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Abstract—Graphical user interfaces (GUIs) are integral parts
of software systems that require interactions from their users.
Software testers have paid special attention to GUI testing in
the last decade, and have devised techniques that are effective in
finding several kinds of GUI errors. However, the introduction of
new types of interactions in GUIs presents new kinds of errors
that are not targeted by current testing techniques. We believe
that to advance GUI testing, the community needs a compre-
hensive and high level GUI fault model, which incorporates all
types of interactions. The work detailed in this paper establishes
4 contributions: 1) A GUI fault model designed to identify and
classify GUI faults. 2) An empirical analysis for assessing the
relevance of the proposed fault model against failures found
in real GUIs. 3) An empirical assessment of two GUI testing
tools (i.e. GUITAR and Jubula) against those failures. 4) GUI
mutants we’ve developed according to our fault model. These
mutants are freely available and can be reused by developers for
benchmarking their GUI testing tools.

I. INTRODUCTION

Increasing presence of system interactivity requires software
testing to closely consider the testing of graphical user interfaces
(GUI). GUIs are composed of graphical objects called widgets,
such as buttons. Users interact with these widgets (e.g. press
a button) to produce an action1 that modifies the state of the
system. For example, pressing the button "Delete" of a drawing
editor produces an action that deletes the selected shapes from
the drawing. Most of these standard widgets provide users with
an interaction composed of a single input event (e.g. pressing
a button). In this paper we call such interactions "mono-event
interactions". These standard widgets work identically in many
GUI platforms. In the context of GUI testing, the tools rely on
the concept of standard widgets and have demonstrated their
ability for finding several kinds of errors in GUIs composed
of such widgets, called WIMP2 GUIs [3], [4], [5], [6], [7].

The current trend in GUI design is the shift from designing
GUIs composed of standard widgets to designing GUIs relying
on more complex interactions3 and ad hoc widgets [2], [8], [9].
So, standard widgets are being more and more replaced by ad
hoc ones. By ad hoc widgets we mean non-standard widgets
developed specifically for a GUI. Such widgets involve multi-
event interactions (in opposition to mono-event interactions,
e.g. multi-touch interactions for zooming, rotating) that aim
at being more adapted, natural to users. A simple example
of such widgets is the drawing area of graphical editors with
which users interact using more complex interactions such

1Also called command [1], [2] or event [3].
2WIMP stands for Windows, Icons, Menus, and Pointing device.
3These interactions are more complex from a software engineering point

of view. From a human point of view they should be more natural, i.e. more
close to how people interact with objects in the real life.

as pencil-based or multi-touch interactions. GUIs containing
such widgets are called post-WIMP GUIs [10]. The essential
objective is the advent of GUIs providing users with more
adapted and natural interactions, and the support of new input
devices such as multi-touch screens. As Beaudouin-Lafon wrote
in 2004, "the only way to significantly improve user interfaces
is to shift the research focus from designing interfaces to
designing interaction" [8]. This new trend of GUI design
presents to developers new problems of GUI faults that current
GUI testing tools cannot detect. An essential pre-requisite to
propose comprehensive testing techniques for both WIMP and
post-WIMP GUIs is to define an exhaustive and high level
GUI fault model. Indeed, testing consists of looking for errors
in a program. This requires a clear idea about the errors we
are looking for. This is the goal of fault models that permit to
qualify the effectiveness of testing techniques [11].

In this paper, we leverage of the evolution of the current
Human-Computer Interaction (HCI) state-of-the-art concepts to
propose an original, complete fault model for GUIs. This model
tackles dual objectives: 1) provide a conceptual framework
against which GUI testers can evaluate their tool or technique;
and 2) build a set of benchmark mutations to evaluate the ability
of GUI testing tools to detect failures for both WIMP and post-
WIMP GUIs. We assess the coverage of the proposed model
through an empirical analysis: 279 GUI-related bug reports of
highly interactive open-source GUIs have been successfully
classified using our fault model. Also, we assess the ability of
two GUI testing tools (i.e. GUITAR and Jubula) to find real GUI
failures. Then, from an open-source system we created mutants
implementing the faults described in our fault model. These
mutants are freely available and can be used for benchmarking
GUI testing tools. As an illustrative use of these mutants, we
conducted an experiment to evaluate the ability of two GUI
testing tools to detect these mutants. We show that some mutants
cannot be detected by current GUI testing tools and discuss
future work to address the new kinds of GUI faults.

The paper is organized as follows. The next section examines
in detail the seminal HCI concepts we leveraged to build our
GUI fault model. Based on these concepts, the proposed GUI
fault model is then detailed. Subsequently, the benefits of our
proposal are highlighted through: an empirical analysis of
existing GUI bug reports; the manual creation of GUI mutants
on an existing system; and an evaluation of two GUI testing
tools to detect such mutants. This paper ends with related work
and the conclusion presenting GUI testing challenges.

II. SEMINAL HCI CONCEPTS

Identifying GUI faults requires an examination in detail of
the major HCI concepts. In this section we detail these concepts
to highlight and explain in Section III the resulting GUI faults.
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Before introducing these seminal HCI concepts, we recall the
basic elements that compose GUIs. Users act on an interactive
system by performing a user interaction on a GUI. A user
interaction produces as output an action that modifies the state
of the system. For example, the user interaction that consists
of pressing the button "Delete" of a drawing editor produces
an action that deletes the selected shapes from the drawing. A
user interaction is composed of a sequence of events (mouse
move, etc.) produced by input devices (mouse, etc.) handled
by users. One interaction may involve several input devices,
which is then called a multi-modal interaction. For instance,
pointing a position on a map and speaking to perform an
action is a multi-modal interaction. The correct synchronization
between the different input devices is a key concern and is
called multi-modal fusion. A GUI is composed of graphical
components, called widgets, laid out following a specific order.
The graphical elements displayed by a widget are either purely
aesthetics (fonts, etc.) or presentations of data. The state of
a widget can evolve in time having effects on its graphical
representation (e.g. visibility, position, value, data content).

