Automated removal of quasiperiodic noise using frequency domain statistics

Frédéric Sur 1 Michel Grediac 2
1 MAGRIT - Visual Augmentation of Complex Environments
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : Digital images may be impaired by periodic or quasiperiodic noise, which manifests itself by spurious long-range repetitive patterns. Most of the time, quasiperiodic noise is well localized in the Fourier domain; thus it can be attenuated by smoothing out the image spectrum with a well-designed notch filter. While existing algorithms require hand-tuned filter design or parameter setting, this paper presents an automated approach based on the expected power spectrum of a natural image. The resulting algorithm enables not only the elimination of simple periodic noise whose influence on the image spectrum is limited to a few Fourier coefficients, but also of quasiperiodic structured noise with a much more complex contribution to the spectrum. Various examples illustrate the efficiency of the proposed algorithm. A comparison with morphological component analysis, a blind source separation algorithm, is also provided. A MATLAB® implementation is available.
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01116309
Contributeur : Frédéric Sur <>
Soumis le : vendredi 13 février 2015 - 09:37:36
Dernière modification le : jeudi 19 avril 2018 - 18:32:02
Document(s) archivé(s) le : jeudi 28 mai 2015 - 11:57:14

Fichier

JEI-14340_Final proof 2.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Frédéric Sur, Michel Grediac. Automated removal of quasiperiodic noise using frequency domain statistics. Journal of Electronic Imaging, SPIE and IS&T, 2015, 24 (1), pp.013003/1-19. 〈http://electronicimaging.spiedigitallibrary.org/article.aspx?articleid=2119153〉. 〈10.1117/1.JEI.24.1.013003〉. 〈hal-01116309〉

Partager

Métriques

Consultations de la notice

597

Téléchargements de fichiers

204