fr
CNRS/Inria/Univ. of Grenoble, Grenoble, France

ABSTRACT

In this paper we address the question of developing a
lightweight and effective workflow for conducting experimen-
tal research on modern parallel computer systems in a repro-
ducible way. Our approach builds on two well-known tools
(Git and Org-mode) and enables to address, at least par-
tially, issues such as running experiments, provenance track-
ing, experimental setup reconstruction or replicable analysis.
We have been using such a methodology for two years now
and it enabled us to recently publish a fully reproducible
article [12]. To fully demonstrate the effectiveness of our
proposal, we have opened our two year laboratory notebook
with all the attached experimental data. This notebook and
the underlying Git revision control system enable to illus-
trate and to better understand the workflow we used.

1. INTRODUCTION

In the last decades, both hardware and software of modern
computers have become increasingly complex. Multi-core
architectures comprising several accelerators (GPUs or the
Intel Xeon Phi) and interconnected by high-speed networks
have become mainstream in the field of High-Performance.
Obtaining the maximum performance of such heterogeneous
machines requires to rely on combinations of complex soft-
ware stacks ranging from the compilers to architecture spe-
cific libraries or languages (e.g., CUDA, OpenCL, MPI) and
complex dynamic runtimes (StarPU, Charm++, OmpSs,
etc.) [1]. Dynamic and opportunistic optimizations are done
at every level and even experts have troubles fully under-
standing the performance of such complex systems. Such
machines can no longer be considered as deterministic, espe-
cially when it comes to measuring execution times of paral-
lel multi-threaded programs. Controlling every relevant so-
phisticated component during such measurements is almost
impossible even in single processor cases [8], making the
full reproduction of experiments extremely difficult. Con-
sequently, studying computers has become very similar to
studying a natural phenomena and it should thus use the
same principles as other scientific fields that had them de-
fined centuries ago. Although many conclusions are com-
monly based on experimental results in this domain of com-
puter science, articles generally poorly detail the experimen-
tal protocol. Left with insufficient information, readers have
generally troubles reproducing the study and possibly build
upon it. Yet, as reminded by Drummond [4], reproducibility
of experimental results is the hallmark of science and there

Copyright is held by the authors

is no reason why this should not be applied to computer
science as well.

Hence, a new movement promoting the development of
reproducible research tools and practices has emerged, espe-
cially for computational sciences. Such tools generally focus
on replicability of data analysis [14]. Although high perfor-
mance computing or distributed computing experiments in-
volve running complex codes, they do not focus on execution
results but rather on the time taken to run a program and on
how the machine resources were used. These requirements
call for different workflows and tools, since such experiments
are not replicable by essence. Nevertheless in such cases, re-
searchers should still at least aim at full reproducibility of
their work.

There are many existing solutions partially addressing
these issues, some of which we present in Section 3. However,
none of them was completely satisfying the needs and con-
straints of our experimental context. Therefore, we decided
to develop an alternative approach based on two well-known
and widely-used tools: Git and Org-mode. The contribu-
tions of our work are the following;:

e We propose and describe in Section 4.1 a Git branching
model for managing experimental results synchronized
with the code that generated them. We used such
branching model for two years and have thus identified
a few typical branching and merging operations, which
we describe in Section 4.3

e Such branching model eases provenance tracking, ex-
periments reproduction and data accessibility. How-
ever, it does not address issues such as documentation
of the experimental process and conclusions about the
results, nor the acquisition of meta-data about the ex-
perimental environment. To this end, in Section 4.2
we complete our branching workflow with an intensive
use of Org-mode [11], which enables us to manage and
keep in sync experimental results and meta-data. It
also provides literate programming, which is very con-
venient in a laboratory notebook and eases the edition
of reproducible articles. We explain in Section 4.3 how
the laboratory notebook and the Git branching can be
nicely integrated to ease the set up of a reproducible
article.

e Through the whole Section 4, we demonstrate the
effectiveness of this approach by providing examples
and opening our two years old Git repository at http:
//starpu-simgrid.gforge.inria.fr/. We illustrate several

http://starpu-simgrid.gforge.inria.fr/
http://starpu-simgrid.gforge.inria.fr/

points in the discussion by pointing directly to specific
commits.

Although we open our whole Git repository for illus-
tration purposes, this is not required by our workflow.
There may be situations where researchers may want
to share only parts of their work. We discuss in Sec-
tion 5 various code and experimental data publishing
options that can be used within such a workflow.

Finally, we discuss in Section 6 how the proposed
methodology helped us conduct two very different
studies in the High Performance Computing (HPC)
domain. We also report limits of our approach, to-
gether with some open questions.

2. MOTIVATION AND USE CASE DE-
SCRIPTION

Our research is centered on the modeling of the perfor-
mance of modern computer systems. To validate our ap-
proach and models, we have to perform numerous measure-
ments on a wide variety of machines, some of which being
sometimes not even dedicated. In such context, a presum-
ably minor misunderstanding or inaccuracy about some pa-
rameters at small scale can result in a totally different behav-
ior at the macroscopic level [8]. It is thus crucial to carefully
collect all the useful meta-data and to use well-planed ex-
periment designs along with coherent analyses, such details
being essential to the reproduction of experimental results.

Our goal was however not to implement a new tool, but
rather to find a good combination of already existing ones
that would allow a painless and effective daily usage. We
were driven by purely pragmatic motives, as we wanted to
keep our workflow as simple and comprehensible as possible
while offering the best possible level of confidence in the
reproducibility of our results.

In the rest of this section, we present two research topics
we worked on, along with their specifics and needs regard-
ing experimentation workflow. These needs and constraints
motivated several design choices of the workflow we present
in Section 4.

2.1 Case Study #1: Modeling and Simulating
Dynamic Task-Based Runtimes

Our first use case aims at providing accurate perfor-
mance predictions of dense linear algebra kernels on hybrid
architectures (multi-core architectures comprising multiple
GPUs). We modeled the StarPU runtime [1] on top of
the SimGrid simulator [3]. To evaluate the quality of our
modeling, we had to conduct experiments on hybrid proto-
type hardware whose software stack (e.g., CUDA or MKL
libraries) could evolve along time. We had only limited con-
trol and access to the environment setup, as the machines
are strictly managed by the administrators who maintain
and update its configuration so that it matches the needs
of most users. Moreover, we relied on code from two ex-
ternal repositories together with many of our own scripts.
These external code sources were quite complex and fre-
quently changed by their respective multiple developers.