Direct manipulation is one of the seminal HCI concepts
[12], [13]. It aims at minimizing the mental effort required to
use systems. To do so, direct manipulation promotes several
rules to respect while developing GUIs. One of these rules
stipulates that users have to feel engaged with control of objects
of interest, not with GUIs or systems themselves. An example of
direct manipulation is the drawing area of drawing editors. Such
a drawing area represents shapes as 2D/3D graphical objects
as most of the people define the concept of shapes. Users can
handle these shapes by interacting directly within the drawing
area to move or scale shapes using advanced interactions such as
bi-manual interactions. Direct manipulation is in opposition to
the use of standard widgets that bring indirection between users
and their objects of interest. For instance, scaling a shape using
a bi-manual interaction on its graphical representation is more
direct than using a text field. So, developing direct manipulation
GUIs usually implies the development of ad hoc widgets,
such as the drawing area. These ad hoc widgets are usually
more complex than standard ones since they rely on: advanced
interactions (e.g. bi-manual, speech+pointing interactions); a
dedicated data representation (e.g. shapes painted in the drawing
area). Testing such heterogeneous and ad hoc widgets is thus
a major challenge.

This contrast between GUIs composed of standard widgets
only and GUIs that contain advanced widgets is reified,
respectively, under the terms WIMP and post-WIMP. Van Dam
proposed that a post-WIMP GUI is one "containing at least one
interaction technique not dependent on classical 2D widgets
such as menus and icons" [10].

Another seminal HCI concept is feedback [13], [14], [2],
[9]. Feedback is provided to users while they interact with
GUIs. It allows users to evaluate continuously the outcome
of their interactions with the system. Feedback is computed
and provided by the system through the user interface and can
take many forms. A first simple example is when users move
the cursor over a button. To notify that the cursor is correctly
positioned to interact with the button this changes its shape. A
more sophisticated example is the selection process of most
of drawing editors that can be done using a Drag-And-Drop
(DnD) interaction. While the DnD is performed on the drawing

area, a temporary rectangle is painted to notify users about
current selection area.

Another HCI concept is the notion of reversible actions [12],
[13], [9]. The goal of reversible actions is to reduce user anxiety
by about making mistakes [12]. In WIMP GUIs, reverting
actions is reified under the undo/redo features usually performed
using buttons or shortcuts that revert the latest executed actions.
In post-WIMP GUIs, recent outcomes promote the ability to
cancel actions in progress [15].

All these HCI concepts introduced in this section are inter-
active features that must be tested. However, we demonstrate
in this paper that current GUI fault models and GUI testing
tools do not cover all these features. In the next section, the
GUI faults stemming from WIMP and post-WIMP GUIs are
detailed.

III. FAULT MODEL

In this section we present an exhaustive GUI fault model.

Bochmann et al. [11] define a fault model as:

Definition 1 (Fault Model): A fault model describes a set
of faults responsible for a failure possibly at a higher level of
abstraction.

To recall what a fault is:

Definition 2 (Fault): Faults are textual (or graphical) differ-
ences between an incorrect and a correct behavior description
[16].

Based on these definitions, we propose the following
definitions of a GUI fault and failure:

Definition 3 (GUI Fault): GUI faults are differences be-
tween an incorrect and a correct behavior description of a
GUI.

Definition 4 (GUI Error): A GUI error is an activation of
a GUI fault that leads to an unexpected GUI state.

Definition 5 (GUI Failure): A GUI failure is a manifesta-
tion of an unexpected GUI state provoked by a GUI fault.

A GUI fault can be introduced at different levels of a GUI
software (e.g. GUI code, GUI models). An illustration of a
GUI fault is: a correct line of GUI code vs an incorrect line of
GUI code. For example, a GUI fault can be activated when an
unexpected entry, such as a wrong value into an input widget,
is not handled correctly by its GUI code. So, an unexpected
GUI state is manifested (e.g. a crash as a GUI failure) when a
user clicks on a button after typing this entry.

To build the proposed fault GUI model we first analyzed
the state-of-the-art of HCI concepts (see Section II). We then
analyzed real GUI bug reports (different than those used in
Section IV) to assess and to precise the fault model. We
performed a round trip process between the analysis of HCI
concepts and GUI bug reports until obtain a stable fault model.

The description of our fault model is divided into two
groups: The user interface faults and the user interaction faults.
The user interface faults refer to faults affecting the structure
and the behavior of graphical components of GUIs. The user
interaction faults refer to faults affecting the interaction process
when a user interacts with a GUI.



TABLE I. USER INTERFACE FAULTS

Fault categories ID Faults Possible failures

GUI Structure
and

Aesthetics

GSA1 Incorrect layout of widgets
(e.g. alignment, dimension, orientation, depth)

The positions of 2 widgets are inverted.
A text is not fully visible since the size of text field is too small.
Rulers do not appear on the top of a drawing editor.
The vertical lines for visualizing the precise position of shapes in the
drawing editor are not displayed.

GSA2 Incorrect state of widgets
(e.g. visible, activated, selected, focused, modal,
editable, expandable)

Not possible to click on a button since it is not activated.
A window is not visible so that its widgets cannot be used.
Not possible to draw in the drawing area of a drawing editor since it
is not activated.

GSA3 Incorrect appearance of widgets
(e.g. font, color, icon, label)

The icon of a button is not visible.
In a GUI of a power plant, the color reflecting the critical status of
a pump is green instead of red.

Data
Presentation

DT1 Incorrect data rendering
(e.g. scaling factors, rotating, converting)

The size of a text is not scaled properly.
In a drawing editor, a dotted line is painted as a dashed one.
A rectangle is painted as an ellipse.

DT2 Incorrect data properties
(e.g. selectable, focused)

A web address in a text is not displayed as hyperlink.

DT3 Incorrect data type or format
(e.g. degree vs radian, float vs double)

The date is displayed with five digits (e.g. dd/mm/y) instead of 6
digits (e.g. dd/mm/yy).
A text field displays an angle in radian instead of in degree.

A. User Interface Faults

GUIs are composed of widgets that can act as mediators
to interact indirectly (e.g. buttons on WIMP GUIs) or directly
(direct manipulation principle in post-WIMP GUIs) with objects
of the data model. In this section, we categorize the user
interface faults, i.e. faults related to the structure, the behavior,
and the appearance of GUIs. We further break down user
interface into two categories: the GUI structure and aesthetics,
and the data presentation fault, as introduced below. Table I
presents an overview of these faults and their potential failures.

