
HAL Id: hal-01120837
https://inria.hal.science/hal-01120837v2

Submitted on 3 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data handover on a peer-to-peer system
Soumeya Leila Hernane, Jens Gustedt, Mohamed Benyettou

To cite this version:
Soumeya Leila Hernane, Jens Gustedt, Mohamed Benyettou. Data handover on a peer-to-peer system.
[Research Report] RR-8690, Inria Nancy - Grand Est (Villers-lès-Nancy, France); INRIA. 2015, pp.37.
�hal-01120837v2�

https://inria.hal.science/hal-01120837v2
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
86

90
--

FR
+E

N
G

RESEARCH
REPORT
N° 8690
February 2015

Project-Team Camus

Data handover on a
peer-to-peer system
Soumeya Leila Hernane Jens Gustedt Mohamed Benyettou

RESEARCH CENTRE
NANCY – GRAND EST

615 rue du Jardin Botanique

CS20101

54603 Villers-lès-Nancy Cedex

Data handover on a peer-to-peer system

Soumeya Leila Hernane∗† Jens Gustedt‡†

Mohamed Benyettou∗

Project-Team Camus

Research Report n° 8690 — version 2 — initial version February
2015 — revised version December 2015 — 37 pages

Abstract: This paper presents the Data Handover API and its integration into a peer-
to-peer Grid architecture. It provides an efficient management of critical data resources
in an extensible distributed setting consisting of a set of peers that may join or leave the
system. Locking and mapping of such a resource are handled transparently for users:
they may access them through simple function calls. On the lowest level of the proposed
architecture the Exclusive Locks for Mobile Processes ELMP algorithm ensures data
consistency and guarantees the logical order of requests. All operations in our architecture
have an amortized cost ofO(log n). An experimental assessment validates the practicality
of our proposal.

Key-words: data consistency, peer-to-peer, data access, request ordering, distributed
locks, resource mapping

∗ University of Science and Technology, Oran, Algeria
† ICube, Univ. of Strasbourg, France
‡ INRIA Nancy – Grand Est, France

Passage de données dans un système pair-à-pair
Résumé : Ce papier presente l’interface applicatif Data Handover et son intégra-
tion à une architecture pair-à-pair. Il fournit une gestion efficace de ressources de
données critiques dans un cadre repartie extensible, composé de pairs qui peuvent
joindre ou quitter le système. Verrouillage et mappage d’une telle ressource sont
gérés de façon transparente pour les utilisateurs : ils peuvent les accéder par de
simples appels à fonction. Au niveau le plus bas de cette architecture l’algorithme
Exclusive Locks for Mobile Processes, ELMP, assure la cohérence et garantie
l’ordre logique des requêtes. Tous les opérations de notre architecture ont un coût
amortie de O(log n). Une évaluation expérimentale valide les aspects pratiques
de notre proposition.

Mots-clés : cohérence de données, pair-à-pair, accès aux données, ordre logique
de requêtes, mappage de ressources

Data handover on a peer-to-peer system 3

1 Introduction and Overview
Large-scale distributed computing systems are serving a growing number of re-
search communities and industries.

So-called Grid Computing aggregates large scale clusters to provide seamless
and scalable access to wide-area distributed resources such as CPU cycles and
storage of computers. Research has focused on different issues such as resource
location and management, utilizing idle compute cycles, distributed scheduling,
remote work processing, security issues and fault-tolerance. While Grid environ-
ments bring the advantages of an economy of scale, their heterogeneous structure
limits the efficient use of system resources.

Peer-to-peer systems are viewed as overlay networks organized on top of a
physical network. File sharing, process sharing and collaborative environments
are some examples of applications in that domain. They are able to handle com-
plex queries, but do not guarantee to respond to requests in bounded time. To that
aim, they would need an explicit self-organization policy.