After a long period of development and experimentation,
we have written an article [12] that builds on a completely
replicable analysis of the large set of experiments we gath-
ered. We took care of doing these experiments in a clean,

coherent, well-structured and reproducible way that allows
anyone to inspect how they were performed.

2.2 Case Study #2: Studying the Performance
of CPU Caches

Another use case that required a particular care is the
study of CPU cache performance on various Intel and ARM
micro-architectures [13]. The developed source code was
quite simple, containing only a few files, but there were nu-
merous input, compilation and operating system parameters
to be taken into account. Probably the most critical part of
this study was the environment setup, which proved to be
unstable, and thus, responsible for many unexpected phe-
nomena. Therefore, it was essential to capture, understand
and easily compare as much meta-data as possible.

Limited resources (both in terms of memory, CPU power
and disk space) and software packages restricted availability
on ARM processors have motivated some design choices of
our methodology. In particular, this required our solution
to be lightweight and with minimal dependencies. Although
this research topic has not led to a reproducible article yet,
we used the proposed workflow and can still track the whole
history of these experiments.

3. RELATED WORK

In the last several years, the field of reproducibility re-
search tools has been very active, various alternatives emerg-
ing to address diverse problematic. However, only few of
them are appropriate for running experiments and mea-
suring execution time on large, distributed, hybrid systems
comprising prototype hardware and software. The ultimate
goal of reproducible research is to bridge the current gap
between the authors and the article readers (see Figure 1)
by providing as much material as possible on the scientist
choices and employed artifacts. We believe that opening a
laboratory notebook is one step in that direction since not
only the positive results are shared in the final article but
also all the negative results and failures that occurred during
the process.

There are successful initiatives in different computer sci-
ence fields (e.g., DETER [7] in cybersecurity experimenta-
tion or PlanetLab in the peer-to-peer community) that pro-
vide good tools for their users. However, when conduct-
ing experiments and analysis in the HPC domain, several
specific aspects need to be considered. We start by de-
scribing the ones related to the experimental platform setup
and configuration. Due to the specific nature of our re-
search projects (prototype platforms with limited control
and administration permissions), we have not much ad-
dressed these issues ourselves although we think that they
are very important and need to be mentioned.

Platform accessibility Many researchers conduct their
experiments on large computing platforms such as Grid5000
or PlanetLab and which have been specifically designed for
large scale distributed/parallel system experimentation. Us-
ing such infrastructures eases reproduction but also requires
to manage resource reservation and to orchestrate the ex-
periment, hence the need for specific tools. However, the
machines we considered in our study are generally recent
prototypes, some of them being rather unique and meant to
be accessed directly without any specific protocol.

Author

Presentation A, al
Processing Analysis Code Vsis
Code Code R
i i

Figures

< I I vy
9, Measured Analytic Computational
5 Data Data Results

Published
Article

Numerical
Summaries
Text

Analysis/experiment
feedback loop

Experiment Code
(workload injector, VM recipes, ...)

Scientific
Question

Reader

Figure 1: Ideally, the experimenter would keep
track of the whole set of decisions taken to conduct
its research as well as all the code used to both con-
duct experiments and perform the analysis.

Setting up environments It is necessary to carefully con-
figure machines before doing experiments. Among the few
tools specifically designed for this purpose and based on
recipes, we can cite Kameleon [9], which allows to recon-
struct an environment step by step. Another approach con-
sists in automatically capturing the environment required to
run the code (e.g., as done by CDE [14, chap.4].) or to use
virtual machines so that code can be later re-executed on
any other computer. In our use cases, experimental plat-
forms are already set up by expert administrators and we
had neither the permission nor particular interest to modify
their configuration.

Conducting experiments Numerous tools for running
experiments in a reproducible way were recently proposed.
Solely for the Grid5000 platform, there are at least three
different ones: Expo [10], XPflow [2] and Execo [6]. These
tools are not specifically designed for HPC experiments but
could easily be adapted. Another set of related tools de-
veloped for computational sciences comprises Sumatra [14,
chap.3] and VisTrails [14, chap.2]. Such tools are rather ori-
ented on performing a given set of computations and do not
offer enough control on how the computations are orches-
trated to measure performances. They are thus somehow
inadequate in our context. Some parts or ideas underlying
the previously mentioned tools could have been beneficial to
our case study. In our experiments, simple scripts were suf-
ficient although they often require interactive adaptations
to the machines on which they are run, which makes exper-
iments engine that aim at automatic execution difficult to
use.

Now we detail aspects related to software, methodology
and provenance tracking, which are often neglected by re-
searchers in our community.

Accessibility It is widely accepted that tools like Git or
svn are indispensable in everyday work on software devel-
opment. Additionally, they help at sharing the code and
letting other people contribute. Using such tool for man-
aging experiments is however not that common. Public file
hosting services, such as Dropbox or Google Drive have be-
come a very popular way to share data among scientists that
want to collaborate. The unclear durability of such service
and the specific requirements scientists have in term of size

and visibility has lead to the development of another group
of services (e.g., figshare) that are focused on making data
publicly and permanently available and easily understand-
able to everyone.

Provenance tracking Knowing how data was obtained is
a complex problem. The first part involves collecting meta-
data, such as system information, experimental conditions,
etc. In our domain, such part is often neglected although ex-
perimental engines sometimes provide support for automat-
ically capturing it. The second part, frequently forgotten in
our domain, is to keep track of any transformation applied to
the data. In such context, the question of storing both data
and meta-data quickly arises and the classical approach to
solve these issues involves using a database. However, this
solution has its limits, as managing source codes or com-
ments in a database is not convenient and is in our opinion
handled in a much better way by using version control sys-
tems and literate programming.

Documenting While provenance tracking is focused on
how data was obtained, it is not concerned with why the
experiments were run and what the observations on the re-
sults are. These things have to be thoroughly documented,
since even the experimenters tend to quickly forget all the
details. One way is to encourage users to keep notes when
running experiment (e.g., in Sumatra [14, chap.3]), while the
other one consists in writing a laboratory notebook (e.g.,
with IPython).

Extendability It is hard to define good formats for all
project components in the starting phase of the research.
Some of the initial decisions are likely to change during the
study, so the system has to be easy to extend and modify. In
such a moving context, integrated tools with fixed database
schemes, as done for example in Sumatra, seemed too rigid
to us although they definitely inspired several parts of our
workflow.