1) GUI Structure and Aesthetics Fault: This fault category
corresponds to unexpected GUI designs. Since GUIs are
composed of widgets laid out following a given order, the first
fault is the incorrect layout of widgets (GSA1). Possible failures
corresponding to this fault occur when GUI widgets follow
an unexpected layout (e.g. wrong size or position). The next
fault concerns the incorrect state of widgets (GSA2). Widgets’
behavior is dynamic and can be in different states such as
visible, enabled, or selected. This fault occurs when the current
state of a widget differs from the expected one. For example,
a widget is unexpectedly visible. The following fault treats
the unexpected appearance of widgets (GSA3). That concerns
aesthetic aspects of widgets not bound to the data model, such
as look-and-feels, fonts, icons, or misspellings.

2) Data presentation: In many cases, widgets aim at editing
and visualizing data of the data model. For example with WIMP
GUIs, text fields or lists can display simple data to be edited
by users. Post-WIMP GUIs share this same principle with the
difference that the data representation is usually ad hoc and
more complex. For example, the drawing area of a drawing
editor paints shapes of the data model. Such a drawing area has
been developed for the specific case of this editor. That permits
to represent graphically in a single widget complex data (e.g.
shapes). In other cases, widgets aim at monitoring data only.
This is notably the case for some GUIs in control commands
of power plants where data are not edited but monitored by

users. The definition of data representations is complex and
error-prone. It thus requires adequate data presentation faults.

The first fault of this category is the incorrect data rendering
(DT1). DT1 is provoked when data is converted or scaled
wrongly. Possible failures for this fault are manifested by
unexpected data appearance (e.g. wrong color, texture, opacity,
shadow) or data layout (e.g. wrong position, geometry). The
second fault concerns incorrect data properties (DT2). Properties
define specific visualization of data such as selectable or focused.
A possible failure is a web address that is not displayed as a
hyperlink. The last fault (DT3) occurs when an incorrect data
type or format is displayed. For instance, an angle value is
displayed in radian instead of in degree.

B. User Interaction Faults

In this section, we introduce the faults that treat user
interactions. The proposed faults are based on the characteristics
of WIMP and post-WIMP GUIs detailed in the previous section.
For each fault we separated our analysis into two parts. One
dedicated to WIMP interactions and another one to post-
WIMP interactions. WIMP interactions refer to interactions
performed on WIMP widgets. They are simple and composed
of few events (click4, key pressed, etc.). Post-WIMP interactions
refer to interactions performed on post-WIMP widgets. Such
interactions are more complex since they can be multimodal,
i.e.involve multiple input devices (gesture, gyroscope, multi-
touch screen); be concurrent (e.g. in bi-manual interactions the
two hands evolve in parallel); be composed of numerous events
(e.g. multimodal interactions may be composed of sequences
of pressure, move, and voice events). Such interactions can be
modeled as finite-state machines [9], [17], [18]. Subsequently
the direct manipulation principles, other particularities of post-
WIMP interactions are that they aim at: being as natural as

4A click is one interaction composed of the event mouse pressed followed
by the event mouse released. Its simple behavior has leaded to consider a click
as an event itself.



TABLE II. USER INTERACTION FAULTS

Fault categories ID Faults Possible failures

Interaction
Behavior

IB1 Incorrect behavior of a user interaction A bi-manual interaction developed for a specific purpose does
not work properly.
The synchronization between the voice and the gesture does
not work properly in a voice+gesture interaction.

Action

ACT1 Incorrect action results Translating a shape to a position (x,y) translates it to the
position (−x,−y).
Setting the zoom level at 150%, sets it at 50%.

ACT2 No action executed Clicking on a button has no effect.
Executing a DnD on a drawing area to draw a rectangle has
no effect.

ACT1 Incorrect action executed Clicking on the button Save shows the dialogue box used for
loading.
Scaling a shape results in its rotation.
Performing a DnD to translate shapes results in their selection.

Reversibility

RVSB1 Incorrect results of undo or redo operations Clicking on the button redo does not re-apply the latest undone
action as expected.
Pressing the keys ctrl+z does not revert the latest executed
action as expected.

RVSB2 Reverting the current interaction in
progress works incorrectly

Pressing the key "Escape" during a DnD does not abort this
last.
Saying the word "Stop" does not stop the interaction in
progress.

RVSB3 Reverting the current action in progress
works incorrectly

Clicking on the button "Cancel" to stop the loading of the
file previously selected does not work properly.

Feedback

FDBK1 Feedback provided by widgets to reflect
the current state of an action in progress
works incorrectly.

The progress bar that shows the loading progress of a file
works incorrectly.

FDBK2 The temporary feedback provided all along
the execution of long interactions is incor-
rect.

Given a drawing editor, drawing a rectangle using a DnD
interaction does not show the created rectangle during the
DnD as expected.

possible; providing users with the feeling of handling data
directly (e.g. shapes in drawing editors). Table II summarizes
the user interaction faults and some of their potential failures
for both WIMP and post-WIMP interactions. These faults are
detailed as follows.

1) Interaction Behavior: Developing post-WIMP interac-
tions is complex and error-prone. Indeed, as explained in the
section on GUIs’ characteristics, it may involve many sequences
of events or require the fusion of several modalities such as voice
and gesture. So, the first fault (IB1) occurs when the behavior
of the developed interactions does not work properly. This fault
mainly concerns post-WIMP widgets since WIMP widgets
embed simple and hard-coded interactions. For instance, an
event such as pressure can be missing in a bi-manual interaction.
Another example is the incorrect synchronization between the
voice and the gesture in a voice+gesture interaction.

2) Action: This category of faults groups faults that concern
actions produced while interacting with the system. The first
fault (ACT1) focuses on the incorrect results of actions. In
this case the expected action is executed but its results are not
correct. For instance with a drawing editor, a failure can be the
translation of one shape to the given position (−x,−y) while
the position (x,y) was expected. The root cause of this failure
can be located in the action itself or in its settings. For instance,
a first root cause of the previous failure can be the incorrect

coding of the translation operation. A second root cause can
be located in the settings of the translation action.