Combining Grid and peer-to-peer technologies provides the opportunity to do
computations while sharing resources on peer-to-peer networks. Peer-to-peer Grid
computing is interesting for applications that pursue a wide number of computa-
tional tasks and that access data resources concurrently. Challenges and open-
issues raised by the research community are cost reduction, improved scalability
and reliability of nodes that hold data, autonomy and anonymity.

SETI@HOME Anderson et al. [2002] is the most famous implementation of
peer-to-peer Grid computing. The success of the project came from the aggrega-
tion of otherwise unused CPU time. The XtremWeb Fedak et al. [2001] peer-to-
peer Grid computing project deploys and executes parallel and distributed appli-
cations on public resource infrastructures. It relies on a scheduling algorithm that
assigns job requests to peers according to predetermined rules.

The goal of the present paper is to extend peer-to-peer Grids from only ag-
gregating CPU cycles to a more general resource sharing model for parallel dis-
tributed computing.

JXTA Antoniu et al. [2005] provides a collaborative platform for a wide range
distributed computing applications. It provides a network programming and com-
puting infrastructure and allows the easy incorporation of new protocols and ser-
vices, which can be operated by a wide range of users.

JXTA attaches a unique ID (generated by the users) to each peer in the group
and does not guarantee uniqueness across all peers or across multiple groups Milo-
jicic et al. [2002]. This results in a lack of scalability. The authors of Antoniu et al.
[2007] have experimentally evaluated the scalability of JXTA protocols, but did
not include the volatility of peers into their study.

In our approach, we provide the possibility to use and share data resources be-

RR n° 8690

Data handover on a peer-to-peer system 4

tween a group of peers belonging to the same application. We target computation-
intensive applications that require remote data resources. Simultaneously we aim
to hide all underlying system complexities from users.

Possible application areas include the energy and financial industries, or se-
mantic web services.

There has been very little research in the area of distributed computation with
pure peer-to-peer networks. Most schemes are based on federating organizational
domains rather than using the Internet.

We aim at users who are familiar with distributed and parallel libraries. We
want to facilitate their task of claiming remote resources by allowing them to
simply insert function calls in their existing code.

Data utilization in parallel and distributed systems relates to models and paradigms
that originate from two separate classes of architectures: shared and distributed
memory. Shared memory based programming environments are commonly thread
based openmp, while distributed memory architectures use message passing inter-
faces such as MPI Arquet [2001].

In grid and peer-to-peer environments, applications may access data resources
without prior knowledge of whether or not these are located on the same host or
on a distant one. Therefore, both classical paradigms are not sufficient for such
environments.

In Caniou et al. [2014], the authors present a basic implementation of the OGF
standard GridRPC Data Management API Caniou et al. [2012] and its integration
in two different middlewares. The API takes into account both synchronous and
asynchronous calls, while the Data Management standard provides a modular ar-
chitecture that ensures immediate portability and interoperability between the API
and the middlewares. There is no theoretical study of the model provided. Our
proposal is complementary to this approach by providing transparent data access
and making our API completely independent of the chosen middleware. More-
over, both theoretical and experimental studies of scalability are given.

1.1 Motivations
We aim to deploy an easy-to-use API that calls and handles resources on our pro-
posed Grid computing environment. The user only needs to know identifiers of
requested resources. If the request has been issued, the system provides it within
a finite time. The supporting library must be able to cope with all requirements
for large scale distributed systems such as grids, in particular heterogeneity, scal-
ability and mobility of peers.

In our model, applications evolve on top of a peer-to-peer Grid architecture
with completely decentralized peers. The distributed infrastructure we provide
should address following issues:

RR n° 8690

Data handover on a peer-to-peer system 5

Robustness: Peers that comprise the system rely on the flexible nature of peer-
to-peer networks. They enjoy a certain degree of autonomy. Even if they
host resources, they may unsubscribe.

Scalability: Individual peers never deal with the whole set of peers that comprise
the system, but only with a small subset of peers that are related to the
particular usage of the resource that a peer has. In case of the need for more
compute power or storage capacity, the application may launch new peers
that join the system.

