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ABSTRACT (@) (b)

Performingk-space variable density sampling is a popular way of
reducing scanning time in Magnetic Resonance Imaging (MRI). Un-
fortunately, given a sampling trajectory, itis not clear how to traverse
it using gradient waveforms. In this paper, we actually show that ex-
isting methods [1, 2] can yield large traversal time if the trajectory
contains high curvature areas. Therefore, we consider here a new
method for gradient waveform design which is based on the pro-
jection of unrealistic initial trajectory onto the set of hardware con-
straints. Next, we show on realistic simulations that this algorithm
allows implementing variable density trajectories resulting from the_. . .
piecewise linear solution of the Travelling Salesman Problem in 5'_9 % Example of .2D Vanaple Density Samplgr. (a_)(k) /
reasonable time. Finally, we demonstrate the application of this a 15kj” as advocated in [7]. (b): TSP-based sampling trajectory.
proach to 2D MRI reconstruction and 3D angiography in the mous

brain Back of this approach is that the traversal of high curvature parts of

the curve is rather slow. In the extreme case of angular points such
Index Terms— MRI, Compressive sensing, Variable density as in TSP-based trajectories, it leads to extremely large acquisition
sampling, gradient waveform design, hardware constraints, angiogime. In [9], we have proposed a new method to design magnetic
raphy. eld gradients by projecting any parameterized curve onto the set of
hardware constraints. This method allows one to change the curve
1. INTRODUCTION support and thus t_o yield fe_lster traversal time. _ o
The goal of this paper is then to prove that this projection algo-

Compressed Sensing (CS) provides a theoretical framework to jué'-thm enables to lmp|ement a TSP-based VDS on MRI scanners in

tify the downsampling ok-space (2D or 3D Fourier domain) in reasonable scanning times, in contrast to optlm:_:ll reparamerization.

Magnetic Resonance Imaging (MRI). CS-MRI is usually based onfhe rst pz_irt is dedicated to summarizing t_he projection strategy in-

independent random drawing &fspace locations according to a treduced in [9]. Next, we provide in Section 3 a proof-of-concept

prescribed density. From recent theoretical works [3, 4], one cafn rétrospective CS simulations. In particular, we show that our al-

derive an optimal sampling densitythat reduces at most the num- gorlthm yle.lds faster samplln.g trajecForles than the §tate-of-the-art

ber of samples collected in MRI without degrading the image qualit)for a given image reconstruction quallty,_ and glternatlvely that if the

at the reconstruction step [5, 6]. In [7], simulations show that dis-Sc@nning time is xed, our method delivers improved reconstruc-

tributions with radial decay (see Fig. 1(a)) with fiHispace center tons. Finally, our strategy (TSP-based sampling + projection algo-

acquisition perform better in numerical experiments. rithm) is applied to 3_D_ an_glography of the mouse br:_:un before and
However, such sampling schemes are not performed along cofdter contrast agent injection, to demonst_rate its ef ciency in terms

tinuous lines and thus not physically plausible in MRI because oPf scanning time reduction while preserving the recovery of small

the constraints involved on the magnetic eld gradient (magnitude>tUctures such as blood vessels.

and slew-rate). In [8], we have proposed a new approach to design

continuous sampling trajectories based on the solution of Travelling 2. GRADIENT WAVEFORM DESIGN USING A

Salesman Problem (TSP), as illustrated in Fig. 1(b). The speci city PROJECTION ALGORITHM

of this approach is that the empirical distribution of the trajectory can

approximate any prescribed distribution Such a curve is called a In this section, we recall the hardware constraints as generally

-Variable Density Sampler (VDS). Unfortunately, continuity of modelled in MRI and describe methods for designing gradient

the sampling trajectory is not a suf cient condition in MRI and it is waveforms in order to traverdespace sampling curves.

not clear how to design admissible gradient waveforms to traverse The gradient waveform associated with a cusvs de ned by

such a trajectory. g(t) = 1s(t), where denotes the gyro-magnetic ratio [10].
To the best of our knowledge, the most ef cient gradient de-The gradient waveform is obtained by energizing gradient coils (ar-

sign strategies consist of nding an admissible parameterization of eangements of wire) with electric currents. Owing to obvious phys-

given curve by using optimal control [1, 2]. However, the main draw-ical constraints, these electric currents have a bounded amplitude



and cannot vary too rapidly (slew rate). Mathematically, these conk particular, ifcis a -VDS, the sampling density &f is close to

straints read: 1. and ii) the acquisition tim& is xed and equal to that of the
input curvec. In particular, the time to traverse a curve is in general
kg(t)k 6 Gmax and  kg(t)k 6 Smax; 8t2[0;TI: shorter than with optimal reparameterizatidn<€ T od.

