
HAL Id: hal-01118324
https://hal.inria.fr/hal-01118324

Submitted on 18 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real Time Semi-dense Point Tracking
Matthieu Garrigues, Antoine Manzanera

To cite this version:
Matthieu Garrigues, Antoine Manzanera. Real Time Semi-dense Point Tracking. ICIAR, 2012, Aveiro,
Portugal. pp.245 - 252, 2012, <10.1007/978-3-642-31295-3_29>. <hal-01118324>

https://hal.inria.fr/hal-01118324
https://hal.archives-ouvertes.fr

Real Time Semi-Dense Point Tracking

Matthieu Garrigues and Antoine Manzanera

ENSTA-ParisTech,
32 Boulevard Victor,

75739 Paris CEDEX 15, France,
http://uei.ensta.fr

matthieu.garrigues@ensta-paristech.fr

antoine.manzanera@ensta-paristech.fr

Abstract. This paper presents a new algorithm to track a high number
of points in a video sequence in real-time. We propose a fast keypoint
detector, used to create new particles, and an associated multiscale de-
scriptor (feature) used to match the particles from one frame to the next.
The tracking algorithm updates for each particle a series of appearance
and kinematic states, that are temporally filtered. It is robust to hand
held camera accelerations thanks to a coarse-to-fine dominant movement
estimation. Each step is designed to reach the maximal level of data par-
allelism, to target the most common parallel platforms. Using graphics
processing unit, our current implementation handles 10 000 points per
frame at 55 frames-per-second on 640× 480 videos.

1 Introduction

Estimating the apparent motion of objects in a video sequence is a very useful
primitive in many applications of computer vision. For fundamental and practical
reasons, there is a certain antagonism between reliability (are we confident in the
estimated velocities) and density (is the estimation available everywhere). Then
one has to choose between sparse tracking and dense optical flow. In this paper
we propose an intermediate approach that performs a long term tracking of a
set of points (particles), designed to be as dense as possible. We get a flexible
motion estimation primitive, that can provide both a beam of trajectories with
temporal coherence and a field of displacements with spatial coherence. Our
method is designed to be almost fully parallel and then extremely fast on graphics
processing unit (GPU) or multi-core systems.

Our work is closely related to the Particle Video algorithm of Sand and
Teller [5], with significant differences: we use temporal filtering for each particle
but no explicit spatial filtering, and our method is by design real-time. Since
the pioneering work of Tomasi and Kanade [8], there have been different real-
time implementations of multi-point tracking, e.g. Sinha et al [6], and Fassold et

al [2]. There are also real-time versions of dense and discontinuities preserving
optical flow, e.g. d’Angelo et al [1]. However these techniques do not provide
the level of flexibility we are looking for. In a recent work [7], Sundaram et

2

al achieved an accelerated version on GPU of a dense point tracking, which
combines density and long term point tracking. In their work, a subset of points
are tracked using velocities obtained from a dense optical flow. Although quite
fast, their parallel implementation spend more than half of the computation time
for the linear solver, which is at the core of the spatial regularisation needed by
the dense optical flow. Our work is based on the opposite approach: tracking -
as individually as possible - the largest number of points, in order to get the
semi-dense optical flow field by simple spatial filtering or expansion.

The contributions of our work are the following: (1) a fast multiscale detector
which eliminates only the points whose matching will be ambiguous, providing
the semi-dense candidate particle field, (2) a method for detecting abrupt ac-
celeration of particles and maintain the coherence of the trajectories in case of
sudden camera motion change, (3) a real-time implementation, (4) a spatial co-
herence which is not enforced by explicit spatial filtering but only used as part
of a test to reject unreliable particle matching, and (5) an objective evaluation
measure allowing online validation and parameter tuning without ground truth.

The paper is organised as follows: Section 2 describes the weak keypoint
detector used to select the new candidate particles, and defines the feature de-
scriptor attached to them. Section 3 presents the tracking algorithm. Section 4
gives some details of the parallel implementation and presents the execution
time. Finally Section 5 presents our online evaluation method and discusses the
quality of results.

2 Feature point selection

2.1 Weak keypoint detection

The first step aims to select the points that we can track through the video
sequence. The goal is to avoid points that can drift, typically on flat areas, or
on straight edges. Our detector is based on the idea that the matching of one
pixel p can not be determined at a certain scale, if there exists a direction along
which the value varies linearly at the neighbourhood of p. This is precisely what
the following saliency function calculates.