Consistency: Users should have a consistent view of the resource, despite of the
dynamic features of the underlying system. Once the data in acquired lo-
cally by a given peer, it should then be updated transparently, before making
it available again to other peers.

Cooperation: Peers can act both as consumers and as providers of resources.
Moreover, peers cooperate to satisfy various requests from users.

Information hiding: The cooperation model we propose is based on a full sepa-
ration between users, peers and data location. No user that wants to use the
system has to know names and addresses of all peers, especially not the one
currently holding the resource.

Transparency: The peer-to-peer network may evolve for different reasons and
users should not be concerned by changes that are induced by this evolution
of the underlying system. Their only role is to handle computational tasks
by inserting the set of proposed functions in existing applications.

1.2 Contributions
We propose several contributions that are situated on two different levels:

1. At the applicant level, we present the Data Handover interface (DHO) in-
terface for claiming and acquiring resources. It proposes an abstract view
of these resources and is implemented as the top level of a three-level archi-
tecture. DHO had previously been introduced in Gustedt [2006], Hernane
et al. [2011] but had only been realized with a centralized architecture.1

DHO uses a mediator process that satisfies requests launched by users, and
includes an abstraction level between resource and memory through a han-
dle.

1In contrast to the original DHO proposal, here we present it solely for a write exclusive mode.

RR n° 8690

Data handover on a peer-to-peer system 6

A user that claims the resource locally by using DHO is unaware of the
complexity underneath, even if there are lots of peers in the system. All
technical information such as resources location and physical characteristics
of the network are hidden and encapsulated in a data structure called handle.

We replaced the Client-Server paradigm that had been used for DHO in
previous work by a peer-to-peer paradigm. We implemented a mediator
process within each peer that replaces a separate, fixed, server entity, which
had been used before.

2. On the lower level, we provide a peer-to-peer Grid architecture that meets
the challenges cited above.

For that aim, we propose a grid service that is modeled by a three-level
architecture. It guarantees responses of all data requests claimed by users
on the higher level (the third level), through DHO routines. The grid service
transparently achieves the desired requirements from above.

Based on our previous work, Hernane et al. [2012], we propose the Ex-
clusive Locks with Mobile Processes algorithm, ELMP, which is an ex-
tension of the distributed mutual exclusion algorithm of Naimi and Tréhel
[1988]. Together with a data structure that provides scalability of processes
it ensures consistency when accessing a critical section of the application.
ELMP acts on the lower level of the grid service and provides consistency,
scalability and cooperation.

The ELMP algorithm also address the potential flooding caused by too
many new arrivals in a DHO system. The shape of the Parent tree is con-
stantly monitored during and after each atomic operation. Such a require-
ment prevents the flooding of the root by new insertions or the unpropor-
tional increase in height of the tree. All operations involved in maintaining
a balanced tree-structure are still bound to a logarithmic scale.

The rest of this paper is organized as follows: after describing the basics of
the Naimi and Tréhel algorithm in Sections 2 and 3 we introduce the algorithm
Exclusive Locks with Mobile Processes, ELMP, and the data structure in detail.
Then, in Section 6, we present the DHO library and our peer-to-peer Grid system.
Section 7 reports the results of the experimental evaluation of our proposal before
concluding in Section 8.

2 The Naimi and Tréhel Algorithm
Several algorithms have been proposed over the years to solve mutual exclusion
problems within distributed systems. They can be either permission-based (Lam-

RR n° 8690

Data handover on a peer-to-peer system 7

port [1978], Maekawa [1985], Ricart and Agrawala [1981]) or token-based (Naimi
and Tréhel [1988], Raymond [1989]). The token based algorithms restrict the
entrance into the critical section to the possession of a token, which is passed be-
tween two nodes. This group of algorithms is tree-based and many of them exhibit
a O(log n) complexity in terms of the number of messages per request.