Replicable analysis Researchers should only trust figures
and tables that can be regenerated from raw data that com-
prise sufficient details on how the experiments were con-
ducted. Therefore, ensuring replicable analysis (the Anal-
ysis part of Figure 1) is essential to any study. A popular
solution is to rely on open-source statistical software like R
and knitr that simplify figure generation and embedding in
final documents [14, chap.1].

To address the previous problems, we decided to work
with a minimalist set of simple, lightweight, and well-known
tools. We use Org-mode, initially an Emacs mode for edit-
ing and organizing notes, that is based on highly hierarchi-
cal plain text files which are easy to explore and exploit.
Org-mode has also been extended to allow combining plain
text with small chunks of executable code (Org-babel [11]
snippets). Such feature builds on the literate programming
principles introduced by Donald Knuth three decades ago,
and for which there has been a renewed interest in the last
years. Although such tool was designed for conducting ex-
periments and for writing scientific articles, its use is not so
common yet.

In addition, for version control system we decided to rely
on Git, a distributed revision control tool that offers an
incredibly powerful and flexible branching mechanism.

Figure 2: Proposed Git branching scheme with 4
different types of branches

4. A GIT AND ORG-MODE BASED
WORKFLOW

In this section, we present our workflow for conducting
experiments and writing articles about the results, based on
a unique Git branching model coupled with a particular us-
age of Org-mode. Although these are well-known and widely
used tools, to the best of our knowledge no one so far has
proposed using them in a similar manner for doing repro-
ducible research. The approach we present is lightweight,
to make sure the experiments are performed in a clean, co-
herent and hopefully reproducible way without being slowed
down by a rigid framework. It fully fulfilled our needs for
the use cases presented in Section 2 and would equally help
anyone doing research in a such context. However, the main
ideas behind our solution are general and can be applied in
other fields of computer science as well, possibly with some
domain specific adjustments as the environment in which
experiments are performed can be very different.

We remind the reader that every document and se-
ries of commits described herein can be found at http:
//starpu-simgrid.gforge.inria.fr/. Links to Git commits with
examples are provided in the rest of this paper and we en-
courage readers to inspect them. All our documents are
plain text documents and can thus be opened with any text
editor or browser. However, since most of these files are
Org-mode documents, we suggest to open them with a re-
cent Emacs and Org-mode installation rather than within a
web browser. Options for pretty printing in web browsers
exist, but are not fully mature yet. We are currently work-
ing on making it easier for non Emacs users to easily exploit
such data.

4.1 Git Branching Structure

Relying on a revision control system for under develop-
ment code is nowadays a common practice. It is thus a
good habit to ensure that all source code changes are com-
mitted before running the experiments. These restrictions
are already implemented in many tools, such as Sumatra.
Knowing which revision of the source code was used to pro-
duce a given data makes it theoretically possible to repro-
duce experimental results. However, in practice it can be
quite burdensome.

A first problem is that code and experimental results are

often treated as two separate kinds of objects. Being only
loosely coupled, the link between some data and the code
that produced it is often hard to find and exploit, and some-
times it can even be completely lost. Therefore, we sug-
gest to store both of them in the same Git repository so
as to ensure that they are always perfectly synchronized.
This greatly increases the confidence level in the results and
makes it easier to obtain the code that produced a particular
data set.

Storing everything in the same repository can quickly lead
to an anarchic and unexploitable system and hence it re-
quires some organization and convention. To this end, we
propose an approach that consists in 4 different types of
branches, illustrated in Figure 2. The first branch, named
sre, includes only the source code, i.e., the code and scripts
required for running the experiments and simple analysis.
The second branch, data, comprises all the source code as
well as all the data and every single analysis report (sta-
tistical analysis results, figures, etc.). These two branches
live in parallel and are interconnected through a third type
of branches going from src to data, the zp# branches ("#”
sign means that there are multiple branches, but all with the
same purpose). These are the branches where all the experi-
ments are performed, each xp# branch corresponding to one
set of experiment results. The repository has typically one
src and one data branch, both started at the beginning of
the project, while there is a huge number of xp# branches
starting from src and eventually merged into data that ac-
cumulates all the experimental results. All these together
form a ”ladder like” form of Git history. Finally, the fourth
type of branches is the art# branches which extend the data
branch. They comprise an article source and all companion
style files, together with a subset of data imported from the
data branch. This subset contains only the most important
results of the experiments, that appear in the tables and
figures of the article.

By using Git as proposed, it is extremely easy to set up an
experimental environment and to conduct the experiments
on a remote machine by pulling solely the head of the src or
of an zp# branch. This solves the problem of long and disk
consuming retrieving of the whole Git repository, as the src
and xp# branches are typically very small.

On the other hand, one might want to investigate all the
experimental data at once, which can be easily done by
pulling only the head of data branch. This is meant for
the researchers that are not interested in the experimenta-
tion process, but only in the analysis and cross-comparison
of multiple sets of results. For such users, the src and zp#
branches are completely transparent, as they will retrieve
only the latest version of the source code (including analysis
scripts) and the whole set of data.

Another typical use case is when one wants to write an
article or a report based on the experiment results. A com-
pletely new branch can then be created from data, selecting
from the repository only the data and analysis code needed
for the publication and deleting the rest. This way, the com-
plete history of the study behind the article can be preserved
(e.g., for the reviewers) and the article authors can download
only the data set they really need.

When used correctly, such Git repository organization can
provide numerous benefits to the researchers. However, it is
not sufficient in our setting, since commit messages in Git
history give only coarse grain indications about source code

http://starpu-simgrid.gforge.inria.fr/
http://starpu-simgrid.gforge.inria.fr/

modifications. There is still a lot of information missing
about the environment setup of the machines, why and how
certain actions were performed and what the conclusions
about the results are. We address all these questions with
Org-mode files, as described in the following subsection.

4.2 Using Org-mode for Improving Repro-
ducible Research

As mentioned in Section 3, several tools can help to auto-
matically capture environment parameters, to keep track of
the experimentation process, to organize code and data, etc.
However, none of them addresses these issues in a way satis-
fying our experimental constraints, as these tools generally
create new dependencies on specific libraries and technolo-
gies that sometimes cannot be installed on experimentation
machines. Instead, we propose a solution based on plain text
files, written in the spirit of literate programming, that are
self-explanatory, comprehensive and portable. We do not
rely on a huge cumbersome framework, but rather on a set
of basic, flexible shell scripts, that address the following
challenges.

