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Abstract

We describe algorithms and implementations for linear algebra with dense matrices over F2e for 2 ≤ e ≤ 10. Our

main contributions are: (1) a specialisation of precomputation tables to F2e , called Newton-John tables in this work,

to avoid scalar multiplications in Gaussian elimination and matrix multiplication, (2) an efficient implementation of

Karatsuba-style multiplication for matrices over extension fields of F2 and (3) a description of an open-source library

– called M4RIE – providing the fastest known implementation of dense linear algebra over F2e with 2 ≤ e ≤ 10.

1 Introduction

Linear algebra over small finite fields has many direct applications, such as cryptography and coding theory. Other

applications include efficient linear algebra over the rationals, e.g., by reducing such computations to a series of

computations modulo small primes, and solving non-linear systems of equations using Gröbner bases [19]. For the

latter recent work has emphasised that the right choice of linear algebra algorithms and implementations can make a

significant impact on the performance of Gröbner basis algorithms [13]. Furthermore, dense linear algebra over finite

extension fields Fpk can be used to achieve asymptotically fast matrix-matrix multiplication of dense matrices over

Fp[x] which in turn has applications such as the Block Wiedemann algorithm for sparse matrices [15].

Compared to other small finite fields, those with even characteristic have some special properties which make

them a prominent choice for designing cryptographic and coding systems – cf., the AES [10] as a prime example. For

instance, addition is simply XOR and is hence natively available on modern CPUs, the same cannot be said for other

small finite fields. Yet, this family of finite fields has not received much attention in the literature on linear algebra.

That the current state of the art in the literature leaves something to be desired can be observed from the following

simple benchmark: multiplying two random 1, 000× 1, 000 matrices over F4 on a 2.66 Ghz Intel i7 CPU takes 210ms

using GAP 4.4.12 [14], 460ms using LinBox/ FFLAS-FFPACK [12], or even 85s and 97s using NTL 5.4.2 [21] and

Sage [23] respectively. For comparison, the closed source system Magma [8] can multiply two dense 1, 000× 1, 000
matrices over F4 in 13ms and the same operation over F2 takes 1.7ms using the M4RI library [3].

In this work, we present the M4RIE library which implements efficient algorithms for linear algebra with dense

matrices over F2e for 2 ≤ e ≤ 10.1 As the name of the library indicates, it makes heavy use of the M4RI library

[2] both directly (i.e., by calling it) and indirectly (i.e., by using its concepts). The contributions of this work are as

follows. We provide an open-source GPLv2+ C library for efficient linear algebra over F2e with 2 ≤ e ≤ 10. In this

library we implemented an idea due to Bradshaw and Boothby [7] which reduces matrix multiplication over Fpn to

a series of matrix multiplications over Fp. Furthermore, we propose a caching technique – Newton-John tables – to

avoid finite field multiplications which is inspired by Kronrod’s method (“M4RM”) [5, 1] for matrix multiplication

1Future versions will support e ≤ 16.
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over F2. Using these two techniques we provide asymptotically fast triangular solving with matrices (TRSM) and

PLE-based [17] Gaussian elimination. As a result, we are able to significantly improve upon the state of the art in

dense linear algebra over F2e with 2 ≤ e ≤ 10. The example mentioned above is completed in 5.5ms by our library.

2 Notation

We represent elements in F2e
∼= F2[x]/〈f〉, with f ∈ F2[x], deg(f) = e and f irreducible, as polynomials

∑e−1

i=0 aix
i

or as coefficient vectors (ae−1, . . . , a0) where ai ∈ F2. We sometimes identify the coefficient vector (ae−1, . . . , a0)

with the integer
∑e−1

i=0 ai2
i, e.g., when indexing tables by finite field elements. By α we denote some root of the

primitive polynomial f of F2e . By Ai we denote the i-th row of the matrix A and by Ai,j the entry in row i and

column j of A. We start counting at zero. We represent permutation matrices as LAPACK-style permutation vectors.

