Ocelotl: Large Trace Overviews Based on Multidimensional Data Aggregation

Damien Dosimont 1, * Youenn Corre 1 Lucas Mello Schnorr 2 Guillaume Huard 1 Jean-Marc Vincent 3
* Auteur correspondant
1 MOAIS - PrograMming and scheduling design fOr Applications in Interactive Simulation
Inria Grenoble - Rhône-Alpes, LIG - Laboratoire d'Informatique de Grenoble
3 MESCAL - Middleware efficiently scalable
Inria Grenoble - Rhône-Alpes, LIG - Laboratoire d'Informatique de Grenoble
Abstract : Performance analysis of parallel applications is commonly based on execution traces that might be investigated through visualization techniques. The weak scalability of such techniques appears when traces get larger both in time (many events registered) and space (many processing elements), a very common situation for current large-scale HPC applications. In this paper we present an approach to tackle such scenarios in order to give a correct overview of the behavior registered in very large traces. Two configurable and controlled aggregation-based techniques are presented: one based exclusively on the temporal aggregation, and another that consists in a spatiotemporal aggregation algorithm. The paper also details the implementation and evaluation of these techniques in Ocelotl, a performance analysis and visualization tool that overcomes the current graphical and interpretation limitations by providing a concise overview registered on traces. The experimental results show that Ocelotl helps in detecting quickly and accurately anomalies in 8 GB traces containing up to two hundred million of events.
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

Contributeur : Damien Dosimont <>
Soumis le : mercredi 25 février 2015 - 07:48:10
Dernière modification le : jeudi 11 octobre 2018 - 08:48:03
Document(s) archivé(s) le : mardi 26 mai 2015 - 13:26:13


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01120179, version 1



Damien Dosimont, Youenn Corre, Lucas Mello Schnorr, Guillaume Huard, Jean-Marc Vincent. Ocelotl: Large Trace Overviews Based on Multidimensional Data Aggregation. 8th International Parallel Tools Workshop, Oct 2014, Stuttgart, Germany. 〈hal-01120179〉



Consultations de la notice


Téléchargements de fichiers