Influence of periodic diffusive inclusions on the bidomain model

Yves Coudière 1, 2, 3 Anđela Davidović 1, 2, 3 Clair Poignard 4, 2
1 CARMEN - Modélisation et calculs pour l'électrophysiologie cardiaque
IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest, IHU-LIRYC
4 MC2 - Modélisation, contrôle et calcul
Inria Bordeaux - Sud-Ouest, UB - Université de Bordeaux, CNRS - Centre National de la Recherche Scientifique : UMR5251
Abstract : We present a new mathematical model of the electric activity of the heart. In the standard bidomain model we can distinguish the intra- and the extracellular space with different conductivities for excitable cells and the fibrotic tissue around them. The main drawback is that it assumes the existence of excitable cells everywhere in the heart, while it is known that there exist non small regions where fibroblasts take place. The fibroblasts are equally distributed and since they are non excitable cells, they can be considered as a diffusive part. Hence we extend the standard bidomain model as follows: we assume that we have periodic alternation of the healthy tissue (linear bidomain model) and fibrotic extracellular space (diffusive part). We use homogenisation techniques to derive our macroscopic partial differential equations. Interestingly, we obtain again a bidomain type model with modified conductivities that involve the volume fraction of the diffusive domain. Preliminary numerical experiments will conclude on the influence of these diffusive inclusions.
Type de document :
Poster
From the Clinic to Partial Differential Equations and Back: Emerging challenges for Cardiovascular Mathematics, Jan 2014, Providence, Rhode Island, United States. 2014
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01117272
Contributeur : Andjela Davidovic <>
Soumis le : mardi 17 février 2015 - 15:38:33
Dernière modification le : jeudi 15 mars 2018 - 22:16:08
Document(s) archivé(s) le : mardi 26 mai 2015 - 11:30:26

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01117272, version 1

Collections

Citation

Yves Coudière, Anđela Davidović, Clair Poignard. Influence of periodic diffusive inclusions on the bidomain model. From the Clinic to Partial Differential Equations and Back: Emerging challenges for Cardiovascular Mathematics, Jan 2014, Providence, Rhode Island, United States. 2014. 〈hal-01117272〉

Partager

Métriques

Consultations de la notice

353

Téléchargements de fichiers

78