That is to say that for example the permutation matrix




1 0 0
0 0 1
0 1 0





is stored as P = [0, 2, 2], where for each index i the entry Pi encodes which (row or column) swap is to be performed

on the input matrix. In the given example, we would swap row/column 0 with row/column 0 (identity operation),

row/column 1 with row/column 2, and finally row/column 2 with row/column 2 (identity operation). This allows to

apply permutations in-place.

3 Previous implementations

To demonstrate the viability of our approach we compare our implementation with previous implementations. In

particular, we compare with GAP, LinBox/FFLAS-FFPACK and Magma, as these are the fastest known previous

works. Below, we give a brief overview of algorithmic and implementation choices in these libraries.

GAP [14] packs finite field elements of size 2 < s ≤ 28 into words using 8 bits per entry. Arithmetic is implemented

using table look ups. Multiplication is performed using cubic matrix multiplication. Row echelon forms are computed

using cubic Gaussian elimination.

LinBox/FFLAS-FFPACK [12] uses floating point numbers to represent finite field elements. For extension fields,

elements are represented as “sparse” integers, such that there are sufficient zeroes between two coefficients to avoid

the carry travelling too far [11]. This feature is experimental and requires some patching [4]. FFLAS-FFPACK imple-

ments Strassen-Winograd multiplication as well as asymptotically fast LQUP decomposition for Gaussian elimination.

However, these features do not currently work with characteristic two [4].

Magma [8] implements asymptotically fast matrix multiplication and reduces Gaussian elimination to LQUP decom-

position. For F2k with 2 ≤ k ≤ 4 a bit-sliced representation similar to our mzd slice t is used in combination with

Karatsuba-like formulas for polynomial multiplication. For 5 ≤ k ≤ 20 elements in F2k are represented using Zech

logarithms. For larger k a packed polynomial representation is used similar to our mzed t [22].

In summary, only Magma offers a dedicated implementation for F2e , but only for e ≤ 4.

4 Matrix representation

The M4RIE library features two matrix types, each of which is optimised for certain operations. Both representations

use one or more M4RI matrices as data storage and hence re-use M4RI’s matrix window concept [1], allocation

routines and data structures.

4.1 packed: mzed t

Considering the polynomial representation of elements in F2e , we may bit-pack several such elements in one machine

word. Since we are using the M4RI library as actual data storage, this means that words hold 64 bits [1]. Hence,
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the mzed t data type packs elements of F2e in 64-bit words. However, instead of packing as many elements as

possible into one word, every element is padded to the next length dividing 64. Thus, for example, elements in F32

are represented as polynomials of degree 8 where the top three coefficients are always zero. While this wastes some

storage space and CPU time, it allows for more compact code by reducing what cases have to be considered. The

second row of Figure 1 gives an example.

In this representation additions are very cheap since we can disregard any element boundaries and simply call

M4RI’s addition routines. Scalar multiplication, on the other hand, is much more expensive. Either we perform a table

look-up for each element or we perform bit operations on words which perform multiplication and modular reduction

in parallel on all elements of a word. In either case, multiplication is considerably more expensive than addition.

4.2 sliced: mzd slice t

Instead of representing matrices over F2e as matrices over polynomials we may represent them as polynomials with

matrix coefficients. That is, for each degree we store matrices over F2 which hold the coefficients for this degree.

Hence, the data type mzd slice t for matrices over F2e internally stores e-tuples of matrices over F2 as implemented

by the M4RI library. We call each M4RI matrix for some degree i a slice and refer to the operation converting from

mzed t to mzd slice t as slicing. The inverse operation is called clinging. The third row of Figure 1 gives an

example of the mzd slice t representation.

Addition is performed by adding each slice independently and is thus quite efficient. Scalar multiplication, on the

other hand, has to rely on similar techniques as in mzed t. Thus, here too, scalar multiplication is more expensive

than addition.

Hence, in this work, we present algorithms for matrix multiplication and elimination where we avoid many scalar

multiplications.