The second fault (ACT2) concerns the absence of action
when interacting with the system. For instance, this fault can
occur when an interaction, such as a keyboard shortcut, is not
correctly bound to its widget.

The third fault (ACT3) consists of the execution of wrong
actions. The root cause of this fault can be that the wrong
action is bound to a widget at a given instant. For instance:
clicking on the button Save shows the dialogue box used for
loading; doing a DnD interaction on a drawing area selects
shapes instead of translating them.

3) Reversibility: This fault category groups three faults.
The first fault (RVSB1) concerns the incorrect behavior of the
undo/redo operations. Undo and redo operations usually rely
on WIMP widgets such as buttons and key shortcuts. These
operations revert or re-execute actions already terminated and
stored by the system. A possible failure is the incorrect reversion
of the latest executed action when the key shortcut ctrl+z is
used.

Contrary to WIMP interactions, that are mainly one-shot,
many interactions last some time such as the DnD interaction.
In such a case, users may be able to stop an interaction
in progress. The second fault (RVSB2) thus consists of the



incorrect interruption of the current interaction in progress. For
instance, pressing the key "Escape" during a DnD does not stop
this last. This fault could have been classified as an interaction
behavior fault. We decided to consider it as a reversibility fault
since it concerns the ability to revert an ongoing interaction.

Once launched, actions may take time to be executed entirely.
In this case such actions can be interrupted. The third fault
(RVSB3) concerns the incorrect interruption of an action in
progress. A possible failure concerns the file loading operation:
clicking on the button "Cancel" to stop the loading of a file
does not work properly.

4) Feedback: Widgets are designed to provide immediate
and continuous feedback to users while they interact with them.
For instance, progress bars showing the loading progress of a
file is a kind of feedback provided to users. The first fault of this
category (FDBK1) concerns the incorrect feedback provided by
widgets to reflect the current state of an action in progress. This
fault focuses on actions that last in time and which progress
should be monitored by users.

The second fault (FDBK2) focuses on potentially long
interactions (i.e. interactions taking a certain amount of time to
be completed) which progress should be discernible by users.
For instance with a drawing editor, when drawing a shape on
the drawing area, the shape in creation should be visible so
that the user knows the progression of her work. So, a possible
failure is drawing a rectangle using a DnD interaction, that
works correctly, does not show the created rectangle during the
DnD as expected.

C. Discussion

The definition and the use of a fault model raise several
questions we discuss about in this sub-section.

What are the benefits of the proposed GUI fault model? The
benefits of our GUI fault model are twofold. First, a fault model
is an exhaustive classification of faults for a specific concern
[11]. Providing a GUI fault model permits GUI developers and
testers to have a precise idea of the different faults they must
consider. As an illustration, Section IV describes an empirical
analysis we conducted to classify and discuss about GUI failures
of open-source GUIs. Second, our GUI fault model allows
developers of GUI testing tools to evaluate the efficiency of
their tool in terms of bug detection power w.r.t. a GUI specific
fault model. As detailed in Section VI, we created mutants of
an existing GUI. Each mutant contains one GUI failure that
corresponds to one GUI fault of our fault model. Developers
of GUI testing tools can run their tools against these mutants
for benchmarking purposes.

Should usability have been a GUI fault? Answering this
question requires the definition of a fault to be re-explained: a
fault is a difference between the observed behavior description
and the expected one. Usability issues consist of reporting that
the current observed behavior of a specific part of a GUI lacks
at being somehow usable. That does not mean the observed
behavior differs from the behavior expected by test oracles.
Instead, it usually means that the expected behavior has not
been defined correctly regarding some usability criteria. That is
why we do not consider usability as a GUI fault. This reasoning
can be extended to other concerns such as performance.

How to classify GUI failures into a fault model? A GUI
failure is a perceivable manifestation of a GUI error. Classifying
GUI failures thus requires to have identified the root cause (i.e.
GUI error) of the failure. So, classifying GUI failures can be
done by experts of the GUI under test. These experts need
sufficient information, such as patches, logs, or stack traces, to
identify if the root cause of a failure is a GUI error to then
classify it. For example, given a failure manifested in the GUI
and caused by a precondition violation. In this case, such a
failure is not classified into the GUI fault model. Similarly,
classifying correctly a GUI failure also requires to qualify
the involved widgets (e.g. standard or ad hoc) as well as the
interaction (e.g. mono-event or multiple-event interaction).

How to classify failures stemming from other failures? For
instance, the incorrect results of the execution of an action
(action fault) let a widget not visible as expected (GUI structure
fault). In such cases, only the first failure must be considered
since it puts the GUI in an unexpected and possibly unstable
state. Besides, the appearance of a GUI error depends on the
previous actions and interactions successfully executed. Typical
examples are the undo and redo actions. A redo action can
be executed only if an action has been previously performed.
Furthermore, the success of a redo action may depend on the
previous executed actions. We considered this point during
the creation of mutants (as detailed in Section VI) to provide
failures that appear both with and without previous actions.

IV. RELEVANCE OF THE FAULT MODEL:
AN EMPIRICAL ANALYSIS

In this section the proposed GUI fault model is evaluated.
Our evaluation has been conducted by an empirical analysis to
assess the relevance of the model w.r.t. faults currently observed
in existing GUIs. The goal is to state whether our GUI fault
model is relevant against failures found in real GUIs.

A. Introduction

To assess the proposed fault model, we analyzed bug reports
of 5 popular open-source software systems: Sweet Home
3D, File-roller, JabRef, Inkscape, and Firefox Android. These
systems implement various kinds of widgets, interactions, and
encompass different platforms (desktop and mobile). Their
GUIs cover the main following features: indirect and direct ma-
nipulation; several input devices (e.g. mouse, keyboard, touch);
ad hoc widgets such as canvas; discrete data manipulation (e.g.
vector-based graphics); and undo/redo actions.