4.2.1 Environment Capture

Environment capture aims at getting every detail about
the code, the libraries in use and the system configura-
tion. Unlike the parallel computing field where applica-
tions are generally expected to run in more or less good
isolation of other users/applications, there are several areas
of computer science (e.g., networking, security, distributed
systems, etc.) where fully capturing such platform state is
impossible. However, the principle remains the same, as it is
necessary to gather as much useful meta-data as possible, to
allow comparison of experimental results with each others
and to determine if any change to the experimental envi-
ronment can explain potential discrepancies. This process
should not be burdensome, but automatic and transparent
to the researcher. Additionally, it should be easy to extend
or modify, since it is generally difficult to anticipate relevant
parameters before performing numerous initial experiments.

Thus, we decided to rely on simple shell scripts, that just
call many Unix commands in sequence to gather system in-
formation and collect the different outputs. The meta-data
that we collect typically concern users logged on the ma-
chine during the experiments, the architecture of the ma-
chine (processor type, frequency and governor, cache size
and hierarchy, GPU layout, etc.), the operating system (ver-
sion and used libraries), environment variables and finally
source code revisions, compilation outputs and running op-
tions. This list is not exhaustive and would probably need
to be adjusted for experiments in other domains.

Once such meta-data is captured, it can be stored either
individually or accompanying results data. One may prefer
to keep these two separated, making the primary results un-
polluted and easier to exploit. Although some specific file
systems like HDF5 (as used in activepapers [5]) provide a
clean management of meta-data, our experimental context,
where computing/storage resources and our ability to in-
stall non-standard software are limited, hinders their use.
Storing such information in another file of a standard file
system quickly makes information retrieval from meta-data
cumbersome. Therefore, we strongly believe that the ex-
periment results should stay together with the information
about the system they were obtained on. Keeping them in

the same file makes the access straightforward and simplifies
the project organization, as there are less objects to handle.
Furthermore, even if data sustains numerous movements and
reorganizations, one would never doubt which environment
setup corresponds to which results.

In order to permit users to easily examine any of their in-
formation, these files have to be well structured. The Org-
mode format is a perfect match for such requirements as
its hierarchical organization is simple and can be easily ex-
plored. A good alternative might be to use the yaml format,
which is typed and easy to parse but we decided to stay with
Org-mode (which served all our needs) to keep our frame-
work minimalist.

A potential issue of this approach is raised by large files,
typically containing several hundreds of MB and more.
Opening such files can temporary freeze a text editor and
finding a particular information can then be tedious. We
have not yet met with such kind of scenario, but it would
certainly require some adaptations to the approach.

In the end, all the data and meta-data are gath-
ered automatically using scripts (e.g., 41380b54a7{run-
experiment.sh#1220}), finally producing a read-only Org-
mode document (e.g., 1655becdOa{data-results.org})
that serves as a detailed experimental report.

The motivations for performing the experiments, and the
observations about the results are stored separately, in the
laboratory notebook.

4.2.2 Laboratory Notebook

A paramount asset of our methodology is the laboratory
notebook (labbook), similar to the ones biologist, chemists
and scientist from other fields use on a daily basis to doc-
ument the progress of their work. For us, this notebook is
a single file inside the project repository, shared between
all collaborators. The main motivation for keeping a lab-
book is that anyone, from original researchers to external
reviewers, can later use it to understand all the steps of the
study and potentially reproduce and improve it. This self-
contained unique file has two main parts. The first one aims
at carefully documenting the development and use of the re-
searchers’ complex source code. The second one is concerned
with keeping the experimentation journal.

Documentation This part serves as a starting point for
newcomers, but also as a good reminder for everyday users.
The labbook explains the general ideas behind the whole
project and methodology, i.e., what the workflow for doing
experiments is and how the code and data are organized in
folders. It also states the conventions on how the labbook
itself should be used.

Details about the different programs and scripts, along with
their purpose follow. These information concern the source
code used in the experiments as well as the tools for manip-
ulating data and the analysis code used for producing plots
and reports. Additionally, there are a few explanations on
the revision control usage and conventions.

Moreover, the labbook contains a few examples of how to run
scripts, displaying the most common arguments and format.
Although such information might seem redundant with the
previous documentation part, in practice such examples are
indispensable even for experienced users, since some scripts
have lots of environment variables, arguments and options.
It is also important to keep track of big changes to the source
code and the project in general inside a ChangeLog. Since

https://anonsvn:anonsvn@gforge.inria.fr/plugins/scmgit/cgi-bin/gitweb.cgi?p=starpu-simgrid/starpu-simgrid.git;a=blob;f=run_bench_StarPU.sh;hb=41380b54a7##l220
https://anonsvn:anonsvn@gforge.inria.fr/plugins/scmgit/cgi-bin/gitweb.cgi?p=starpu-simgrid/starpu-simgrid.git;a=blob;f=run_bench_StarPU.sh;hb=41380b54a7##l220
https://anonsvn:anonsvn@gforge.inria.fr/plugins/scmgit/cgi-bin/gitweb.cgi?p=starpu-simgrid/starpu-simgrid.git;a=blob;f=data/dataK40/K40chol/SoloStarpuData10.org;h=1655becd0a;hb=refs/heads/data

all modifications are already captured and commented in
Git commits, the log section offers a much more coarse grain
view of the code development history. There is also a list
with brief descriptions of every Git tag in the repository as it
helps finding the latest stable, or any other specific, version
of the code.

Experiment results All experiments should be carefully
noted here, together with the key input parameters, the mo-
tivation for running such experiment and the remarks on the
results. For each experimental campaign there should be a
new entry that replies to the questions why, when, where
and how experiments were run and finally what the obser-
vations on the results are. Inside the descriptive conclusions,
Org-mode allows to use both links and git-links connecting
the text to specific revisions of files. These hyperlinks point
to crucial data and analysis reports that illustrate a newly
discovered phenomenon.

Managing efficiently all these different information in a
single file requires a solid hierarchical structure, which once
again motivated our use of Org-mode. We also took ad-
vantage of the Org-mode tagging mechanism, which allows
to easily extract information, improving labbook’s structure
even further. For example, tags can be used to distinguish
which collaborator conducted a given set of experiments and
on which machine. Although such information may already
be present in the experiment files, having it at the jour-
nal level proved very convenient, making the labbook much
easier to understand and exploit. Experiments can also be
tagged to indicate that certain results are important and
should be used in future articles.