Let Br(p) denote the set of 16 pixels evenly sampled on the Bresenham circle
of radius r centred on p (see Fig. 1). I is the current video frame with gray level
values in [0, 1]. Let the local contrast be κr(p) = maxm∈Br(p) |Ir(p) − Ir(m)|
with Ir the image I convolved with the 2d Gaussian of standard deviation σr.
Let {m1, . . . ,m16} denote the pixels of Br(p), numbered clockwise. To evaluate
Cr(p), the saliency of p at one scale, we search for the minimum deviation from
linearity of the function I along the diameters of Br(p):

Sr(p) =
1

2
min
i∈[1,8]

|Ir(mi) + Ir(mi+8) − 2Ir(p)| .

Cr(p) =

{

0 if κr(p) < µ
Sr(p)
κr(p)

otherwise
.

3

Normalisation by κr(p) makes Cr contrast invariant and thus allows extrac-
tion of keypoints even in low contrast areas. The multiscale saliency of p is finally
defined as: C(p) = max

r
Cr(p).

Since we need the highest possible number of particles to feed a massively
parallel processor, we set the threshold µ to the lowest possible value. On our
test videos with gray level pixel values in [0, 1], we used µ = 0.02. We used two
radii r ∈ {3, 6}, with σ3 = 1.0 and σ6 = 2.0.

Finally, the detector creates new particles if the two following criteria hold:

1. C(p) ≥ β .
2. ∀n ∈ c9(p), C(p) ≥ C(n) .
3. No particle already lives in c9(p) .

c9(p) denotes the 3×3 neighbourhood of p. (1) discards non trackable points.
(2) promotes local maxima of C, and (3) ensures that two particles do not share
the same location. β = 0.25 in our implementation.

Our detector is similar to the FAST detector [4]. In fact, while meeting our
real-time requirements, it is slightly slower than FAST since it involves more
value fetches. But it is more adapted to our needs, being weaker in the sense
that it detects a much higher number of points.

Fig. 1. The two neighbourhoods B3 and B6.

2.2 Good (enough) feature to track

The detected keypoints will be tracked using a feature vector computed on each
pixel of the video frame. For real-time purposes, it must be fast to compute, small
in memory, and robust just enough to handle changes between two consecutive
frames.

In this paper we simply used as feature vector 8 values evenly sampled from
the Bresenham circles at each scale used to calculate the saliency function (see
Fig. 1). Then using B3 and B6 we get a 16 dimension (128 bits) feature vector.
Note that the keypoint detector and feature extraction functions are merged.

In the following, two feature vectors will be compared using the normalised
L1 distance, which is computationally efficient and sufficient to find the most
similar points. We shall denote F (p) the feature extracted at location p.

4

3 Tracking Algorithm

The goal of the tracking algorithm is to follow particle states through the video
frames. We present in this section a multi-scale approach robust to large hand
held camera acceleration.

3.1 Multiscale particle search and update

A particle i is a point tracked over the video sequence. Its state at frame t holds
its appearance feature ft(i) (See Section 2.2), velocity vt(i) in the image plane
and age at(i) (i.e. the number of frame it has been tracked). We update these
attributes at each input frame. We also compute the instantaneous acceleration
w, but do not keep it in the particle state. Instead, we record the values of w in
a histogram, and compute the mode to estimate the dominant acceleration.

Our method builds a 4 scales pyramid of the input and tracks particles at
each scale by making predictions about their probable neighbourhood in the
next frame. P s is the set of particles tracked at scale s. We apply the following
coarse to fine algorithm:

