Allocating jobs with periodic demand variations

Abstract : In the context of service hosting in large-scale datacenters, we consider the problem faced by a provider for allocating services to machines. Based on an analysis of a public Google trace correspond-ing to the use of a production cluster over a long period, we propose a model where long-running services experience demand variations with a periodic (daily) pattern and we prove that services following this model acknowledge for most of the overall CPU demand. This leads to an allo-cation problem where the classical Bin-Packing issue is augmented with the possibility to co-locate jobs whose peaks occur at different times of the day, which is bound to be more efficient than the usual approach that consist in over-provisioning for the maximum demand. In this paper, we provide a mathematical framework to analyze the packing of services exhibiting daily patterns and whose peaks occur at different times. We propose a sophisticated SOCP (Second Order Cone Program) formula-tion for this problem and we analyze how this modified packing constraint changes the behavior of standard packing heuristics (such as Best-Fit or First-Fit Decreasing). We show that taking periodicity of demand into account allows for a substantial improvement on machine utilization in the context of large-scale, state-of-the-art production datacenters.
Type de document :
Communication dans un congrès
Euro-Par 2015, 2015, Vienna, Austria. 2015, 〈10.1007/978-3-662-48096-0_12〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01118176
Contributeur : Lionel Eyraud-Dubois <>
Soumis le : mercredi 18 février 2015 - 15:42:09
Dernière modification le : vendredi 18 mai 2018 - 13:56:02
Document(s) archivé(s) le : dimanche 16 avril 2017 - 09:36:13

Fichier

europar.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Olivier Beaumont, Ikbel Belaid, Lionel Eyraud-Dubois, Juan-Angel Lorenzo-Del-Castillo. Allocating jobs with periodic demand variations. Euro-Par 2015, 2015, Vienna, Austria. 2015, 〈10.1007/978-3-662-48096-0_12〉. 〈hal-01118176〉

Partager

Métriques

Consultations de la notice

339

Téléchargements de fichiers

167