In the next part, we will emphasize that our algorithm enables
to traverse VDS curves as depicted in Fig. 1(b) in a reasonable time,
unlike optimal control-based reparemeterizations.

A sampling trajectons : [0; T]! RY will be saidadmissibleif it
belongs to the set:

n o]
S:= s2 CZ([O;T]) ¢ iks(t)k 6 ; ks(t)k6 ;  8t2[0;T]

3. CS-MRI SIMULATIONS

In this paper, we limit ourselves to the so-calledation-invariant ) . .
constraints. Some hardware systems, where the coils are energizZ&diNis part, we compare the time to traveksepace along different
independently, enable consideringtation-variant constraints. In  U@jectories using gradients computed either by the standard optimal
this case, thé, normk k is replaced by, norm. The differ- con_trol approach or by our proposed projection aIgonthm_. For com-
ences are discussed in [2], but the two compared methods (optimBR"iSOn between sampling schemes, we workeirospectiveCs,

control and projection algorithm) are able to handle both kinds of€aning that a full dataset has been acquired, and then a posteriori
constraints. downsampling is performed. We compare the reconstruction results

in terms of peak signal-to-noise ratio (PSNR) with respect to the ac-

quisition time and to the “acceleration factor’.
2.1. State-of-the-art

The question of nding jointly an accurate trajectory and the ad-3.1. Experimental framework

missible gradient waveform to traverse it is a dif cult issue that has o o ] ]

received special attention in [11, 12]. The most classical approachdta acquisition. The initial experimental setup aimed at observ-
consist of xing a curve support [1, 2], or control points [10, 13], ing blood vessels of living mice using an intraveinous injection of an

and nding an admissible parameterization afterwards. iron oxide-based contrast agent (Magnetovibrio Blakemorei MV1).
In particular, the most popular approach to design an admissiblBecause of natural elimination, it is necessary to speeq up acqui-
curve assumes the knowledge of a parameterized curye: T] ! sition to improve contrast and make easier post-processing such as

R? and consists of nding its optimal reparameterization by usingngiography. The experiments have been performed on a 17.2T pre-
optimal control [1, 2]. In other words, it amounts to nding a repa- clinical scanner which physical rotation-invariant constraints are, for
rameterizatiom such thas = ¢ p satis es the physical constraints @l t 2 [0; T]:

while minimizing the acquisition time. This problem can be cast as

follows: d q P kg(t)k6 1Tm * and  kg(t)k6 53T.m *.ms ®:

Toc=min T° suchthat 9p:[0;TY 7! [0;T: ¢ p2S: (1) A FLASH sequence (Fast Low Angle SHot) has been used to reveal
the T, contrast induced by the injection of the contrast agent (TE/TR

The resulting solutiors = ¢ p has the same support eswhich = 8/680 ms). The sequence was repeated 12 times to improve the
might be an important feature in some applications. The problemsignal-to-noise ratio (SNR), leading to a total acquistion time of 30
of this approach are: i) there is no control of the sampling densityfninutes to acquire thie-space slice by slice. The spatial resolution
especially in the high curvature parts ofwhere samples tend to achieved i90 90 180 m°.
agglutinate and ii) there is no control over the total sampling timeHypothesis. The aim of this paper is to prove that one can expect a
Toc Which can be large if the trajectory contains singular points folarge acquisition time reduction using parkaspace measurements.
instance (e.g., see Fig. 1(b)). These two drawbacks are illustratethe time to traverse a sampling curve is computed satisfying the

in [9]. gradient constraints. To achieve a fair comparison, let us mention the
The next part is dedicated to introducing an alternative methoedditional hypothesis that our acquisitions are single-shot, meaning
relaxing the constraint of the curve support. that the partiak-space is acquired after a single RF pulse. We did not
take echo and repetition times into account to ensure the recovery of
2.2. Projection onto the set of constraints a T,-weigthed image. We only compare the time to traverse a curve