M4 ← (0, 0)
for scale s← 3 to 0:
| initialise every bin of the histogram H to 0.
| foreach particle i ∈ P s

| | p̂t(i)← pt−1(i) + st−1(i) + 2Ms+1 [Prediction]
| | pt(i)← Match(p̂t(i), ft−1(i)) [Matching]

| | if dL1(ft−1(i), F (pt(i))) > γ then delete i

| | else

| | ft(i)← ρF (pt(i)) + (1− ρ)ft−1(i)
| | vt(i)← ρ(pt(i)− pt−1(i)) + (1− ρ)vt−1(i)
| | at(i)← at−1(i) + 1
| | w ← pt(i)− pt−1(i)− vt−1(i)
| | H(w)← H(w) + 1
| endfor

| if s > 0
| Ms ← argmax

x

H(x)

| else

| Ms ← 2Ms+1

| foreach particle i ∈ P s

| | vt(i)← vt(i)− ρMs

| endfor

| create new particles at scale s

| foreach newly created particles i ∈ P s, s < 3
| | search a particle n with at(n) > 1 in a 5x5 neighbourhood at scale s+ 1
| | if n is found
| | vt(i)← 2vt(n)
| endfor

endfor

5

Match(p, f) only searches in the 7x7 neighbourhood of p̂t for the position
of the closest feature to f given the L1 distance in the feature space (See Sec.
2.2). If the match distance is above the threshold γ, we consider the particle
lost. Given that 0 < dL1(x, y) < 1, we set γ = 0.3 to allow slight appearance
change of particles between two frames. The algorithm predicts particle position
at scale s using their speed and Ms+1, the dominant acceleration due to camera
motion. Ms is initially set to (0, 0) and refined at every scale s > 0. We then
subtract ρMs to the particle velocities to improve the position prediction at
the next frame. The parameter ρ smoothes velocity and feature over the time.
In our experiments, we use ρ = 0.75. It is worth mentioning that although the
tracker maintains a pyramid of particles, there is no direct relations between
the particles at different scales, except for newly created particles, that inherit
velocity from their neighbours at upper scale. The particles of scales larger than
0 are only used to estimate the dominant motion, which is essential to get a
good prediction at scale 0 (highest resolution).

3.2 Rejecting Unreliable Matches

When an object gets occluded, or change appearance, some wrong matches oc-
cur and usually implies locally incoherent motion. Thus, for each particle i, we
analyse a 7x7 neighbourhood to count the percentage of particles that move
with a similar speed. If this percentage is less than 50%, i is deleted. Note that
this method fails to detect unreliable motion of isolated particles (where the
neighbourhood does not contain other particles).

4 GPU implementation

For performance reasons, we store the set of tracked particles in a 2D buffer G
such as G(p) holds the particle located at pixel p. Then, particles close in the
image plane will be close in memory. Since neighbour particles are likely to look
for their matches in the same image area, this allows to take advantage of the
processor cache by factorising pixel value fetch. This also adds a constraint: One
pixel can only carry one particle. Thus, when two particles converge to the same
pixel, we give priority to the oldest. We track particles at different scales with a
pyramid of 2D particle maps.

To take maximum advantage of the GPU, the problem has to be split into
several thousands of threads in order to hide the high latency of this architecture.
Applications are generally easier to program, and execute faster if they involve
no inter-thread communication. In our implementation, one thread individually
processes one pixel. This allows fast naive implementation of our algorithm.

Our current implementation uses the CUDA programming framework [3]. We
obtain the following performances using a 3 Gz quad-core CPU (intel i5-2500k,
2011) and a 336-cores GPU (NVIDIA Geforce 460 GTX, 2010). At full resolution
(640×480) the system can track about 10 000 particles at 55 frames per second.
Table 1 shows running times of each part of the algorithm.

6

5 Evaluation and Results

Evaluation of a tracking algorithm in a real world scenario is not straightforward
since it is difficult to build a ground truth containing the trajectories of every
points of a given video. We propose in this section measurements that provide
objective quantitative performance evaluation of the method.

A tracking algorithm typically makes two types of errors:

(A) When a particle dies while the scene point it tracks is still visible, reducing
the average particle life expectancy.

(B) When a particle jumps from one scene point to another similar but different.
It usually causes locally incoherent motion.

We base our evaluation on two facts: In our test videos, scene points generally
remain visible during at least 1 second, and objects are large enough to cause
locally coherent particles motion. Thus, the quality of the algorithm is directly
given by the average live expectancy of particles, the higher the better, and the
average number of rejected matches (See Sec. 3.2) by frame, the lower the better.
We also compute the average number of tracked particles on each frame. It has
to be as high as possible, keeping in mind that creating too many irrelevant
particles may increase the proportion of errors A and B.