A =

(

α2 + 1 α
α+ 1 1

)

=

[

�101 �010
�011 �001

]

=

([

1 0
0 0

]

,

[

0 1
1 0

]

,

[

1 0
1 1

])

Figure 1: a 2× 2 matrix over F8

4.3 Conversion

Since we convert between the two representations during the course of our algorithms, these conversion must be

sufficiently efficient to not become a bottleneck. In our implementation we use a series of bitshifts and bitmasks

to convert between our representations. As an example, consider the following 8-bit word which holds elements

ai,1x+ ai,0 of F4 in bit-packed representation:

a = [a3,1, a3,0, a2,1, a2,0, a1,1, a1,0, a0,1, a0,0].

We compute:

a0 = (a & 01010101)<<1;

a1 = (a0 & 11001100) | (a0 & 00110011)<<1;

a2 = (a1 & 11110000) | (a1 & 00001111)<<2;
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which produces

a0 = [a3,0, 0, a2,0, 0, a1,0, 0, a0,0, 0],

a1 = [a3,0, a2,0, 0, 0, a1,0, a0,0, 0, 0], and

a2 = [a3,0, a2,0, a1,0, a0,0, 0, 0, 0, 0].

and hence the leftmost bits of the bit-sliced representation of a. We produce the remaining bits and words in the same

fashion.

5 Newton-John tables and applications

First, we consider the bit-packed representation mzed t and introduce the notion and key idea of Newton-John tables,

which are essentially precomputation tables specialised for F2e . To explain the main idea consider matrix multiplica-

tion as given in Algorithm 1.

Algorithm 1: Cubic matrix multiplication

Input: A – m× ℓ matrix

Input: B – ℓ× n matrix

Output: C = A ·B
1 begin

2 for 0 ≤ i < m do

3 for 0 ≤ j < ℓ do

4 Cj ← Cj +Aj,i ×Bi;

5 return C;

This algorithm uses m · ℓ ·n finite field multiplications and the same number of additions. That is, in line 4 the row

Bi is scaled by Aj,i and then added to the row Cj . Observe that Bi is rescaled ℓ-times, while there are 2e different

values for Aj,i and hence multiples of Bi. Indeed, if 2e < ℓ it is advantageous to precompute all possible 2e multiples

of Bi and to store these multiples in a table indexed by finite field elements. These precomputation tables are quite

similar to Kronrod’s method for matrix multiplication, also sometimes referred to as “greasing”. Hence, we call these

tables Newton-John tables to honour Olivia Newton-John’s work in [18].

We also note that we create these tables in less than 2e multiplications. That is, we first compute αi · Bi for all

0 ≤ i < e. Then, we compute each multiple of Bi as a linear combination of (α0 · Bi, . . . α
e−1 · Bi) which we just

computed. Using Gray codes for the addition step we can thus construct all 2e multiples using 2e additions [16] (this

can be improved to 2e − e easily). The subroutine creating these tables is given in Algorithm 2.

The complete algorithm is given in Algorithm 3 which costs m · (2e+ ℓ) ·n additions and m · e ·n multiplications.

Note that e is a constant here and asymptotically we thus achieve O
(

n3
)

additions and O
(

n2
)

multiplications. Since

additions are much cheaper than multiplications, this leads to considerable performance gains.

Many variants of this basic algorithm are possible. For instance, we may use more than one Newton-John table

or process the data in blocks for better cache friendliness (cf., [1] for both techniques). Furthermore, if 2e is too big

to precompute T we may precompute only M (cf., Algorithm 2) and perform e additions in line 6. Conversely, if

2e is very small, we may combine Newton-John tables with Kronrod’s method to reduce the number of additions to

O
(

n3/ log n
)

. Our library uses eight Newton-John tables and processes matrices in blocks that fit into L2 cache. Since

e is small we always compute the full table T . However, we did not implement Kronrod’s method yet.