B. Experimental Protocol

Bug reports have been analyzed manually from the re-
searcher/tester perspective by looking only at data available in
the failures report (i.e. black box analysis). To focus on detailed
and commented bug reports that concern GUI failures, the
selection has been driven by the following rules. Only closed,
fixed, and in progress bug reports were selected. The following
search string has been also used to reduce the resulting sample:
interface OR "user interface” OR “graphical user interface”
OR "graphical interface" OR GUI OR UI OR layout OR design
OR graphic OR interaction OR “user interaction” OR interact
OR action OR feedback OR revert OR reversible OR undo OR
redo OR abort OR stop OR cancel. Each report has been then



TABLE III. DISTRIBUTION OF ANALYZED FAILURES PER SOFTWARE

Software Analyzed failures User interface failures User interaction failures Repositories link
Sweet Home 3D 33 55% 45% http://sourceforge.net/p/sweethome3d/bugs/
File-roller 32 28% 72% https://bugzilla.gnome.org/query.cgi
JabRef 84 42% 58% http://sourceforge.net/p/jabref/bugs/
Inkscape 82 28% 72% https://bugs.launchpad.net/inkscape/
Firefox Android 48 60% 40% https://bugzilla.mozilla.org/

manually analyzed to state whether it is a GUI failure. Also,
selected bug reports have to provide explanations about the
root cause of the failure such as a patch or comments. This step
is crucial to be able to categorize the failures using our GUI
fault model considering their root cause. We also discarded
failures identified as non-reproducible, duplicated, usability, or
user misunderstanding. From this selection we kept 279 bug
reports (in total for the five systems) describing one GUI failure
each. The following sub-sections discuss about these failures
and the classification process.

C. Classification and Analysis

All the 279 failures have been successfully classified into
our fault model. Fig. 1 gives an overview of the selected
bug reports classified using our proposed fault model. These
failures were classified into the Action (119 failures, 43%), GUI
Structure and Aesthetics (75 failures, 27%), Data Presentation
(39 failures, 14%), Reversibility (31 failures, 11%), Interaction
behavior (12 failures, 4%), and Feedback (3 failures, 1%) fault
categories. Most of the failures classified into GUI Structure
and Aesthetics concern the incorrect layout of widgets (51%).
Likewise, most of the failures in the Action category refer to
incorrect action results (75%).

Fig. 1. Classification of the 279 bug reports using the GUI fault model

Table III shows the distribution of the 279 analyzed GUI
failures per software and category (user interface or user
interaction). These results point out that the systems Sweet
Home 3D and Firefox Android seem to be more affected by
user interface failures. Most of these failures concern the GUI
structure and aesthetics fault. That can be explained by the
complex and ad hoc GUI structure of these systems. File
Roller and JabRef GUIs include widgets with coarse-grained
properties (i.e. simple input value such as number or text). Most
of their failures concern WIMP interactions classified into the
action category. In contrast, Inkscape presented more failures
classified as post-WIMP. Indeed, Inkscape, a vector graphics
software, mainly relies on its drawing area that provides users
with different post-WIMP interactions. These failures have
been categorized mainly into interaction behavior, action, and
reversibility.

Fig. 2. Manifestation of failures in the user interface and user interaction
levels

As depicted by Fig. 2, 41% of these 279 GUI failures are
originated by faults classified into the user interface category and
59% into the user interaction category. Most of user interaction
failures have been classified into the incorrect action results
(54%). This plot also highlights that only 25% of the analyzed
user interface failures and 18% of the user interaction ones
have been classified as post-WIMP. We comment these results
in the following sub-section.

D. Discussion

The empirical results must be balanced with the fact that
user interactions are less tangible than user interfaces. So, users
may report more GUI failures when they can perceive failures
graphically (an issue in the layout of a GUI or in the result of
an action visible through a GUI). Users, however, may have
difficulties to detect a failure in an interaction itself while
interacting with the GUI. That may explain the low number
of failures (4%) classified into Interaction Behavior. Another
explanation may be the primary use of WIMP widgets, relying
on simple interactions.

In our analysis, many failures that could be related to
Feedback were discarded since they concerned enhancements
or usability issues, which are out of the scope of a GUI fault
model as discussed previously. For instance, GUI failures that
concern the lack of haptic feedback in Firefox Android were
discarded. So, few faults (1%) were classified into this category.
Another explanation may be the difficulty for users to identify
feedback issues as real failures that should be reported.

We observed that some reported GUI failures are false
positives regarding the fault localization: if the report does not
have enough information about the root cause of a failure (e.g.
patch or exception log), a GUI failure can be classified in a
wrong fault category. For example, when moving a shape using
a DnD does not move it. At a first glance, the root cause of
this failure can be associated to an incorrect behavior of the
DnD. So, this failure can be categorized into the interaction

http://sourceforge.net/p/sweethome3d/bugs/
https://bugzilla.gnome.org/query.cgi
http://sourceforge.net/p/jabref/bugs/
https://bugs.launchpad.net/inkscape/
https://bugzilla.mozilla.org/


behavior. However, after analyzing the root cause this failure
refers to an action failure since the DnD works properly, but
no action is linked to this interaction.

Likewise, the failures related to Reversibility and Feedback
were easily identified through the steps to reproduce them. For
example in JabRef, "pressing the button "Undo" will clear all
the text in the field, but then pressing the button "Redo" will
not recover the text". Furthermore, some systems do not revert
interactions step by step but entirely. This can imply a failure
from a user’s point view, but sometimes it is considered as
an invalid failure (e.g. requirements vs. usability issues) by
developers. In JabRef, the undo/redo actions did not revert
discrete operations. For example, pressing the button "Undo"
clears all texts typed into different text fields instead of clearing
only one field each time the button "undo" is pressed.

Another important point concerns the WIMP vs. post-WIMP
GUIs faults. We classified more failures involving WIMP than
post-WIMP widgets. A possible explanation is that, despite the
increasing interactivity of GUIs, the analyzed GUIs still rely
more on WIMP widgets and interactions. Moreover, users now
master the behavior of WIMP widgets so that they can easily
identify when they provoke failures. It may not be the case
with ad hoc and post-WIMP widgets.

V. ARE GUI TESTING TOOLS ABLE TO DETECT
CLASSIFIED FAILURES? AN EMPIRICAL STUDY

This section provides an empirical study of two GUI testing
tools: GUITAR [19] and Jubula5. To demonstrate the current
limitations of GUI testing tools in testing real GUIs, we applied
those tools to detect the failures previously classified into our
GUI fault model.

