J. M. Baker, L. Deng, J. Glass, S. Khudanpur, C. Lee et al., Developments and directions in speech recognition and understanding, Part 1 [DSP Education], IEEE Signal Processing Magazine, vol.26, issue.3, pp.75-80, 2009.
DOI : 10.1109/MSP.2009.932166

L. Deng, Front-end, back-end, and hybrid techniques for noise-robust speech recognition, " in Robust Speech Recognition of Uncertain or Missing Data -Theory and Applications, pp.67-99, 2011.

M. Gales, Model based techniques for noise robust speech regcognition, 1995.

Y. Ephraim and D. Malah, Speech enhancement using a minimum mean-square error short-time spectral amppitude estimator, IEEE Transactions on Audio, Speech, and Language Processing, vol.32, issue.6, pp.1109-1121, 1984.

C. Kim and R. Stern, Power-normalized cepstral coefficients (PNCC) for robust speech recognition, Proc. Interspeech, pp.1231-1234, 2009.

J. Du and Q. Huo, A feature compensation approach using high-order Vector Taylor Series approximation of an explicit distortion model for noisy speech recognition, IEEE Transactions on Audio, Speech, and Language Processing, vol.19, issue.8, pp.2285-2293, 2011.

J. Du, Q. Wang, T. Gao, Y. Xu, L. R. Dai et al., Robust speech recognition with speech enhanced deep neural networks, Proc. Interspeech, pp.616-620, 2014.

L. Deng, A. Acero, M. Plumpe, and X. D. Huang, Large vocabulary speech recognition under adverse acoustic environments, Proc. ICSLP, pp.806-809, 2000.

M. Cooke, Robust automatic speech recognition with missing and unreliable acoustic data, Speech Communication, vol.34, issue.3, pp.267-285, 2001.
DOI : 10.1016/S0167-6393(00)00034-0

H. Liao and M. J. Gales, Adaptive Training with Joint Uncertainty Decoding for Robust Recognition of Noisy Data, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '07, pp.389-392, 2007.
DOI : 10.1109/ICASSP.2007.366931

L. Deng, J. Wu, J. Droppo, and A. Acero, Dynamic compensation of HMM variances using the feature enhancement uncertainty computed from a parametric model of speech distortion, IEEE Transactions on Speech and Audio Processing, vol.13, issue.3, pp.412-421, 2005.
DOI : 10.1109/TSA.2005.845814

M. Delcroix, T. Nakatani, and S. Watanabe, Static and Dynamic Variance Compensation for Recognition of Reverberant Speech With Dereverberation Preprocessing, IEEE Transactions on Audio, Speech, and Language Processing, vol.17, issue.2, pp.324-334, 2009.
DOI : 10.1109/TASL.2008.2010214

D. Kolossa, R. Astudillo, E. Hoffmann, and R. Orglmeister, Independent component analysis and time-frequency masking for multi speaker recognition, EURASIP Journal on Audio, Speech, and Music Processing, 2010.

R. Astudillo and T. Berlin, Integration of short-time fourier domain speech enhancement and observation uncertainty techniques for robust automatic speech recognition, 2010.

M. Delcroix, K. Kinoshita, T. Nakatani, S. Araki, A. Ogawa et al., Speech recognition in living rooms: Integrated speech enhancement and recognition system based on spatial, spectral and temporal modeling of sounds, Computer Speech & Language, vol.27, issue.3, pp.851-873, 2013.
DOI : 10.1016/j.csl.2012.07.006

R. F. Astudillo, D. Kolossa, A. Abad, S. Zeiler, R. Saeidi et al., Integration of beamforming and uncertainty-of-observation techniques for robust ASR in multi-source environments, Computer Speech & Language, vol.27, issue.3
DOI : 10.1016/j.csl.2012.07.009

M. L. Seltzer, Robustness is dead! long live robustness! " Keynote speech, 2014.

B. Li and K. C. Sim, An ideal hidden-activation mask for deep neural networks based noise-robust speech recognition, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.200-204, 2014.
DOI : 10.1109/ICASSP.2014.6853586

A. Krueger and R. Haeb-umbach, Model based feature enhancement for automatic speech recognition in reverberant environments, Proc. ICASSP, pp.126-130, 2013.

