Online Unsupervised Neural-Gas Learning Method for Infinite Data Streams

Mohamed-Rafik Bouguelia 1 Yolande Belaïd 1 Abdel Belaïd 1
1 READ - Recognition of writing and analysis of documents
LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : We propose an unsupervised online learning method based on the "growing neural gas" algorithm (GNG), for a data-stream configuration where each incoming data is visited only once and used to incrementally update the learned model as soon as it is available. The method maintains a model as a dynamically evolving graph topology of data-representatives that we call neurons. Unlike usual incremental learning methods, it avoids the sensitivity to initialization parameters by using an adaptive parameter-free distance threshold to produce new neurons. Moreover, the proposed method performs a merging process which uses a distance-based probabilistic criterion to eventually merge neurons. This allows the algorithm to preserve a good computational efficiency over infinite time. Experiments on different real datasets, show that the proposed method is competitive with existing algorithms of the same family, while being independent of sensitive parameters and being able to maintain fewer neurons, which makes it convenient for learning from infinite data-streams.
Type de document :
Chapitre d'ouvrage
Pattern Recognition Applications and Methods, 318, springer, pp.57 - 70, 2015, Advances in Intelligent Systems and Computing, 〈10.1007/978-3-319-12610-4_4〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01116082
Contributeur : Yolande Belaid <>
Soumis le : jeudi 12 février 2015 - 15:00:06
Dernière modification le : mardi 24 avril 2018 - 13:30:42
Document(s) archivé(s) le : mercredi 13 mai 2015 - 10:27:20

Fichier

LNCS_AING_version_envoyee.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Mohamed-Rafik Bouguelia, Yolande Belaïd, Abdel Belaïd. Online Unsupervised Neural-Gas Learning Method for Infinite Data Streams. Pattern Recognition Applications and Methods, 318, springer, pp.57 - 70, 2015, Advances in Intelligent Systems and Computing, 〈10.1007/978-3-319-12610-4_4〉. 〈hal-01116082〉

Partager

Métriques

Consultations de la notice

179

Téléchargements de fichiers

150