S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Applied and Numerical Harmonic Analysis, 2013.

T. Blumensath, Sampling and Reconstructing Signals From a Union of Linear Subspaces, IEEE Transactions on Information Theory, vol.57, issue.7, pp.4660-4671, 2011.
DOI : 10.1109/TIT.2011.2146550

A. Eftekhari and M. Wakin, New analysis of manifold embeddings and signal recovery from compressive measurements, Applied and Computational Harmonic Analysis, vol.39, issue.1, 2014.
DOI : 10.1016/j.acha.2014.08.005

B. Adcock, A. C. Hansen, C. Poon, and B. Roman, BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING, Forum of Mathematics, Sigma, vol.94840, 2013.
DOI : 10.1017/S0962492900002816

M. Vetterli and T. Blu, Sampling signals with finite rate of innovation, IEEE Transactions on Signal Processing, vol.50, issue.6, pp.1417-1428, 2002.
DOI : 10.1109/TSP.2002.1003065

N. Thaper, S. Guha, P. Indyk, and N. Koudas, Dynamic multidimensional histograms, Proceedings of the 2002 ACM SIGMOD international conference on Management of data , SIGMOD '02, pp.428-439, 2002.
DOI : 10.1145/564691.564741

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Bourrier, M. E. Davies, T. Peleg, and P. Pérez, Fundamental Performance Limits for Ideal Decoders in High-Dimensional Linear Inverse Problems, IEEE Transactions on Information Theory, vol.60, issue.12, pp.7928-7946, 2014.
DOI : 10.1109/TIT.2014.2364403

URL : https://hal.archives-ouvertes.fr/hal-00908358

G. Puy, P. Vandergheynst, and Y. Wiaux, On Variable Density Compressive Sampling, IEEE Signal Processing Letters, vol.18, issue.10, pp.595-598, 2011.
DOI : 10.1109/LSP.2011.2163712

URL : http://arxiv.org/abs/1109.6202

J. C. Robinson, Dimensions, embeddings, and attractors , Cambridge Tracts in Mathematics, 2011.
DOI : 10.1017/cbo9780511933912

S. Dirksen, Dimensionality Reduction with Subgaussian Matrices: A Unified Theory, Foundations of Computational Mathematics, vol.14, issue.1, 2014.
DOI : 10.1007/s10208-015-9280-x