Table 2 shows the quality measures of the results obtained with our current
implementation on three videos: Two (VTreeTrunk and VHall) made available
by Peter Sand and Seth Teller from their works on particle video [5]. These videos
are taken from a slowly moving subject. And another one (HandHeldNav) taken
from a fast moving hand-held camera where points are harder to track since the
camera undergoes abrupt accelerations, causing large translations and motion
blur.

Scale 4 3 2 1

Keypoint + feature 0.08 0.27 0.92 3.47
Particle creation 0.01 0.03 0.08 0.31
Matching 0.13 0.23 0.88 3.09
Global movement 0.21 0.37 1 X
Rejected matches 0.05 0.09 0.31 1.16

Table 1. Running times (in milliseconds)
of the different parts at the 4 scales on
video HandHeldNav. Those timings were
obtained using the NVIDIA Visual Profiler.

VTree VHall HandHeld

Life expectancy 32.1 24.5 15.6
Rejected matches 134 22 351
Alive particles 25770 4098 9327

Table 2. Evaluation measures of our
method on the three videos: Average life
expectancy of particles on the whole video,
average rejected matches per frame, and av-
erage number of particles per frame.

Figure 2 shows qualitative results of our experiments. It displays the particles,
their trajectories, the optical flow computed from particle velocities and saliency
function in different scenarios.

7

(a) (b) (c)

Fig. 2. Experimental results at fine scale on 3 different scenarios. First row shows
the current video frame with particles older than 10 frames in red. Second row is the
saliency function C. Third row draws a vector between the current position of each
particle and its birth position. Fourth row represents the reconstructed semi-dense
optical flow using particle velocities. At pixels where no particle lives, we approximate
the flow using the velocities of the neighbour particles if their gray level is similar.
(a) Static camera, moving objects; (b) Circular travelling, static objects; (c) Forward
zoom, moving objects.

6 Conclusion

We proposed a new approach to track a high number of keypoints in real-time.
It is robust to hand held camera acceleration thanks to a coarse to fine dominant
movement estimation. This provides a solid and fast building block to motion es-
timation, object tracking, 3D reconstruction, and many other applications. Each
particle individually evolves in the image plane by predicting its next position,

8

and searching the best match. This allows to split the problem into thousands
of threads and thus to take advantage of parallel processors such as a graphics
processing unit. Our current CUDA implementation can track 10 000 particles
at 55 frames-per-second on 640× 480 videos.

In future works, we wish to apply this primitive in several applications of
mobile video-surveillance. For the real-time aspects, we will perform a deeper
analysis of the parallel implementation. To be able to address a larger number
of scenarios, we will also study the extension of the dominant motion estimation
to other acceleration cases, in particular rotation.

Acknowledgements

This work takes part of a EUREKA-ITEA2 project and was funded by the
French Ministry of Economy (General Directorate for Competitiveness, Industry
and Services).

References

1. d’Angelo, E., Paratte, J., Puy, G., Vandergheynst, P.: Fast TV-L1 optical flow for
interactivity. In: IEEE International Conference on Image Processing (ICIP’11). pp.
1925–1928. Brussels, Belgium (September 2011)

2. Fassold, H., Rosner, J., Schallaeur, P., Bailer, W.: Realtime KLT feature point
tracking for high definition video. In: Computer Graphics, Computer Vision and
Mathematics (GraVisMa’09). Plzen, Czech Republic (September 2009)

3. NVIDIA: Cuda toolkit, http://www.nvidia.com/cuda
4. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In:

European Conference on Computer Vision (ECCV’06). vol. 1, pp. 430–443 (May
2006)

5. Sand, P., Teller, S.: Particle video: Long-range motion estimation using point tra-
jectories. In: Computer Vision and Pattern Recognition (CVPR’06). pp. 2195–2202.
New York (June 2006)

6. Sinha, S.N., Frahm, J.M., Pollefeys, M., Genc, Y.: Feature tracking and matching
in video using programmable graphics hardware. Machine Vision and Applications
22(1), 207–217 (2007)

7. Sundaram, N., Brox, T., Keutzern, K.: Dense point trajectories by GPU-accelerated
large displacement optical flow. In: European Conference on Computer Vision
(ECCV’10). pp. 438–451 (September 2010)

8. Tomasi, C., Kanade, T.: Detection and tracking of point features. Carnegie Mellon
University Technical Report CMU-CS-91-132 (April 1991)