Our work focuses on this class of algorithms for the sake of this message com-
plexity; the distributed algorithm of Naimi and Tréhel [1988] based on path rever-
sal is the benchmark for mutual exclusion in this class. Many other extensions of
this algorithm have already been proposed in the literature. A Fault tolerant token
based mutual exclusion algorithm using a dynamic tree was presented by Sopena
et al. [2005]. It improves over Naimi and Tréhel [1988] by ensuring a lower cost
in terms of messages in the presence of failures. In Hernane et al. [2012], we
have proposed a dynamic distributed algorithm for read/write locks that ensures
Safety and Liveness properties, and a logarithmic complexity. Before presenting
our mutual exclusion algorithm, we first describe that of Naimi and Trehel.

The Naimi and Tréhel algorithm is based on a distributed queue along which a
token circulates, representing the protected resource. Queries are handled through
a second structure, a distributed tree. The query tree is rooted at the tail of the
queue to allow to append new requests to the queue at any moment.

2.1 The basics
The basics of this algorithm are summarized following Naimi, Tréhel, and Arnold
[1996]:

1. There is a logical dynamic tree structure such that the root of the tree is
always the last process that requested the token. In that tree, each process
points towards a Parent. Requests are propagated along the tree until the
root is reached. Initially, all processes point to the same Parent which is the
root which initially holds the token.

2. There is a distributed FIFO queue which keeps requests that have not yet
been satisfied. Hence, each process ρ that requested the token points to the
Next requester of the token. This identifies the process for which access
permission is to be forwarded after process ρ leaves its critical section.

3. As soon as a process ρ wants to enter the critical section, it sends a request
to its Parent, waits for the token and becomes the new root of the tree. If it
is not the current root, the ρ’s Parent, σ, forwards the request to it’s Parent
and then updates its Parent’s variable to ρ. If σ is the root of the tree and
not inside the critical section, it releases the token to ρ. If it is inside or still
waits for the token, it points its Next to ρ.

RR n° 8690

Data handover on a peer-to-peer system 8

Each process maintains local variables that it updates while the algorithm evolves:

Token present: A Boolean set to true if the process owns the token, false other-
wise.

Requesting cs: A Boolean set to true if the process has claimed the critical sec-
tion.

Next: The Next process that will hold the token, null otherwise. Initially set to
null. This might only be set while the process has claimed the token and a
non-satisfied request has to be served after the own request.

Parent: Initially the same for all processes except for the initial root itself.

Processes send two kind of messages:

Request(ρ): sent by the process ρ. to its Parent.

Token: sent by a process ρ to its Next.

we have the following invariant:

Invariant 1 At the end of request processing, the root of the Parent tree is the tail
of the Next chain.

The Naimi and Tréhel algorithm provides a distributed model that guarantees
the uniqueness of the token while ensuring properties of safety and liveness.

3 4

12 5

(a) initial state, ¶ is R

3 4

1 52

(b) Á requests the token

3 4

1 52

(c) Â requests the token

3 4

512

(d) À releases the token

3 4

512

(e) Ã requests the token

4

512

3

(f) Á releases the token

Figure 1: Example of the execution of Naimi and Tréhel’s Algorithm

An example of the execution of the algorithm is shown in Fig. 1. Gray circles
denote processes with requests, while the unique black circle is the one that holds

RR n° 8690

Data handover on a peer-to-peer system 9

the token. Initially, process ¶ holds the token, Fig. 1(a). It is the Parent of
the remaining processes and the root, R of the Parent tree. process Á asks the
token from its Parent, Fig. 1(b). Thus, ¶ points towards Á and updates its Next
variable to the same process. Afterwards, Â requests the token, Fig. 1(c). ¶
then forwards the request to its new Parent, process Á which updates in turn its
variables, Parent and Next to Â. In Fig. 1(d), À releases the lock, while · gets
it and the Ã in turn, requests the critical section, Fig. 1(e). Thus, processes À
and Â point their Parent variables to Ã. Obviously, the latter updates its Next to
process Ã. Finally ¸ gets the lock, Fig. 1(f).