Table 1 lists CPU times multiplying two 1, 000 × 1, 000 matrices in our implementation of Newton-John mul-

tiplication, in Magma, GAP and LinBox (cf., Section 3 for a brief discussion of Magma’s, GAP’s and LinBox’s

implementations). Note that the hex string in the header of the last column indicates which revision of the public

source code repository2 was used to produce these times.

2cf., https://bitbucket.org/m4rie.
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Algorithm 2: MAKETABLE

Input: B – an 1× n matrix

Output: T – a 2e × n matrix with each row a multiple of B
1 begin

2 M ← e× n matrix;

3 T ← 2e × n matrix;

4 for 0 ≤ k < e do

5 Mk ← αk ·B;

6 T ← all linear combinations of rows of M ;

7 return T ;

Algorithm 3: Newton-John multiplication

Input: A – m× ℓ matrix

Input: B – ℓ× n matrix

Output: C = A ·B
1 begin

2 for 0 ≤ i < m do

3 T ← MAKETABLE(Bi);

4 for 0 ≤ j < ℓ do

5 x← Aj,i as an integer;

6 Cj ← Cj + Tx;

7 return C;

Of course, this algorithm is not asymptotically fast. Hence, we only use it as a base case for the Strassen-Winograd

algorithm [24] for matrix multiplication which has complexityO
(

nlog
2
7
)

. In our implementation we cross over to the

base case roughly when the submatrices fit into L2 cache; however, the exact value depends on the size of the finite

field. For the machine used to produce all timing results in this paper, the crossover dimensions are 2608 for e = 2,

1773 for e ≤ 8, and 1254 for e ≤ 16. Table 3 lists timings for Strassen-Winograd multiplication on top of Newton-John

tables (abbreviated as “S-W/N-J”) in comparison with other implementations. However, in our implementation, as

Karatsuba-based matrix multiplication is always faster, we only use Strassen-Winograd in combination with Newton-

John tables by default where Karatsuba is not implemented (currently, e > 8).

Instead, the main application of Newton-John tables in our implementation is Gaussian elimination and PLE

decomposition.

5.1 Gaussian elimination

Newton-John tables can also be used in Gaussian elimination, as shown in Algorithm 4. This algorithm uses r · (n+
2e) · n additions and r · (e + 1) · n multiplications, which gives an asymptotic complexity of O

(

n3
)

additions and

O
(

n2
)

multiplications. Again, a variety of variants are possible such as multiple Newton-John tables (similar to [1]).

Our implementation uses six Newton-John tables.

In Table 2 we give CPU times for computing the reduced row echelon form of random 1, 000 × 1, 000 matrices

over F2e in Magma, GAP and our implementation. Note that GAP’s SemiEchelonMat command does not compute

the reduced row echelon form. Hence, to normalise the data we multiplied all GAP timings in Table 2 by two.

We note that there is a considerable jump between e = 8 and e = 9 due to our bit-packed matrix representation:

Elements of F29 take up 16 bits, while elements of F28 only take up 8 bits (cf. Section 4.1). It is future work to reduce

this jump to a factor of 2 from the current factor 5.
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e Magma GAP LinBox Newton-John

2.15-10 4.4.12 svn 20111216 6b24b839a46f

2 0.013s 0.216s 0.468s 0.012s

3 0.036s 0.592s 0.480s 0.020s

4 0.074s 0.588s 0.760s 0.022s

5 1.276s 1.568s 1.932s 0.048s

6 1.286s 1.356s 3.532s 0.059s

7 1.316s 1.276s 3.884s 0.082s

8 1.842s 1.328s – 0.160s

9 3.985s 64.700s – 0.626s

10 4.160s 59.131s – 1.080s

Table 1: Multiplication of 1, 000× 1, 000 matrices on 2.66 Ghz Intel i7

5.2 PLE decomposition

Algorithm 4 can be modified to compute the PLE decomposition instead of the row echelon form. Since this definition

is lesser well-known we reproduce it below. For a more detailed treatment of PLE decomposition see [17].

