MICbots: collecting large realistic datasets for speech and audio research using mobile robots

Abstract : Speech and audio signal processing research is a tale of data collection efforts and evaluation campaigns. Large benchmark datasets for automatic speech recognition (ASR) have been instrumental in the advancement of speech recognition technologies. However, when it comes to robust ASR, source separation, and localization, especially using microphone arrays, the perfect dataset is out of reach, and many different data collection efforts have each made different compromises between the conflicting factors in terms of realism, ground truth, and costs. Our goal here is to escape some of the most difficult trade-offs by proposing MICbots, a low-cost method of collecting large amounts of realistic data where annotations and ground truth are readily available. Our key idea is to use freely moving robots equiped with microphones and loudspeakers, playing recorded utterances from existing (already annotated) speech datasets. We give an overview of previous data collection efforts and the trade-offs they make, and describe the benefits of using our robot-based approach. We finally explain the use of this method to collect room impulse response measurement.
Type de document :
Communication dans un congrès
IEEE 2015 International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2015, Brisbane, Australia
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01116822
Contributeur : Emmanuel Vincent <>
Soumis le : dimanche 15 février 2015 - 14:24:00
Dernière modification le : jeudi 11 janvier 2018 - 06:27:31
Document(s) archivé(s) le : dimanche 16 avril 2017 - 08:50:27

Fichier

leroux_ICASSP15.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01116822, version 1

Collections

Citation

Jonathan Le Roux, Emmanuel Vincent, John R. Hershey, Daniel P.W. Ellis. MICbots: collecting large realistic datasets for speech and audio research using mobile robots. IEEE 2015 International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2015, Brisbane, Australia. 〈hal-01116822〉

Partager

Métriques

Consultations de la notice

608

Téléchargements de fichiers

424