2.2 Concurrent requests
Within the Naimi and Tréhel algorithm, a given Parent can be queried simulta-
neously by different processes. We refer to Fig. 2 to explain consecutive access
requests. This example is taken from Naimi and Tréhel [1988] where it is pre-
sented in the context of node failures.

32 4 5

1

(a) initial state

2 4 5

3 1

(b) Â requests the token

2 4

3 1

5

(c) Á and Ä request the
token

4

3 1

2 5

(d) Á and Ä in transit

2 4

3 1

5

(e) Ä in transit

21 21 212 4

213 1

215

(f) completion of requests

Figure 2: Example of concurrent requests in Naimi and Tréhel’s Algorithm

Initially, Fig. 2(a), process ¶ holds the token and Â claims the critical section
by sending a request to its Parent. In turn, ¶ updates its Parent and its Next to Â,
Fig. 2(b). Then, processes Á and Ä claim the critical section. They send request
to ¶ and set forthwith their Parent to null. So, ¶ points towards Á and forwards
the request to Â, Fig. 2(c). Meanwhile, process Ä waits and is disconnected from
the tree. Once ¶ sent the request of Á to Â, it switches to Ä’s request. Thus, it
forwards the request to Á and sets its Parent to Ä. Meanwhile, Á is cut from the
tree, Fig. 2(d). In Fig. 2(e), request of process Á is achieved and that of Ä ends in

RR n° 8690

Data handover on a peer-to-peer system 10

Fig. 2(f). We notice that, processes set their Parent variable to null as soon as they
forward the request. Within a system of n processes, n-1 processes may request
the token concurrently and this will generate n disjoint components. The Parent
relation then is not a tree but only a forest.

3 A balanced tree structure
As we have seen in the discussion above, in the original version of the Naimi and
Tréhel algorithm, the Parent relation becomes disconnected as soon as a process
ρ has requested the token. The connectivity information remains implicit in the
network, namely through the fact that ρ’s request for the token eventually gets
registered in the process r (by updating its Next pointer) that will receive the
token just before ρ.

This lack of explicit connectivity information makes it difficult for a process
to leave the group, if it is not interested in the particular token that is represented
by the group. It is difficult for any process to determine, if its help is still needed
to guarantee connectivity of the remainder of the group or not. Furthermore, the
structure provided by the original algorithm lacks flexibility, it no longer meets
current needs of large-scale dynamic systems. In our proposal, processes handle
one request at a time.

In this section, we provide a new structure, which addresses following issues:

1. The maintenance of the connectivity such that any node will always be able
to leave the group within a “reasonable” time-frame; “reasonable” here be-
ing the time needed to forward information to the other processes.

2. The possibility for new nodes to join the system whenever possible.

3. The control of the shape of the tree in order to meet the balancing require-
ment, such that all operations belonging to the system are bounded by a
complexity of O(log n).

We assume that initially, processes are arranged in a balanced tree-structure
wherein all arrows point towards the direction of the root holding the token. The
balanced shape of the tree is maintained according to well known strategies. We
report possible choices for these strategies in Section 4.5.

Beside the variables defined in the original Naimi and Tréhel algorithm, each
process σ additionally handles the following:

ID We introduce a new variable ID that holds a number that will be used as a
tie breaker during departure (see Section 4.3). The current root of the tree
will maintain a global value that is the maximum of all these ID. Since new

RR n° 8690

Data handover on a peer-to-peer system 11

processes must first reach the root, r, such a value can easily be maintained
by that root and propagated along if the root changes.

Predecessor: Each process knows who will hold the token before it. It is easily
updated simultaneously as Next. Instead of a distributed queue, the Next
and the Predecessor form a doubly linked list. Once a process r passes the
token to its Next σ, r’s Next and σ’s Predecessor are set to NULL.