Definition 1 (PLE) Let A be a m × n matrix over a field K. A PLE decomposition of A is a triple of matrices P,L
and E such that P is a m ×m permutation matrix, L is a unit lower triangular matrix, and E is a m × n matrix in

row-echelon form, and A = PLE.

Lemma 1 ([17]) For a PLE decomposition of any m× n matrix A, the factors L and E can be stored in-place in A.

For the sake of simplicity, we compute a minor variant of PLE in our library. That is, L is not necessarily unit

lower triangular, i.e., we do rescale the pivot row to get leading entry 1. Then, the changes necessary for Algorithm 4

to compute this variant of PLE decomposition are:

• Store i and j in two vectors P and Q in line 6;

• only start addition in column j + 1 in line 13 in order to preserve L below the main diagonal;

• only eliminate below the pivot (k > r);

• perform column swaps below and on the main diagonal right before line 16 to compress L.

Note that we can also recover this algorithm by considering block iterative PLE decomposition [3] with multipli-

cation updates to the right hand side based on Newton-John tables. We remark that currently our implementation of

Newton-John-based PLE decomposition only uses one Newton-John table. Increasing this number should improve

performance and is future work.

Also, this algorithm is neither asymptotically fast nor in-place since it has cubic complexity and requires O(n)
storage to hold the table T . Hence its main application is as a base case for asymptotically fast PLE decomposition

[17] which reduces PLE decomposition to matrix multiplication. If the crossover dimension – when the asymptoti-

cally fast algorithm switches over to PLE decomposition based on Algorithm 4 – does not depend on n like in our

implementation, then the overall algorithm is both asymptotically fast and in-place. However, one last building block

is needed to implement asymptotically fast PLE decomposition: triangular system solving.

5.3 TRiangular Solving with Matrices

Triangular system solving with matrices can also be achieved using Newton-John tables. As an example, we given an

algorithm for solving X = U−1 · B with U upper triangular in Algorithm 5. We note that Algorithm 5 is essentially

block iterative TRSM with Newton-John table based multiplication. Yet, we present it here for completeness.
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Algorithm 4: Newton-John Gauss elimination

Input: A – m× n matrix

Output: r – the rank of A
Result: A is in reduced row echelon form

1 begin

2 r ← 0;

3 for 0 ≤ j < n do

4 for r ≤ i < m do

5 if Ai,j 6= 0 then

6 Ai ← A−1
i,j ·Ai;

7 swap the rows i and r in A;

8 T ← MAKETABLE(Ar);

9 for 0 ≤ k < m do

10 if k = r then continue;

11 ;

12 x← Ak,j as an integer;

13 Ak ← Ak + Tx;

14 r ← r + 1;

15 break;

16 return r;

6 Karatsuba multiplication

Recall that mzd slice t represents matrices over F2e as polynomials with matrices over F2 as coefficients. Using

this representation, matrix multiplication then can be accomplished by performing polynomial multiplication and

subsequent modular reduction. For example, assume we want to compute C = A ·B where A and B are over F4. We

rewrite A as A1x + A0 and B as B1x + B0, the product is then C̃ = A1B1x
2 + (A1B0 + A0B1)x + A0B0 which

reduces to C = (A1B1 + A1B0 + A0B1)x + A0B0 + A1B1 modulo the primitive polynomial f = x2 + x + 1 of

F4. Hence, matrix multiplication over F2e can be reduced to matrix multiplication and addition over F2. Using naive

polynomial arithmetic we get that matrix multiplication over F2e costs e2 matrix multiplications over F2. However,

using Karatsuba polynomial multiplication we can reduce this to elog2
3 ≈ e1.584. To get back to the above example,

we can rewrite it as C = ((A1 +A0)(B1 +B0) +A0B0)x+A0B0 +A1B1 and hence multiplication costs 3 instead

of 4 multiplications over F2. This was first explicitly proposed for matrices over Fpn by Bradshaw and Boothby in

[7]. However, this technique has been used for linear algebra over F2k with 2 ≤ k ≤ 4 in Magma for some time [22]

and seems to be folklore among some researchers.