A. GUITAR and Jubula

GUITAR is one of the most widespread academic GUI
testing tools. It extracts the GUI structure by reverse engineering.
This structure is transformed into a GUI Event Flow Graph
(EFG), where each node represents a widget event. Based on this
EFG, test cases are generated and executed automatically over
the SUT. We used the plugin for Java Swing (i.e. JFC GUITAR
version 1.1.1)6. In GUITAR, each test case is composed by a
sequence of widget events. The generation of test cases can
be parameterized with the size of that sequence (i.e. test case
length).

Jubula is a semi-automated GUI testing tool that lever-
ages pre-defined libraries to create test cases. These libraries
contain modules that can be reused to generate manually test
sequences. The modules encompass actions (e.g. check, select)
and interactions (e.g. click, drag and drop) over different GUI
toolkits (e.g. swing, SWT, RCP, mobile). We have reused the
library dedicated to Java Swing (Jubula version 7.2) to write
the test cases presented in the next experiments. This library
contains actions to test only standard widgets such as dragging
a column/row of a table by passing an index. To test ad hoc
widgets (e.g. canvas), we made a workaround by mapping
actions directly to these widgets. For example, to draw a shape
on canvas we need to specify the exact position (e.g. drag and
drop coordinates) where the interaction should be executed.

5http://www.eclipse.org/jubula
6http://sourceforge.net/apps/mediawiki/guitar/

B. Experiment

We selected JabRef7, a software to manage bibliographic
references. JabRef is written in Java which allows us to apply
both GUITAR and Jubula. For each fault described in our GUI
fault model, we selected one reported failure. To reproduce
each failure, we downloaded the corresponding faulty version
of JabRef. We used the exact test sequence (i.e. number of
actions) to reproduce a failure. In GUITAR, all test cases were
generated automatically over a faulty version. In Jubula, each
test case was created manually to detect one failure. All test
cases were written by one of the authors of this paper who has
expertise in JabRef. Also, their test sequences are extracted by
analyzing failure reports (e.g. steps to reproduce a failure) and
reusing Jubula’s libraries. Then, GUITAR and Jubula run all
their test cases automatically for checking whether the selected
failure is found.

C. Results and Discussion

Table V summarizes the detection of the JabRef GUI failures
by GUITAR and Jubula. These failures cover 11 out of the 15
faults described in our fault model. The remaining four faults
were not covered for two reasons: 1) no failure was classified
for that fault; or 2) a failure was classified, but we could not
reproduce it - only occurred in a specific environment (e.g.
Operating System) or given a certain input (e.g. a particular
database in JabRef).

The reported failures in JabRef are mostly related to WIMP
widgets, so we would expect GUITAR and Jubula to detect
them, but it was not the case. For instance, failure #1 reports an
incorrect display of buttons’ label; its root cause is the incorrect
size of a widget positioned to the left of them. Thus, this failure
does not affect the values of internal properties (e.g. text, event
handlers) of those buttons. In GUITAR, checking the properties
of that widget did not reveal this failure since the expected
and actual values of its size property (e.g. width) remained the
same. In Jubula, the concerned widget cannot be mapped to
test cases execution and thus cannot be tested.

Failures #2 and #3 refer to an incorrect menu path and
a misspelling, respectively. Both failures were detected by
Jubula. However, these failures were not found by GUITAR.
Indeed, GUITAR does reverse engineering of an existing GUI
to produce tests. If this GUI is faulty, GUITAR will produce
tests that will consider these failures as the correct behavior.

Failures #8 and #13 that lead to a crash of the GUI were
found by both GUITAR and Jubula. However, failures #4, #6,
#10, and #11 that affect the data model were not detected by
GUITAR for two reasons. First, GUITAR does not test the
table entries in JabRef since they represent the data model.
To do this, we need to extend GUITAR to interact with them.
Second, the test cases successfully passed, but a failure has
been revealed. That means, the events are fired properly (e.g.
no exception) and GUI properties are the "expected" ones. For
example, a text property of a status bar contains the value:
"Redo: change field", when this action was actually not redone.
Similarly, failure #10 was not detected by Jubula. This failure
reports an unexpected auto-completion when the action "save"
is triggered by shortcuts. We reproduced this failure manually

7http://jabref.sourceforge.net/

http://www.eclipse.org/jubula
http://sourceforge.net/apps/mediawiki/guitar/
http://jabref.sourceforge.net/


TABLE IV. MUTANTS PLANTED ACCORDING TO FAULTS IN THE GUI FAULT MODEL

ID GSA1 GSA2 GSA3 DT1 DT2 DT3 IB1 ACT1 ACT2 ACT3 RVSB1 RVSB2 RVSB3 FDBK1 FDBK2

#Mutants 3 7 4 2 1 1 1 8 16 5 9 2 - 3 3
#Length 0..2 0..4 0..4 4 2 4 4 1..7 1..8 4..5 2..8 2 - 2..5 3..4

TABLE V. JABREF FAILURES DETECTED BY GUITAR AND JUBULA

ID
fault

ID
failure

Bug repository link GUITAR Jubula

GSA1 #1 http://sourceforge.net/p/jabref/bugs/160/ 7 7
GSA2 #2 http://sourceforge.net/p/jabref/bugs/514/ 7 3
GSA3 #3 http://sourceforge.net/p/jabref/bugs/166/ 7 3
DT1 #4 http://sourceforge.net/p/jabref/bugs/716/ 7 3
DT2 #5 -
DT3 #6 http://sourceforge.net/p/jabref/bugs/575/ 7 3
IB1 #7 -
ACT1 #8 http://sourceforge.net/p/jabref/bugs/495/ 3 3
ACT2 #9 http://sourceforge.net/p/jabref/bugs/536/ 3 3
ACT3 #10 http://sourceforge.net/p/jabref/bugs/809/ 7 7
RVSB1 #11 http://sourceforge.net/p/jabref/bugs/560/ 7 3
RVSB2 #12 -
RVSB3 #13 http://sourceforge.net/p/jabref/bugs/458/ 3 3
FDBK1 #14 http://sourceforge.net/p/jabref/bugs/52/ 7 3
FDBK2 #15 -

but the test case was successfully replayed by Jubula. The input
text via keyboard was typed and saved automatically without
any interference of the auto-completion feature.