With the aim of maintaining the connectivity of parental structure as well as
of the linked list, two variables are added and associated to each process σ.

children: A list of Child processes.

blocked: A list of processes that are Blocked (by σ). The Blocked list guarantees
an atomicity on the path borrowed by a task undertaken by σ.

The control of the shape of the tree is done through the additional following
variables (see Section 4.5):

height(σ): The height of the subtree rooted at a process σ, which is the longest
distance in terms of edges from σ to some leaf.

weight(σ): The weight of σ, i.e, the number of leaves belonging to the subtree of
σ.

These variables are used for decisions that concern the restructuring of the
tree, for example to find a position for a new arrival. They are updated whenever
necessary. Note that such operations require no more than O(log n) messages,
since the tree is consistently kept balanced.

4 Exclusive Locks for Mobile Processes (ELMP) al-
gorithm

The ELMP algorithm is characterized by a set of atomic operations that a process
σ may use. Such operations are always either fully completed or fully canceled.
To describe our algorithm, we introduce a “State” variable for each process. It
has different values to indicate the specific task, which the process is currently
completing. Fig. 3 exemplifies our approach and illustrates the state concept. In
this case, ¶, which is initially the root of the tree, holds the token.

The white circles denote Idle processes, which are not involved in any opera-
tions (for themselves or for others) and may directly switch to any other state.

The following section describes the activities that are defined by the ELMP
algorithm involving σ, a given process in the Parent tree.

RR n° 8690

Data handover on a peer-to-peer system 12

1

2 3 4

8 9 10 5 6 711 12 13

(a) 12 requests the token, it blocks its chil-
dren.

1

2 3 4

8 9 1011 12 13 5 6 7

(b) 8 requests the token, it blocks its children.

1

2 3 4

8 9 1011 12 13 5 6 7

(c) 12’s request reaches first the root.

1

2 3 4

8 9 1011 12 13 5 6 7

(d) The root blocks its children, 8’s request
fails.

2 3 4

8 9 10 111 12 13 5 7

6

(e) Swapping between 1 and 12

blockedThe root Busy

Parent link

Sending requestBusy

Requesting

Idle

Figure 3: Handling concurrent requests in the ELMP algorithm

RR n° 8690

Data handover on a peer-to-peer system 13

4.1 Requesting the token
If σ wants to access the critical section, it first needs to be Idle. It then starts
a request for getting the token, switches to the state Requesting and waits for a
response. Such a response can be positive or negative. Dark gray circles in the
figure denote Requesting processes. σ remains in this state and is unable to receive
other requests until the first request has been completed (such as Å in Figs. 3(a)
and 3(b)). The blocked list of σ will include all corresponding children (bold
circles).

Algorithm 1 summarizes the various steps that a peers σ takes to request the
token:

1. Initially, σ walks up the tree and notifies processes p1, . . . , pn on the path
about the insertion operation (lines 5 to 10 of Algorithm 1). In this case p1
is the Parent and pn is the current root. These processes will all switch to
the Busy state (see Section 4.2), but will not change their Parent pointer.
Note that, processes on the path to the root form a Parent branch of σ (as
processes Ã and ¶). If at least one process is not available, σ tracks back
and switches the Processes on the path back to the Idle state. σ then starts
over (lines 4 and 17 of Algorithm 1). This is the case of process Ç which
tries to send a request to its Parent (process Â). The request of Ç fails
because the request of Å reached the root first, see Figs. 3(b) and 3(c).

Once the root is Idle, it includes its children in the blocked list, in this case
consisting of Á, Â and Ã, see Fig. 3(d).

2. σ and the current root r exchange their positions. Their children are still
blocked (lines 15 and 16 of Algorithm 1). Process r now ceases to be the
root and its children update their Parent before returning to the Idle state.
In our example, this is the case for Á, Â and Ã as well as for children of
process Å, see Fig. 3(d).