In our implementation we use [20] for Karatsuba-like formulas up to degree e = 8. Concrete costs are given

in Table 3 where the first column lists the CPU time for multiplying two 4, 000 × 4, 000 matrices using Strassen-

Winograd on top of Newton-John multiplication. The column “(S-W/N-J)/M4RI” indicates how many 4, 000× 4, 000
matrix multiplications over F2 can be achieved in the same time using the M4RI library (this time is given in row

e = 1). The column “naive” lists how many multiplications would be needed by naive polynomial multiplication. The

column “[20]” lists the best known complexity for Karatsuba-like formulas. The absolute time of our Karatsuba-like

implementation is given in the column “Bit-slice”. The last column shows the number of multiplications which our

Karatsuba-like implementation actually achieves. That is, it divides the column “Bit-slice” by the column “Bit-slice”

for e = 1 which simply holds the M4RI time. Finally, Table 3 also compares our implementation with the previous

two best implementations GAP and Magma.

We remark that our implementation makes use of M4RI’s matrix-matrix multiplication routines which implement

Strassen-Winograd on top of Kronrod’s method also known as the “Method of Four Russians” [1]. Hence, Karatsuba-

based matrix multiplication is also asymptotically fast with respect to n.
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e Magma GAP Newton-John

2.15-10 4.4.12 6b24b839a46f

2 0.028s 0.184s 0.012s

3 0.045s 0.496s 0.019s

4 0.054s 0.560s 0.022s

5 0.690s 1.224s 0.042s

6 0.670s 1.168s 0.048s

7 0.700s 1.104s 0.060s

8 0.866s 1.136s 0.081s

9 1.523s 35.634s 0.427s

10 1.540s 36.154s 0.831s

Table 2: Elimination of 1, 000× 1, 000 matrices on 2.66 Ghz Intel i7

Algorithm 5: Newton-John TRSM upper left

Input: U – m×m upper triangular matrix

Input: B – m× n matrix

Result: X = U−1 ·B is stored in B
1 begin

2 for m > i ≥ 0 do

3 Bi ← U−1
i,i ·Bi;

4 T ← MAKETABLE(Bi);

5 for 0 ≤ j < i do

6 x← Uj,i;

7 Bj ← Bj + Tx;

However, we note that Karatsuba based multiplication needs more memory than Strassen on top of Newton-

John multiplication. Our implementation uses three temporary matrices over F2. We finish this section by pointing

out in principle more efficient polynomial multiplication algorithms than Karatsuba can be applied (cf., [9, 6] for a

discussions dedicated to F2[x] and F2e ). We leave this as an open problem for future work.

e Magma GAP S-W/N-J Bit-slice (S-W/N-J)/ naive [20] Bit-slice/

2.15-10 4.4.12 M4RI M4RI

1 0.100s 0.244s – 0.071s 1 1 1 1.0

2 1.220s 12.501s 0.630s 0.224s 8.8 4 3 3.1

3 2.020s 35.986s 1.480s 0.448s 20.8 9 6 6.3

4 5.630s 39.330s 1.644s 0.693s 23.1 16 9 9.7

5 94.740s 86.517s 3.766s 1.005s 53.0 25 13 14.2

6 89.800s 85.525s 4.339s 1.336s 61.1 36 17 18.8

7 82.770s 83.597s 6.627s 1.639s 93.3 49 22 23.1

8 104.680s 83.802s 10.170s 2.140s 143.2 64 27 30.1

Table 3: Multiplication of 4, 000× 4, 000 matrices over F2e on 2.66 Ghz Intel i7.