using the gradients with their maximal intensity. We assume that
The idea introduced in [9] is to nd the projection of the input curve there is no error on the-space sample locations. In practice we have
c:[0;T]! R onto the set of admissible curvés to measure the three magnetic eld gradients that are actually played
out by the scanner to correct the trajectory and avoid distortions. We
1 X shall work on a discrete cartesikfspace, and consider that a sample
S :=argmin Eks cka: () is measured if the sampling trajectory crosses the corresponding cell
s28 of thek-space grid. Using this hypothesis, the estimated time to visit
the 2Dk-space is 110 ms.
ness, the theoretical grounds for the resolution and the key properti@érateg_)/' We used t_he TPS-ba_sed sampl_lng “.“e.thOd [7] as 'npl.Jt of
: : . our projection algorithm (see Fig. 2(b)), since it is a way of design-
discussed below are given in [9]. ) : - . - .
ing sampling trajectories that match any sampling densityThe

Resolution. Problem 2 consists of minimizing a convex smoothI tter | tral in CS-MRI si it s th ber of ired
function over a convex set. In [9], we have proposed a fast itera2ter 1S central in €S- Since it impacts the number of require

tive algorithm exploiting the structure of the dual formulation of (2), ™ 14.c closenesss quanti ed by Wasserstein transportation distakige,
which can be solved using proximal gradient methods [16]. see [9] for details.

Key properties. The two main advantages of this method are that  2r quanti es the reduction of the number of measurementsif the k-
i) the sampling density of is close to the sampling density of  spaceis a grid ol pixelsr := N=m is commonly used in CS-MRI.

R
whereks  ck5 = tho ks(t) c(t)k3dt. For the sake of concise-




measurements [14, 15, 7]. To compare our projection method to €38.2.2. 3D angiography

isting reparameterization, the proposed sampling strategy is:

(i) Sample deterministically thie-space center as adviced in [14, 5, Using the same method as in 2D, namely TSP-sampling and pro-
7], using an EPI sequence (see Fig. 2(a)). The scanning time can R&tion onto the set of constraints, we reconstructed volumes from
estimated to 12 ms in 2D using optimal control. 3D k-space. In order to estimate the quality of the reconstructions,
(i) Select a density proportional tal=jkj* as mentioned in [15, 7]. e compared the angiograms computed from the 3D images using
Draw independently points according toa and jointhem by the  Frangi Itering [19]. The results are shown in Fig. 3 for acceleration

shortest path to form a-VDS [7]. factorsr = 7:3 (Fig. 3(b,e)) and = 17:4 (Fig. 3(c,f)) and com-

(iii) Parameterize the TSP path@instant speednd project this pared to the angiogram computed from the whole data.
parameterization onto the set of gradient constraint§jidris) Pa- Using the strategy described in Part 3.1 the time to travierse
rameterize the TSP path using optimal control (the exact solutiospace would be 3.53 s (full acquisition), 3.15sX7:2) and 0.88 s
can be computed explicitely). (r = 17). The main drawback of TSP-based sampling schemes is

(iv) Form the sampling curve, de ne a setof the selected sam- that the time reduction is not directly proportionalrtpin contrast

ples, mask thé-space with , and reconstruct an image using  to classical 2D downsampling and reading out along the third di-
minimization of the constrained problem. LEt denote thed- mension. Nevertheless, if the number of measurements is xed, the
dimensional discrete Fourier transform @hd the matrix composed TSP-based approach leads to more accurate reconstruction results
of the lines corresponding to. Denote also by an inversed- since the sampling scheme may t any density [7].

dimensional wavelet transform (here a Symmlet transform). Then Angiograms shown in Fig. 3 illustrate that one can reduce the

the reconstructed image is the solution of the problem: travel time in thek-space and still observe accurate microvascular
) | structure. Ifr = 7:3, time reduction is minor (about 10% less),
X = Ayrgfg"g X (3 but the computed angiogram is almost the same as the one obtained

with a completek-space. It is interesting to notice that with a higher

An approximation ok is computed using Douglas-Rachford algo- acceleration factorr(= 17:4), the acquisition time is reduced by
rithm [16]. Solving the penalized form associated with (3) might be?5% but the computed angiogram remains of good quality. The
addressed by competing algorithms (ADMM, 3MG); see [17] for a@Ngiogram appears a bit noisier, especially in the pre-injection set-
recent comparison. The reconstruction results could be improved Bjd (Fig. 3(c)), but the post-injection image allows recovering Willis
resorting to non-Cartesian reconstruction [18], which would avoid?0lygon and most of the major vessels of the mouse brain (Fig. 3(f)).
the approximation related to the projection onto khepace grid.