M. Delcroix, S. Watanabe, T. Nakatani, and A. Nakamura, Cluster-based dynamic variance adaptation for interconnecting speech enhancement pre-processor and speech recognizer, Computer Speech & Language, vol.27, issue.1, pp.350-368, 2013.
DOI : 10.1016/j.csl.2012.07.001

H. Liao, Uncertainty decoding for noise robust speech recognition, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00499200

R. F. Astudillo and R. Orglmeister, Computing MMSE Estimates and Residual Uncertainty Directly in the Feature Domain of ASR using STFT Domain Speech Distortion Models, IEEE Transactions on Audio, Speech, and Language Processing, vol.21, issue.5, pp.1023-1034, 2013.
DOI : 10.1109/TASL.2013.2244085

A. Ozerov, M. Lagrange, and E. Vincent, Uncertainty-based learning of acoustic models from noisy data, Computer Speech & Language, vol.27, issue.3, pp.874-894, 2013.
DOI : 10.1016/j.csl.2012.07.002

URL : https://hal.archives-ouvertes.fr/hal-00717992

S. Srinivasan and D. Wang, Transforming Binary Uncertainties for Robust Speech Recognition, IEEE Transactions on Audio, Speech and Language Processing, vol.15, issue.7, pp.2130-2140, 2007.
DOI : 10.1109/TASL.2007.901836

H. Kallasjoki, S. Keronen, G. J. Brown, J. F. Gemmeke, U. Remes et al., Mask estimation and sparse imputation for missing data speech recognition in multisource reverberant environments, Proc. CHiME, pp.58-63, 2011.

E. Vincent, J. Barker, S. Watanabe, J. Le-roux, F. Nesta et al., The second ‘CHiME’ speech separation and recognition challenge: An overview of challenge systems and outcomes, 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, 2013.
DOI : 10.1109/ASRU.2013.6707723

K. Adilo?-glu and E. Vincent, A general variational Bayesian framework for robust feature extraction in multisource recordings, Proc. ICASSP, 2012, pp.273-276

P. J. Moreno, B. Raj, and R. M. Stern, A vector Taylor series approach for environment-independent speech recognition, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, pp.733-736, 1996.
DOI : 10.1109/ICASSP.1996.543225

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Kallasjoki, J. F. Gemmeke, and K. J. Palomki, Estimating Uncertainty to Improve Exemplar-Based Feature Enhancement for Noise Robust Speech Recognition, IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol.22, issue.2, pp.368-380, 2014.
DOI : 10.1109/TASLP.2013.2292328

D. T. Tran, E. Vincent, and D. Jouvet, Extension of uncertainty propagation to dynamic MFCCS for noise robust ASR, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.5507-5511, 2014.
DOI : 10.1109/ICASSP.2014.6854656

URL : https://hal.archives-ouvertes.fr/hal-00954654

A. Ozerov, E. Vincent, and F. Bimbot, A General Flexible Framework for the Handling of Prior Information in Audio Source Separation, IEEE Transactions on Audio, Speech, and Language Processing, vol.20, issue.4, pp.1118-1133, 2012.
DOI : 10.1109/TASL.2011.2172425

URL : https://hal.archives-ouvertes.fr/inria-00536917

D. Kolossa, R. F. Astudillo, A. Abad, S. Zeiler, R. Saeidi et al., CHIME challenge: approaches to robustness using beamforming and uncertainty-of-observation techniques, Proc. 1st Int. Workshop on Machine Listening in Multisource Environments (CHiME), pp.6-11, 2011.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 1995.

S. J. Young, G. Evermann, M. J. Gales, T. Hain, and D. Kershaw, The HTK Book, version 3, 2006.

R. Kompass, A Generalized Divergence Measure for Nonnegative Matrix Factorization, Neural Computation, vol.39, issue.3, pp.780-791, 2007.
DOI : 10.1162/089976602320264033

D. D. Lee and H. S. Seung, Learning the parts of objects with nonnegative matrix factorization, Nature, vol.401, pp.788-791, 1999.

J. G. Fiscus, A post-processing system to yield reduced word error rates: Recognizer Output Voting Error Reduction (ROVER), 1997 IEEE Workshop on Automatic Speech Recognition and Understanding Proceedings, pp.347-354, 1997.
DOI : 10.1109/ASRU.1997.659110

M. L. Seltzer, D. Yu, and Y. Wang, An investigation of noise robustness of deep neural networks, Proc. ICASSP, pp.7398-7402, 2013.

Y. Tachioka, S. Watanabe, J. L. Roux, and J. R. Hershey, Discriminative methods for noise robust speech recognition: A CHiME Challenge benchmark, Proc. 2nd Int. Workshop on Machine Listening in Multisource Environments (CHiME), pp.19-24, 2013.