7 Echelon Forms

Putting the building blocks

(1) Karatsuba multiplication,
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(2) Newton-John-based PLE decomposition,

(3) asymptotically-fast PLE decomposition,

(4) Newton-John based TRSM and

(5) asymptotically-fast TRSM,

together we can construct asymptotically fast Gaussian elimination, i.e.., computation of (reduced) row echelon forms

(cf., [17]). Our implementation uses mzd slice t as representation for large matrices and switches over to mzed t

roughly when the submatrix currently considered fits into L2 cache (matrix dimension 3547 for e = 2, 2508 for e < 4,

and 1773 for e < 8). Table 4 lists CPU times for computing the (reduced) row echelon form using Magma (reduced),

GAP (not reduced) and our implementation (reduced). We also list running times for LinBox mod p (reduced) where

p is the largest prime smaller than 2e. Note that currently our implementation only implements asymptotically fast

PLE decomposition up to e = 8, for e ∈ {9, 10} Newton-John table based Gaussian elimination is used. Comparing

our implementation with LinBox mod p demonstrates clearly, that in order to be competitive we need to extend

asymptotically fast PLE decomposition to e > 8.

e Magma GAP LinBox M4RIE

2.15-10 4.4.12 (mod p) 1.1.6 6b24b839a46f

2 6.04s 162.65s 49.52s 3.31s

3 14.47s 442.52s 49.92s 5.33s

4 60.37s 502.67s 50.91s 6.33s

5 659.03s N/A 51.20s 10.51s

6 685.46s N/A 51.61s 13.08s

7 671.88s N/A 53.94s 17.29s

8 840.22s N/A 64.24s 20.25s

9 1630.38s N/A 76.18s 260.77s

10 1631.35s N/A 76.45s 291.30s

Table 4: Elimination of 10, 000× 10, 000 matrices on 2.66 Ghz Intel i7
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Additional Timings

Tables 5 and Table 6 contain additional timings for matrix multiplication ane Gaussian elimination over F2e on a

2.66 Ghz Intel i7 machine. Both tables also list the CPU cycles needed on average divided by n2.807. On the one hand,

this shows that the implementations indeed achievesO
(

n2.807
)

. On the other hand, this shows that our implementation

of Gaussian elimination is not as efficient as our implementation of matrix multiplication: the leading constant is 6
for multiplication and 2.8 for PLE decomposition [17]. Hence, we would expect a ratio of ≈ 2 between Table 5 and

Table 6. Since the observed ratio is smaller than this, we can expect further performance gains by improving the

Newton-John table-based PLE base case.
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Proceedings of the 4th International Workshop on Parallel and Symbolic Computation, pages 89–97, 2010.

[14] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4.12, 2007.

[15] P. Giorgi, C.-P. Jeannerod, and G. Villard. On the complexity of polynomial matrix computations. In ISSAC ’03:

Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pages 135–142.

ACM Press, 2003.

[16] F. Gray. Pulse code communication, March 1953. US Patent No. 2,632,058.

[17] C.-P. Jeannerod, C. Pernet, and A. Storjohann. Rank-profile revealing Gaussian elimination and the CUP matrix

decomposition. arXiv:1112.5717, page 35 pages, 2012.

[18] R. Kleiser, J. Travolta, O. Newton-John, J. Jacobs, W. Casey, B. Woodard, and A. Carr. Grease. Paramount

Pictures, 1978.

[19] D. Lazard. Gröbner-bases, Gaussian elimination and resolution of systems of algebraic equations. In Proceedings

of the European Computer Algebra Conference on Computer Algebra, volume 162 of Lecture Notes in Computer

Science, Berlin, Heidelberg, New York, 1983. Springer Verlag.

[20] P. L. Montgomery. Five, six, and seven-term Karatsuba-like formulae. IEEE Trans. on Computers, 53(3):362–

369, 2005.

11



[21] V. Shoup. NTL. http://www.shoup.net/ntl/, 2009. version 5.4.2.

[22] A. Steel. Private communication. 29. November, 2011.

[23] W. Stein et al. Sage Mathematics Software (Version 4.7.1). The Sage Development Team, 2011.

http://www.sagemath.org.

[24] V. Strassen. Gaussian elimination is not optimal. Nummerische Mathematik, 13:354–256, 1969.

12