3.2. Results Original (T =3:53s)r = 7:3(T =3:15s)r = 17:4(T = 0:88s)

(a) (b)

3.2.1. 2D reconstructions
In this experiment, we considered a RBspaced = 2) correspond- _§
ing to an axial slice. We considered ve sampling strategies, deg
picted in Fig. 2(rst row): a classical EPI coverage used as refele
ence (a); a TSP-based sampling trajectory parameterized using oti
mal control (b); two projected TSP-based trajectories, one with the
same number of samples collected as in (b¥(11:2) (c) and the
other with the same scanning time as in (b) (62 ms) (d); a variable
density spiral trajectory for comparison purpose in terms of time and PSNR=29.0 dB PSNR=26.6 dB
sampling ratio (e). (d) (e) ®

As expected, the reconstruction results shown in Fig. 2(g,h) are
really close, since the number of collected samples is the same, and
the sampling densities are similar. However, in this comparison the
gain in traversal time is signi cant (one half). In contrast, the longeg
and smoothed TSP depicted in Fig. 2(d) allows us to improve irrg_
age reconstruction (1 dB gain) as illustrated by Fig. 2(i) while keefE
ing the same acquisition time as in Fig. 2(b). For comparison puf
poses, we implemented spiral acquisition which consists of replacir?g
steps (ii)-(iii) in the above mentioned sampling strategy by a spiral
with density proportional td=jkj?, projected onto the set of con-
straints. This strategy doubles the acquisition time (118 ms com-
pared to 62 ms) whereas the acceleration factor was largef7(:5
vs.r = 6:6). In this experimental context (regridding and variable
density spiral), the spiral is not appealing compared to EPI acquisi-
tion, since it is time consuming and degrades the image quality. PSNR=25.5 dB PSNR=24.1dB

In each of these reconstructions, the major vessels can be recavig. 3. Angiograms computed from fuk-space pre-(a) and post-
ered, although the smallest ones can only be seen for 8. Fi- (d) injection data. Angiograms computed from pre-(resp., post-)
nally, the best compromise between acquisition time and reconstruinjection data for decimateki-space withr = 7:3 (b) andr =
tion quality is achieved using the speci ¢ combination of TSP-based7:4 (c) (resp., (e) and (f)).
sampling and our projection algorithm onto the set of constraints
shown in Fig. 2(d).




@) (b) (©)

Sampling schemes

Toc=110 msf =1)

®

Toc=62 ms( =11:2)

) (h)

Reconstructed slices

Reference PSNR =25.9 dB

T =30 ms( =11:2)

PSNR =25.5dB

(d) (e)

T =62 msf =6:6)

@)

T =118 ms¢ =7 :5)

()

PSNR =26.9 dB PSNR =26.8 dB

Fig. 2. Full k-space acquisition with an EPI sequence (a) and corresponding reference image (f). Comparison between an exact parameter-
ization of the TSP trajectory (b) and projection from TSP trajectory onto the set of constraints (c),(d). In experiments (b,c), the number of
measured locations is xed to 9% € 11:2), whereas in (b,d), the time to traverse the curve is xed to 62 ms. (e): Spiral trajectory with full
acquisition of the&k-space center. (g-j): Reconstructed images corresponding to sampling strategies (b-e) by solving Eq. (3).

4. CONCLUSION AND FUTURE WORK

In this paper, we have shown that the projection algorithm intro-
duced in [9] is a promising technique to design gradient waveforms.
In particular, it allows us to design gradient waveforms in order to [9]
implement TSP-based VDS, while existing gradient design methods
lead to extremely large acquisition time. We are currently imple-
menting these waveforms on actual scanners to validate our meth&)]
on a real CS-MRI framework.
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