J. D. Banfield and A. E. Raftery, Model-Based Gaussian and Non-Gaussian Clustering, Biometrics, vol.49, issue.3, pp.803-821, 1993.
DOI : 10.2307/2532201

J. Baudry, Sélection de modèle pour la classification non supervisée. Choix du nombre de classes, 2009.

J. Baudry, C. Maugis, M. , and B. , Slope heuristics: overview and implementation, Statistics and Computing, vol.6, issue.2, pp.455-470, 2011.
DOI : 10.1007/s11222-011-9236-1

URL : https://hal.archives-ouvertes.fr/hal-00461639

A. Berchtold, Optimization of Mixture Models: Comparison of Different Strategies, Computational Statistics, vol.62, issue.3, pp.385-406, 2004.
DOI : 10.1111/1467-9868.00222

C. Biernacki, G. Celeux, and G. Govaert, Assessing a mixture model for clustering with the integrated completed likelihood, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.7, pp.719-725, 2000.
DOI : 10.1109/34.865189

C. Biernacki, G. Celeux, and G. Govaert, Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models, Computational Statistics & Data Analysis, vol.41, issue.3-4, pp.561-575, 2003.
DOI : 10.1016/S0167-9473(02)00163-9

L. Birgé and P. Massart, Minimal penalties for Gaussian model selection . Probability Theory and Related Fields, pp.33-73, 2007.

G. Celeux and G. Govaert, A classification EM algorithm for clustering and two stochastic versions, Computational Statistics & Data Analysis, vol.14, issue.3, pp.315-332, 1992.
DOI : 10.1016/0167-9473(92)90042-E

URL : https://hal.archives-ouvertes.fr/inria-00075196

G. Celeux and G. Govaert, Gaussian parsimonious clustering models, Pattern Recognition, vol.28, issue.5, pp.781-793, 1995.
DOI : 10.1016/0031-3203(94)00125-6

URL : https://hal.archives-ouvertes.fr/inria-00074643

G. Ciuperca, A. Ridolfi, and J. Idier, Penalized Maximum Likelihood Estimator for Normal Mixtures, Scandinavian Journal of Statistics, vol.20, issue.1, pp.45-59, 2003.
DOI : 10.1109/34.730550

A. P. Dempster, N. M. Laird, R. , and D. B. , Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society. Series B (Methodological), vol.39, issue.1, pp.1-38, 1977.

C. Fraley, A. Raftery, and R. J. Wehrens, Incremental Model-Based Clustering for Large Datasets With Small Clusters, Journal of Computational and Graphical Statistics, vol.14, issue.3, pp.529-546, 2005.
DOI : 10.1198/106186005X59603

C. Fraley and A. E. Raftery, Model-Based Clustering, Discriminant Analysis, and Density Estimation, Journal of the American Statistical Association, vol.97, issue.458, pp.611-631, 2002.
DOI : 10.1198/016214502760047131

C. Fraley and A. E. Raftery, Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering, Journal of Classification, vol.24, issue.2, pp.155-181, 2007.
DOI : 10.1007/s00357-007-0004-5

A. C. Frazee, ReCount: A multi-experiment resource of analysis-ready RNA-seq gene count datasets, BMC Bioinformatics, vol.12, issue.1, p.12, 2011.
DOI : 10.1038/ng1955

B. R. Graveley, The developmental transcriptome of Drosophila melanogaster, Nature, vol.31, issue.7339, pp.473-479, 2011.
DOI : 10.1038/nature09715

C. Keribin, Consistent estimation of the order of mixture models, Sankhya A, vol.62, issue.1, pp.49-66, 2000.

G. Mclachlan and T. Krishnan, The EM Algorithm and Extensions, Second Edition, 2008.

G. J. Mclachlan and D. Peel, Finite Mixture Models, 2000.
DOI : 10.1002/0471721182

P. Papastamoulis, M. Martin-magniette, and C. Maugis-rabusseau, On the estimation of mixtures of Poisson regression models with large number of components, Computational Statistics & Data Analysis, vol.93, 2014.
DOI : 10.1016/j.csda.2014.07.005

D. Pelleg and A. W. Moore, X-means: Extending k-means with efficient estimation of the number of clusters, pp.727-734, 2000.

A. Rau, C. Maugis-rabusseau, M. Martin-magniette, C. , and G. , Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models, Bioinformatics, vol.31, issue.9, 2015.
DOI : 10.1093/bioinformatics/btu845

URL : https://hal.archives-ouvertes.fr/hal-01108821

K. Roeder and L. Wasserman, Practical Bayesian Density Estimation Using Mixtures of Normals, Journal of the American Statistical Association, vol.22, issue.439, pp.894-902, 1997.
DOI : 10.1080/01621459.1997.10474044

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136