Another point is the accuracy of test cases generated
manually in Jubula. Detecting failure #6 depends on how the
test case is written. For example, adding a field that contains
LaTeX commands (e.g. 100\%), and then checking its output in
a preview window should not contain any command (e.g. 100%).
So, we can write a test case to test the outputs in the preview
window only looking for commands (e.g. SelectPattern[%,
equals] in ComponentText[preview]). Or, write a test case
to check whether an entire text matches to the expected one
(e.g. CheckText[100%, equals] in ComponentText[preview]).
However, the last test case will fail since a text from preview
window in JabRef is shown internally as HTML and, in Jubula,
the action’s parameters cannot be specified in that format.

Our experiment does not aim at comparing both tools since
GUITAR is a fully automated tool contrary to Jubula. However,
the results of this study highlight the current limitations of
GUI testing tools. GUITAR and Jubula currently mainly work
for detecting failures that affect properties of standard widgets.
Moreover, GUITAR does GUI regression testing: it considers
a given GUI as the reference one from which tests will be
produced. If this GUI is faulty, GUITAR will produce tests that
will consider these failures as the correct behavior. A possible
solution to overcome this issue is to base the test process on
the specifications (requirements, etc.) of the GUI.

VI. FORGING FAULTY GUIS FOR BENCHMARKING

In this section, we evaluate the usefulness of our fault model
by applying it on a highly interactive open-source software
system. We created mutants of this system corresponding to the
different faults of the model. The main goal of these mutants
is to provide GUI testers with benchmark tools to evaluate
the ability of GUI testing tools to detect GUI failures. As an
illustration of the practical use of these mutants, we executed
two GUI testing tools against the mutants of the system. Thanks

to that we caught a glimpse of their ability to cover our proposed
fault model. The goal of this experiment is to answer the
research question: what are the benefits of this fault model for
GUI testing?

A. Mutants Generation

As highlighted by Zhu et al., "software testing is often aimed
at detecting faults in software. A way to measure how well this
objective has been achieved is to plant some artificial faults
into the program and check if they are detected by the test. A
program with a planted fault is called a mutant of the original
program" [20]. Following this principle, we planted 65 faults
in a highly interactive open-source software system, namely
Latexdraw8, using our proposed fault model. Latexdraw has
been selected because of the following points: 1) it is a highly
interactive system written in Java and Scala (dedicated to the
creation of drawings for LATEX); 2) its GUI mixes both standard
and ad hoc widgets; 3) it is released under an open-source
license (GPL2) so that it can be freely used by the testing
community.

We created 65 mutants corresponding to the different faults
of our proposed fault model. All these mutants and the original
version are freely available9. Each mutant is documented to
detail its planted fault and the oracle permitting to find it9.
Multiple mutants have been created from each fault by: using
WIMP (22 mutants) or post-WIMP (43 mutants) widgets to
kill the mutants; varying the test case length (i.e. the number of
actions required to provoke the failure). Each action (e.g. select a
shape) requires a minimal number of events (e.g. in LaTeXDraw
a DnD requires at least three events: press/move/release) to be
executed. Table IV summarizes the number of forged mutants
and the minimal and maximal test case length for each fault.
For instance, a length 0..2 means there exists at least one
mutant requiring a minimum of 0 action or a maximum of two
actions). However, the fault RVSB3 is currently not covered by
the Latexdraw mutants. Similarly, some planted mutants only
rely on post-WIMP interactions or widgets (e.g. IB1, DT1).

B. How GUI testing tools kill our GUI mutants: a first
experiment

We applied the GUI testing tools GUITAR and Jubula on
the mutants to evaluate their ability to kill them. Our goal
is not to provide benchmarks against these tools but rather
highlight the current challenges in testing interactive systems
not considered yet (e.g. post-WIMP interactions). GUITAR test
cases have been generated automatically while Jubula ones
have been written manually.

Considering the mutants planted at the user interface level,
Jubula and GUITAR tests killed the mutants that involve
checking standard widget properties, such as layout (e.g. width,

8http://sourceforge.net/projects/latexdraw/
9https://github.com/arnobl/latexdraw-mutants
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height) and state (e.g. enable, selection, focusable). Also, it is
possible to test simple data (e.g. string values on text fields) on
those widgets. However, most of the mutants that concern the
ad hoc widgets were alive. Notably, when test cases involve
testing complex data from the data model. For example, it is not
possible to compare the results of the actual shape on canvas
against the expected one. Even if some shape properties (e.g.
rotation angle) are presented on standard widgets (e.g. spinner),
GUITAR and Jubula cannot state whether the current values in
these widgets match the expected shape rotation on the canvas.

Likewise, our GUITAR and Jubula tests cannot kill most of
the user interaction mutants that result on a wrong presentation
of shapes. In particular, when we tested mutants planted into
the Reversibility or Feedback categories. For example, testing
undo/redo operations in Latexdraw should compare all states to
manipulate a shape on canvas. Moreover, the tests verdict on
Jubula passed even though interactions are defined incorrectly
(e.g. mouse cursor does not follow a DnD) or actions cannot be
executed (e.g. a button is disabled). In GUITAR, the generated
test cases do not cover properly actions having dependencies.
For example, the action "Delete" in Latexdraw requires first
selecting a shape on canvas. However, no test sequence that
contains "Select Shape" before "Delete Shape" was generated.
Thus, some mutants could not be killed.

Table VI gives an overview of the number of mutants killed
by GUITAR and Jubula. The results show that both tools are not
able to kill all mutants because of the four following reasons:
1) Testing Latexdraw with GUITAR and Jubula is limited to the
test of the standard Swing widgets. In Jubula, the test cases are
only written according to libraries available in the Swing toolkit.
In GUITAR, the basic package for Java Swing GUIs only covers
standard widgets and mono-events (e.g. a click on a button).
2) Configure or customize a GUI testing tool to test post-WIMP
widgets is not a trivial task. For example, each sequence of a
test case in Jubula needs to be mapped for the corresponding
GUI widget manually. Also, GUITAR needs to be extended
to generate test cases for ad hoc widgets (e.g. canvas) as well
their interactions (e.g. multi-modal interactions). 3) Testing post-
WIMP widgets requires a long test case sequence. In Latexdraw,
a sequence to test interactions over these widgets is composed
of at least two actions. That sequence is longer when we have
to detect failures into undo/redo operations. 4) It is not possible
to give a test verdict for complex data. The oracle provided by
the two GUI testing tools do not know the internal behavior of
ad hoc widgets, their interaction features and data presentation.
These results answer the research question by highlighting the
benefits of our fault model for measuring the ability of GUI
testing tools in finding GUI failures.