Several alternatives exist for taking care of experiment re-
sults and progress on a daily basis. We think that a major
advantage of Org-mode compared to many other tools is that
it is just a plain text file that can thus be read and modi-
fied on any remote machine without requiring to install any
particular library, not even Emacs. Using a plain text file is
also the most portable format across different architectures
and operating systems.

We provide two examples of labbook files. The first one
has only with the documentation parts related to the code
development and usage (30758b6b6a{labbook}) and is the
one obtained from the src branch or from the beginning of
an zp#, while the second one (01928ce013{1labbook#1272})
has a huge data section comprising the notes about all the
experiments performed since the beginning of the project.

4.2.3 Using Literate Programming for Conducting
Experiments

In our field, researchers typically conduct experiments by
executing commands and scripts in a terminal, often on a
remote machine. Later, they use other tools to do initial
analysis, plot and save figures from the collected data and
at the end write some remarks. This classical approach has
a few drawbacks, which we try to solve using Org-babel,
Org-mode’s extension for literate programming.

The main idea is to write and execute commands in Org-
babel snippets, directly within the experimentation journal,
in our case the labbook. This allows to go through the whole
experimentation process, step-by-step, alternating the exe-
cution of code blocks and writing text explanations. These
explanations can include reasons for running a certain snip-
pet, comments on its outputs, plan for next actions or any

other useful remarks. At the end, this process can be fol-
lowed by a more general conclusion on the motives and
results of the whole experimentation campaign. Conduct-
ing experiments in such manner provides numerous benefits
comparing to the usual way scientists in our field work.

The first problem with the classical approach is that re-
searchers save only the experiment results (possibly with
some meta-data), while all other seemingly irrelevant out-
puts of commands are discarded. However, in case of fail-
ures, these outputs can occasionally be very helpful when
searching for the source of an error. Although, such out-
puts, along with the commands that produced them, can
sometimes be found in a limited terminal history, their ex-
ploration is a very tedious and error-prone process. On the
other hand, when using Org-babel, all snippet results are
kept next to it, which simplifies the tracing of problems.

Secondly, since the preparation and management of ex-
periments is a highly repetitive process, grouping and nam-
ing sequences of commands in a single snippet can be very
beneficial. This allows to elegantly reuse such blocks in fu-
ture experiments without writing numerous scripts or bulky
”one-liners”.

Additionally, Org-babel permits to use and combine sev-
eral languages, each with its own unique purpose, inside the
same file. This again decreases the number of files and tools
required to go through the whole experimentation process,
making it simpler and more coherent.

Last, and probably the most important point, using this
approach avoids documenting an experimental process af-
terwards, which is generally tedious and often insufficient.
Researchers are frequently in a hurry to obtain new data,
especially under a pressure of rigorous deadlines. They do
not dedicate enough time to describe why, where and how
experiments were performed or even sometimes what are
the conclusions about the results. At that moment, answers
to these questions may seem obvious to the experimenters,
therefore they neglect noting it. However, in few days or
months, remembering all the details is not so trivial any-
more. Following literate programming principles and taking
short notes to explain the rationale and usage of code snip-
pets, while executing them, is quite natural and solves the
previous issues. From our own experience, it does not signifi-
cantly slow down the experimental process, while it provides
huge benefits later on.

Finally, the outcome of this approach is a comprehensible,
well-commented executable code, that can be rerun step-by-
step even by external researchers. Additionally, it can also
be exported (tangled), producing a script that consists of all
snippets of the same language. Such scripts can be used to
completely reproduce the whole experimentation process.

An example of this approach is provided in
0b20e8abd5{1labbook#1950}. It is based on Shell snip-
pets, and although it can be rerun only with the access
to the experimental machines, it provides both a good
illustration of Org-babel usage for conducting experiments
and a faithful logging of the commands run to obtain these
experimental data, which is paramount for a researcher
willing to build upon it.

4.3 Git Workflow in Action

We now explain the typical workflow usage of our Git
branching scheme, that is also tightly linked to the experi-
mentation journal in Org-mode.

https://anonsvn:anonsvn@gforge.inria.fr/plugins/scmgit/cgi-bin/gitweb.cgi?p=starpu-simgrid/starpu-simgrid.git;a=blob;f=LabBook.org;h=30758b6b6a;hb=refs/heads/master
https://anonsvn:anonsvn@gforge.inria.fr/plugins/scmgit/cgi-bin/gitweb.cgi?p=starpu-simgrid/starpu-simgrid.git;a=blob;f=Labbook.org;h=01928ce013;hb=refs/heads/data##l272
https://anonsvn:anonsvn@gforge.inria.fr/plugins/scmgit/cgi-bin/gitweb.cgi?p=starpu-simgrid/starpu-simgrid.git;a=blob;f=LabBook.org;h=0b20e8abd5;hb=refs/heads/data##l950

Phase Machine A Machine B Git server
0 git setup ur git setup url
git xp start foo —@
1 [xp/foo]
git xp pull foo @]
STC ata
> =
git status
do experiments
git add results &
2 git commit [Xpffod
git push O
sic [data]
glt pull
do analysis O/.
3 write to labbook o (xp/foo]
glt commit
glt push @]
............ <> Sre
4 git xp finish foo o—/oq/xo;>
@]
src ata
Figure 3: Typical Git experimentation workflow

with different phases, using two machines

However, branching and merging is a technical operation
that can become cumbersome and generally scares new Git
users. That is why such Git interactions should be made
as easy as possible with new specific Git commands, which
we are currently packaging. We introduce such commands
along with their intended use without going into the details
of their implementation.

4.3.1 Managing Experiments with Git

On Figure 3 we explain the typical workflow usage of our
branching scheme. Although it is self-contained and inde-
pendent from any other tool, we found it very practical to
couple it with our laboratory notebook.

Before even starting, the whole project needs to be cor-
rectly instantiated on every machine, as shown in Phase 0.
The git setup url command will clone the project from
server, but without checking out any of the branches.

When everything is set, the researcher can start working
on a code development inside the src branch, committing
changes, as shown in Phase 1. These modifications can im-
pact source code, analysis or even the scripts for running
the experiments. Later, such modifications should be tested
and the correctness of the whole workflow should be vali-
dated. Only then can one start conducting real experiments
by calling git xp start foo. This command will create
and checkout a new branch zp/foo from the src. Then,
this command will create, commit and push a new folder
for storing the results. We used the convention that these
two (branch and folder) should always have the same name,
which eases the usage of both Git and labbook. Next, the
newly created branch is pulled on a remote machine B, using
git xp pull foo. It will fetch only the last commit of the
xp/foo branch. As a result, machines for experimentation,
such as machine B, get only the code required to run the ex-
periments, without neither Git history nor any experimental
data. Meanwhile, machine A and all other users that want
to develop code, do the analysis and write articles will con-
tinue using the standard git pull command to get full Git
repository, although it can sometimes be quite memory and

Restart from
. this commit

Figure 4: Restart or reproduce experiments start-
ing from a certain commit

time consuming.

