Guarding Vertices versus Guarding Edges in a Simple Polygon - Archive ouverte HAL Access content directly
Conference Papers Year : 1992

Guarding Vertices versus Guarding Edges in a Simple Polygon

(1) , (2)
1
2

Abstract

Let $P$ be a simple polygon, $V$ its set of vertices. A minimal vertex cover $C$ of $P$ is a minimal subset of $V$ which covers $V$. The extended cover of $P$ given $C$ is the maximal subset of the boundary of $P$ covered by $C$. Let $\epsilon P$ denotes the extended cover of $P$ given $C$, and $\bar{\epsilon}P$ the complement of $\epsilon P$ with respect to $\delta P$. Denote by $\mu$ the cardinality of $\bar{\epsilon}P$. In this paper we establish lower and upper bounds on $\mu$ as a function of $n$ the cardinality of the edge set of $P$ and $k$ the cardinality of the covering set. In the restricted case where $k = 2$ we prove the bounds to be tight.
Fichier principal
Vignette du fichier
cccg92.pdf (166.02 Ko) Télécharger le fichier
Vignette du fichier
vignette (1).png (26.77 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Format : Figure, Image
Origin : Files produced by the author(s)

Dates and versions

hal-01117277 , version 1 (19-02-2015)

Identifiers

  • HAL Id : hal-01117277 , version 1

Cite

Olivier Devillers, Naji Mouawad. Guarding Vertices versus Guarding Edges in a Simple Polygon. 4th Canadian Conference on Computational Geometry, 1992, St. John's, Canada. pp.99-102. ⟨hal-01117277⟩
81 View
61 Download

Share

Gmail Facebook Twitter LinkedIn More