C. Threats to Validity

Regarding the conducted empirical studies, we identified
the two following threats to validity. The first one concerns
the scope of the proposed fault model since we evaluated it
empirically on a small number (five) of interactive systems.
To limit this threat, we selected interactive systems that cover
different aspects of the HCI concepts we detailed in Section II.
The second threat we identified concerns the subjectivity
observed in bug reports to describe failures. To deal with this,
we based the classification on the bug report artifacts (patches,
logs, etc.) to identify the root cause of the reported failures.

TABLE VI. MUTANTS KILLED BY GUITAR AND JUBULA

GUITAR JUBULA

ID WIMP post-WIMP WIMP post-WIMP
GSA1 2 0 2 0
GSA2 5 0 6 1
GSA3 3 0 3 0
DT1 - 0 - 0
DT2 - 0 - 0
DT3 - 0 - 1
IB1 - 0 - 0
ACT1 0 0 0 1
ACT2 3 0 3 0
ACT3 2 0 2 0
RVSB1 2 0 2 0
RVSB2 - 0 - 0
RVSB3 - - - -
FDBK1 1 0 1 0
FDBK2 - 0 - 0

VII. RELATED WORK

Existing fault classifications are presented in a higher level of
abstraction considering mainly the components that are affected
by faults. Most classifications leverage the software assets (e.g.
specification, models, architecture, code) to define their faults.
These faults have been described into fault models [11], [16]
or defects taxonomies [21].

In an effort to cover GUIs, the Orthogonal Defect Classi-
fication (ODC) [21] is extended by IBM Research to include
GUIs faults. These faults focus on the appearance of widgets,
navigation between widgets, unexpected behavior of widgets
events and input devices. In our fault model, we do not cover
faults that concern the behavior of input devices (i.e. hardware
fault). Although this taxonomy considers GUI faults, it does not
separate the user interface and user interaction faults. Moreover,
this extension does not consider faults caused by post-WIMP
widgets and their advanced interactions as well faults into the
data presentation category.

Li et al. categorize faults of industrial and open source
projects using the ODC taxonomy [22]. The category Interface
concerns several GUI defects. However, this single category
covers several user interface defects related to specific widgets
such as window, title bar, menu, or tool bar. Similarly, the
interaction defects are limited to mouse and keyboard. Thus,
it is not possible to identify the kind of faults classified into
these categories since they are not detailed. For example, a fault
classified into the mouse category can concern an interaction,
an action, or an input device.

Brooks et al. [23] present a study that characterizes GUIs
based on reported faults of three industrial systems. To classify
all these faults (GUI and non-GUI faults), the authors adapted
a defect taxonomy by including other categories such as GUI
defects. This category encompasses both the user interface and
user interaction faults. Also, Børretzen et al. [24] analyze faults
reported by four projects by combining two defect taxonomies.
Both works introduce a category that concerns the GUI faults
but these faults are not described and thus no classification is
presented. Strecker et al. [25] characterize faults that affect
GUI test suites. However, these faults do not concern the GUI
faults but any fault at the code level (e.g. class or method faults)
that may affect the GUI.

In contrast, several research papers concern the fault effects
by classifying GUI failures instead of GUI faults. In general,



these works focus on specific GUIs (automotive GUIs [26]) or
domains (mobile [27], safety-critical [28]). For example, Maji
et al. characterize failures for mobile operating systems [27].
These failures are classified according to the fault localization.
For example, a failure manifested in a camera is categorized
in the Camera segment. Similarly, failures for other segments
such as Web, Multimedia, or GUI are categorized. Also, Zaeem
et al. [29] have conducted a bug study for Android applications
to automate oracles. They identified 20 categories including
some GUI issues such as Rotation (device’s rotation), Gestures
(zooming and out) and Widget. Although, these papers have
investigated failures in a context that brings many advances
in terms of interactive features, no classification or discussion
about these kinds of failures is presented.

Mauser et al. propose a GUI failure classification for
automotive systems [26]. This classification is based on the
three categories: design, content, and behavior. In the Design
category, the failures refer to GUI layouts (e.g. color, font,
position). In the Content category, the failures are associated
to data displayed such as text, animation, and symbols/icons.
The failures in the Behavior category are caused by a wrong
behavior of windows (e.g. wrong pop-up) or widgets (e.g. wrong
focus). The authors focus on characterizing GUI failures based
only on a small set of specific widgets designed for these kinds
of GUIs. Furthermore, they do not consider user interaction
failures.

VIII. CONCLUSION AND RESEARCH AGENDA

This paper proposes a GUI fault model for providing GUI
testers with benchmark tools to evaluate the ability of GUI
testing tools to detect GUI failures. This fault model has been
empirically assessed by analyzing and classifying into it 279
GUI bug reports of different open-source GUIs. To demonstrate
the benefits of the proposed fault model, mutants have then
been developed from it on a Java open-source GUI. As an
illustrative use case of these mutants, we executed two GUI
testing tools on these mutants to evaluate their ability to detect
them. This experiment shows that if current GUI testing tools
have demonstrated their ability for finding several kinds of GUI
errors, they also fail at detecting several GUI faults we identified.
The underlying reasons are twofold. First, GUI failures may
be related to the graphical rendering of GUIs. Testing a GUI
rendering is a complex task since current testing techniques
mainly rely on code analysis that can hardly capture graphical
properties. Second, the current trend in GUI design is the
shift from designing GUIs composed of standard widgets to
designing GUIs relying on more complex interactions and ad
hoc widgets [2], [8], [9]. New GUI testing techniques have
thus to be proposed for fully testing, as automated as possible,
GUI rendering and complex interactions using ad hoc widgets.
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