In Phase 2, we first verify that there has not been any code
modification before running the experiment and we also au-
tomatically ensure that the latest version of the code has
been compiled. Then, experiments are run, generating new
data. The resulting Org-mode data files, containing experi-
ment outputs together with the captured environment meta-
data, are then committed to the Git. Such process may be
repeated, possibly with different input parameters. Finally,
the commited data is pushed to the server.

After that, the experiment results can be pulled on the
machine that is used to do the analysis (Phase 3). Impor-
tant conclusions about the acquired data should be saved
either in separate reports, or even better as a new foo entry
inside the experiment results section in the labbook. Results
of the analysis could later trigger another round of experi-
mentation and so on.

Finally, when all desired measurements are finished,
xp/foo will be merged with the data branch using git xp
finish foo, as depicted in Phase 4. This command will
also delete the foo branch, to indicate that the experimen-
tation process is finished and to avoid polluting the repos-
itory with too many open branches. Still a simple Git tag
will be created on its place, so if needed, the closed branch
foo can be easily found and investigated in future. Note
that while in src branch labbook only has the documenta-
tion part, the zp# branches are populated with observations
about the experiments. Therefore, the merged labbook in
the data branch holds all the collected experimental entries
with comments, which makes their comparison straightfor-
ward.

One interesting option is to go through the entire workflow
depicted in Figure 3 directly within the labbook, using the
literate programming approach with Org-babel we described
in Section 4.2.3.

4.3.2 Reproducing Experiments

The main goal of such workflow is to facilitate as much
as possible the reproduction of experiment by researchers.
This can be done by calling the git xp start --from foo
command, from the machine we want to repeat the experi-
ments. As displayed in Figure 4, this command will checkout
the desired revision of the code and create a new branch and
folder based on the initial zp# branch. From there, conduct-
ing the new experiments, noting the observations and later
merging with data branch is performed as usual.

It may happen that software components of the machines
used for experiments are replaced between two series of ex-

Figure 5: Handling source modifications that oc-
curred during the experimentation

periments. In many cases, this is done by the machine ad-
ministrators and the researchers conducting the experiments
may have no permission to revert it. There could thus be
some important changes in the environment and repeated
experiments might produce different results from the initial
ones. Unfortunately, when dealing with experiments that
cannot be run on virtual machines, nothing can be done to
avoid this problem. The best we can do is to carefully track
all the software used in the experiments, so if eventually any
deviation of the experimental results occurs, we can compare
the meta-data and find the source of discrepancy.

It is also worth mentioning that if researchers want to
reconduct a previous experiments, but on a completely new
machine, they will use this exact same approach.

4.3.3 Fixing Code

Sometimes, while conducting the experiments on a remote
machine, the researcher may need to make few small source
code modifications. These modifications have to be commit-
ted (since measurements are never done using an uncommit-
ted code), even though in most cases they represent an ad
hoc change, specific to an individual machine and its current
installation. These minor, local hacks would pollute the data
branch and thus it has to be ensured that they are not prop-
agated when branches are merged. This protection is thus
implemented inside the git xp finish foo command.

At the end of the foo branch, all source code changes are
reverted. This means that we create an ”anti-commit” of all
the previously committed source modifications inside that
experimental branch, as shown in Figure 5. This way modi-
fications remain local for foo and the experimental setup can
still be reproduced by pulling the revision before the revert
operation.

If the researcher eventually recognizes that some of the
source code modifications done inside foo branch could be
useful for the whole project, there are two ways to insert
them in the src branch. The first one involves rewriting Git
history and it is not advised as it can introduce incoherence
between Git repositories. The second option is to simply
cherry-pick the desired commits. Although this approach
produces some redundancy, it is easier, safer and enables to
keep the Git history comprehensible and consistent.

4.3.4 Making Transversal Analysis

Such Git organization, environment parameter capture
and careful note taking in labbook also simplifies the com-
parison of data sets. Since the data branch aggregates all
the zp# branches, it is the best location to analyze and com-
pare these different results with each others. The numerous

plain-text meta-data are easily exploited and incorporated
in the analysis. Since each data file comprises the revision of
the source code used to generate it, it is easy to backtrack
to specific commits and to exploit the labbook to explain
unexpected behaviors.

4.3.5 Writing Reproducible Articles

Using the described workflow on a daily basis makes the
writing of reproducible articles straightforward. Figure 2
shows how researchers can create a new branch from the data
branch that contains only useful experimental results by us-
ing the git article start artlcommand. This command
deletes all the unnecessary data from the new branch, keep-
ing only the experiments that are previously tagged in lab-
book with art! keyword. This approach is convenient for
the authors that are collaborating on the article writing and
are not concerned with the analysis since it is possible for
them to pull only the Git history of the article, not the whole
project.

Occasionally, some important experiment results may
have been overlooked or conducting additional measure-
ments becomes necessary. In such case, these new results
can be added later through merging with the updated data
branch.

The same principles used for conducting experiments with
Org-babel can be applied when writing an article since it is
possible to combine the text of the paper with data transfor-
mations, statistical analysis and figure generation, all using
generally different programming languages. A major advan-
tage of this methodology is that a lot of code and text can
be recycled from previous analysis scripts and from the lab-
book.

Keeping everything in the same file rather than to have
it scattered in many different ones, makes everything sim-
pler and greatly helps the writers. We did not encounter
any particular issue when multiple authors did collaborate
on the same paper. This also simplifies modifications and
corrections often suggested by reviewers since every figure is
easily regenerated by calling the code snippet hidden next
to it in the article.

The final result of the whole workflow, is an article con-
taining all the raw data that it depends on together with
the code that transformed it into tables and figures, possibly
along with the whole history with the detailed explanations
of how this data was obtained. This is very convenient not
only for the authors but also for the readers, especially re-
viewers, since all experimental and analysis results can be
inspected, referenced, or even reused in any other research
project.

S. PUBLISHING RESULTS

Making data and code publicly available is a good prac-
tice as it allows external researchers to improve or build
upon our work. However, at least in our domain it is not
that commonly done, in particular because it is not that
trivial to do when the study was not conducted with a clean
methodology in mind from the beginning. If such intentions
are not envisioned from the beginning of the project, it is
generally very tedious to document and package afterwards.
Gathering all the data required for an article can be cumber-
some, as it is typically spread in different folders on different
machines. Explaining experiment design and results is even
harder, since notes that were taken months ago are often

not precise enough. In the end, few researchers somehow
manage to collect all the necessary elements and put them
in a tarball, to accompany the article. Nevertheless, such
data without appropriate comments is hardly understand-
able and exploitable by others. This lowers the researchers’
motivation to share their data as it will not be widely used.

The question of what parts of this whole history should
go public can remain a sensitive topic. We think that, at the
very least, the data used to produce the article figures and
conclusions should be made available. Of course, provid-
ing only already post-processed .csv tables with only care-
fully chosen measurements can make the article replicable,
but will not guarantee anything about reproducibility of the
scientific content of the paper. Therefore, meta-data of all
experiments should be made available as well. Likewise, pro-
viding more material than what is presented, may be desir-
able as it allows to illustrate issues that cannot be included
in the document due to lack of space. The most extreme ap-
proach would be to publish everything, i.e., the whole labo-
ratory notebook, acquired data and source code archived in
a revision control system. Yet, some researchers may have
perfectly valid reasons for not publishing so much informa-
tion (copyright, company policy, implementation parts that
the authors do not wish to disclose now, etc.).

The methodology we propose allows to easily choose which
level of details is actually published. From the wide spec-
trum of possible solutions, we present two we used so far.

5.1 The Partially Opened Approach with
Figshare Hosting

When we first started writing the article on the model-
ing and simulation of dynamic task-based runtimes [12], our
Git repository was private and we had not considered to
open it. To publish our experimental data, we decided to
use Figshare, which is a service that provides hosting for
research outputs, that can be shared and cited by others
through the DOI mechanism.

Although our article was managed within an internal Git,
publishing to figshare required to select, archive and upload
all the data files and to finally annotate them in the web
browser. This could probably have been automated, but
the REST API was not completely stable at that time, so
we had to do everything manually. Likewise, the github-
figshare project could help, but it was at the early devel-
opment stage and requires the whole Git repository to be
hosted on GitHub, which may raise other technical issues
(in particular the management of large files, whose size can-
not exceed 100MB).

Hosting all our raw data on figshare also required ad-
justing our reproducible article. Data are first down-
loaded from figshare, then untared and post-processed. To
this end, we again used the literate programming feature
of Org-babel and the way we proceeded is illustrated in
e926606bef{article#185}.

Finally, this resulted in a self-contained article and data
archive [15]. This approach was not so difficult to use, al-
though the interaction with figshare was mostly manual,
hence not as effective as it could have been.

5.2 The Completely Open Approach with
Public Git Hosting

Using the previous approach, we somehow lost part of the
history of our experimental process. Some data sets were

not presented, some experiments where we had not prop-
erly configured machines or source codes were also missing.
Nevertheless, it is clear that with highly technical tools and
hardware such as the ones we experimented with, good re-
sults are not only the consequence of an excellent code, but
also of expertise of the experimenters. Making failures avail-
able can be extremely instructive for those willing to build
upon our work and thus publishing the whole labbook and
Git history seemed important to us. In our case, this did not
require additional work except to move our Git repository to
a public project. With all the information we provide and an
access to similar machines and configurations, others should
be able to to repeat our experiments and to reproduce our
results without much burden.

In the end, it is important to understand that even though
we decided to completely open our labbook to others, this
step is not a prerequisite for writing reproducible articles.
The level of details that is made public can be easily adapted
to everyone’s preferences.

6. CONCLUSION

In this paper, we did not intend to propose new tools for
reproducible research, but rather investigate whether a min-
imal combination of existing ones can prove useful. The ap-
proach we describe is a good example of using well-known,
lightweight, open-source technologies to properly perform
a very complex process like conducting computer science
experimentation on prototype hardware and software. It
provides reasonable reproducibility warranties without tak-
ing away too much flexibility from the users, offering good
code modification isolation, which is important for ad hoc
changes that are ineluctable in such environments. Although
the two use cases we presented are quite different, most of
the captured environment meta-data is the same for both
projects. Since all the source code and data are in Git repos-
itory, reconstructing experimentation setup is greatly sim-
plified. One could argue that not all elements are completely
captured, since operating system and external libraries can
only be reviewed but not reconstructed. To handle this,
researchers could build custom virtual appliances and de-
ploy them before running their experiments but this was
not an option on the machines we used. Using virtual ma-
chines to run the experiments is not an option either, since
in our research field we need to do precise time measure-
ments on real machines and adding another software layer
would greatly perturb performance observations. Finally,
after applying such a methodology throughout the whole
research process, it was extremely easy to write an article
(c836dde8f5{article}) in Org-mode that was completely
replicable. Along with the text, this Org-mode document
contains all the analysis scripts and the raw data that can
be inspected by reviewers.

The biggest disadvantage of our approach is that it has
many not so common conventions along with a steep learn-
ing curve, hence it is difficult for new users. Moreover, it
requires an expertise in Org-mode, preferably using Emacs
text editor, together with a good understanding of Git. We
acknowledge that some researchers are more used to other
editors such as Vi/Vim and will not switch them easily. Al-
though it is still possible to use them in our context, as
Org-mode is plain text file that can be edited anywhere, it
would be much harder to benefit from many of its special
features. We believe that the tools we used provide benefits

https://anonsvn:anonsvn@gforge.inria.fr/plugins/scmgit/cgi-bin/gitweb.cgi?p=starpu-simgrid/starpu-simgrid.git;a=blob;f=articles/StarPUSG14-article/StarPUSG_article.org;hb=e926606bef##l85
https://anonsvn:anonsvn@gforge.inria.fr/plugins/scmgit/cgi-bin/gitweb.cgi?p=starpu-simgrid/starpu-simgrid.git;a=blob;f=articles/StarPUSG14-article/StarPUSG_article.org;h=c836dde8f5;hb=refs/heads/articleEUROPAR14

that are worth investing time but we also understand the
need to simplify its use. There are thus currently many ini-
tiatives to port Org-mode to make it work completely in Vi
or in web browsers. Some of them already work, but are not
fully mature or complete yet. We are thus quite confident
that Org-mode will be completely Emacs independent in the
near future.

There is also a problem regarding the management and
storing of large data files in repositories, and which is well-
known to the community. This has been already solved for
the Mercurial revision control tool, but even after an ex-
haustive research we could not find a satisfactory solution
for Git. Many tools have been proposed, leading with git-
annex, but they all have their shortcomings. Such tools are
generally meant to be alternatives to synchronization ser-
vices like Dropbox and Google Drive rather than to help
dealing with large data traces originating from remote ma-
chine experiments. Having large Git repositories of several
GB does not hinder daily committing, but can significantly
slow down pull and checkout operations of branches com-
prising a huge number of data sets (typically data and art#
branches).

It is still unclear how this approach would scale for multi-
ple users working simultaneously, doing code modifications
and experiments in parallel. In theory, it should work if ev-
eryone has sufficient experience of the tools and workflow,
but we have never tried it with more than two persons. An-
other interesting feature that we have not yet experienced is
collaboration with external users. These researchers could
clone our project, work on it on their own, try to reproduce
the results and build upon our work, potentially improv-
ing the code and contribute data sets back. Even though
such utilization should work smoothly, there could be some
pitfalls that we have not anticipated yet.

One could also ask the question of whether providing so
much information is of any interest as too much information
may make the most important things harder to distinguish.
Regardless of the answer to this question, we believe anyway
that beyond the actual experimental content of our open
laboratory notebook, its structure and the techniques we
used to keep track of information or to make analysis could
be useful to others.

In the near future, we plan to write several simple scripts
that will completely automate our workflow. These scripts
will be packaged and available on the debian Linux system,
in the same way as the git-flow approach for software devel-
opment, only this time for managing experimental research.

Although, our methodology is undoubtedly improvable
and there are several alternatives, we nonetheless found it
very fast and efficient for a daily usage and extremely ben-
eficial to our work. We can only encourage people to build
on such simple workflows to conduct their own studies, as it
is a very effective way to conduct a reproducible research.

7. REFERENCES

[1] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacre-
nier. StarPU: A Unified Platform for Task Schedul-
ing on Heterogeneous Multicore Architectures. Con-
currency and Computation: Practice and Fxperience,
23:187-198, Feb. 2011.

[2] T. Buchert, L. Nussbaum, and J. Gustedt. A workflow-
inspired, modular and robust approach to experiments
in distributed systems. Research Report RR-8404, IN-

3]

[4]

[5]

(6]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

RIA, Nov. 2013.

H. Casanova, A. Giersch, A. Legrand, M. Quinson, and
F. Suter. Versatile, Scalable, and Accurate Simulation
of Distributed Applications and Platforms. Journal of
Parallel and Distributed Computing, 74(10):2899-2917,
June 2014.

C. Drummond. Replicability is not reproducibility: Nor
is it good science. In Proceedings of the Fvaluation
Methods for Machine Learning Workshop at the 26th
ICML, 2009.

K. Hinsen. A data and code model for reproducible re-
search and executable papers. Procedia Computer Sci-
ence, 4(0):579 — 588, 2011. Proceedings of the Interna-
tional Conference on Computational Science.

M. Imbert, L. Pouilloux, J. Rouzaud-Cornabas,
A. Lebre, and T. Hirofuchi. Using the EXECO tool-
box to perform automatic and reproducible cloud ex-
periments. In 1st International Workshop on UsiNg and
building ClOud Testbeds (UNICO, collocated with IEEE
CloudCom 2013), Sept. 2013.

J. Mirkovic, T. B. S. Schwab, J. Wroclawski, T. Faber,
and B. Braden. The DETER Project: Advancing the
Science of Cyber Security Experimentation and Test. In
Proceedings of the IEEE Homeland Security Technolo-
gies Conference (IEEE HST), 2010.

T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.
Sweeney. Producing wrong data without doing any-
thing obviously wrong! In Proceedings of the 14th Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
XIV, pages 265-276. ACM, 2009.

C. Ruiz, O. Richard, and J. Emeras. Reproducible soft-
ware appliances for experimentation. In Proceedings of
the 9th International ICST Conference on Testbeds and
Research Infrastructures for the Development of Net-
works and Communities (Tridentcom), 2014.

C. C. Ruiz Sanabria, O. Richard, B. Videau, and
I. Oleg. Managing large scale experiments in distributed
testbeds. In Proceedings of the 11th IASTED Interna-
tional Conference. ACTA Press, 2013.

E. Schulte, D. Davison, T. Dye, and C. Dominik. A
multi-language computing environment for literate pro-
gramming and reproducible research. Journal of Statis-
tical Software, 46(3):1-24, 1 2012.

L. Stanisic, S. Thibault, A. Legrand, B. Videau, and
J.-F. Méhaut. Modeling and Simulation of a Dynamic
Task-Based Runtime System for Heterogeneous Multi-
Core Architectures. In Proceedings of the 20th Euro-Par
Conference. Springer-Verlag, Aug. 2014.

L. Stanisic, B. Videau, J. Cronsioe, A. Degomme,
V. Marangozova-Martin, A. Legrand, and J.-F.
Méhaut. Performance analysis of hpc applications on
low-power embedded platforms. In Proceedings of the
Conference on Design, Automation and Test in Europe,
DATE ’13, pages 475-480. EDA Consortium, 2013.

V. Stodden, F. Leisch, and R. D. Peng, editors. Imple-
menting Reproducible Research. The R Series. Chapman
and Hall/CRC, Apr. 2014.

Companion of the StarPU+SimGrid article. Hosted
on Figshare: http://dx.doi.org/10.6084 /m9.figshare.
928338, 2014. Online version of [12] with access to the
experimental data and scripts (in the org source).

http://dx.doi.org/10.6084/m9.figshare.928338
http://dx.doi.org/10.6084/m9.figshare.928338

	Introduction
	Motivation and Use Case Description
	Case Study #1: Modeling and Simulating Dynamic Task-Based Runtimes
	Case Study #2: Studying the Performance of CPU Caches

	Related Work
	A Git and Org-mode based Workflow
	Git Branching Structure
	Using Org-mode for Improving Reproducible Research
	Environment Capture
	Laboratory Notebook
	Using Literate Programming for Conducting Experiments

	Git Workflow in Action
	Managing Experiments with Git
	Reproducing Experiments
	Fixing Code
	Making Transversal Analysis
	Writing Reproducible Articles

	Publishing Results
	The Partially Opened Approach with Figshare Hosting
	The Completely Open Approach with Public Git Hosting

	Conclusion
	References