3. The new root σ, see Å in Fig. 3(e), sends acknowledgments to the processes
p1, . . . , pn−1 on the path, changes its Parent to empty and its Predecessor
to r. σ may be involved in re-balancing the tree before returning to the Idle
state, see Section 4.6.

4.2 Handling an incoming request
If σ is Idle, it can deal an incoming request and then, may become Busy (light gray
circles of Fig. 3).

σ then handles an insertion request for another process ρ, Å for example.
This is the case for Ã, Â and the current root ¶. σ is not ready to forward other

RR n° 8690

Data handover on a peer-to-peer system 14

Algorithm 1: Requesting the token, process must be in Idle state
i← 1;1

success← false;2

State← Requesting;3

do4

while (i <= n ∧ success) do5

sends request message to Parent =pi;6

Wait for state(pi);7

if state(pi) 6= Idle then8

success← false;9

i++;10

if (i = n+ 1 ∧ success) then11

for item ∈ children list do12

Add item to Blocked list;13

Remove item from children list;14

Send children list to pn;15

Wait for children list of pn;16

Update children list;17

while ¬ success ;18

Parent← null;19

State← Idle;20

RR n° 8690

Data handover on a peer-to-peer system 15

insertion requests, to request the token for itself, or to be involved for the departure
of another process.

If the Parent of σ is empty (the case of the actual root), it exchanges its posi-
tion with ρ (the new root). It also sets its Next variable to ρ and updates its list of
children (line 17 of Algorithm 1). In Fig. 2(e), Å and ¶ exchange their positions
at the end of the requesting process of Å. Then, upon receiving an acknowledg-
ment from ρ, σ switches back to the Idle state. It may request the token for itself,
as it may be called again for further operations.

4.3 Disconnecting
The Exiting state denotes the disconnecting activity for σ. When in that state,
σ negotiates with some other processes (see below) and must wait in case these
are, for example, in the middle of requesting the token (Requesting) or themselves
Busy or leaving the system, or involved in the tree-restructuring.

In fact, a process σ does not disconnect from the Parent tree and from the
linked list Next-Predecessor without precaution. It has to satisfy a number of
constraints such that the disconnection will never compromise the consistency of
the algorithm as a whole, nor the connectivity of the Parent tree and in particular
not that of the linked list Next-Predecessor. Before σ can disconnect it must find
replacements for all the roles that it plays in the structure.

From an application point of view it makes no sense for a process to leave
the system while it is inside the critical section, or while it attempts to enter it.
Therefore we can require that to be able to switch to the Exiting state, σ must be
Idle and must not have requested the token.

The fact that σ must not have requested the token does not mean, that it cannot
actually possess it. σ may well be the last process that had accessed the critical
section. The following lemma is immediate:

Lemma 1 Let σ be a process that is Idle and that has not requested the token.

1. σ possesses the token iff it is the root of the Parent tree.

2. If σ is the root of the Parent tree, no other process has successfully inserted
a token request.

Algorithm 2 summarizes the effective departure of σ from the system. During
this departure, σ will contact all its neighbors in the Parent tree. These are its
children and its Parent, if it has one.

Previously being Idle, σ switches to the Exiting state. For all its neighbors
consisting of Parent and children, σ initializes a handshake with a process η:

RR n° 8690

Data handover on a peer-to-peer system 16

Algorithm 2: Disconnecting, require Idle state
Neighbors list← {Parent ∪ children};1

Blocked list← ∅;2

success← false;3

do4

while (¬ success ∧ Neighbors list 6= ∅) do5

State← Exiting;6

if item (∈ Neighbors list) is Idle ∨ (item is Exiting ∧ ID <7

ID item) then
Add item to Blocked list;8

Remove item from Neighbors list;9

else10

for item ∈ Blocked list do11

Add item to Neighbors list;12

Remove item from Blocked list;13

success← false;14

State← Idle;15

if Neighbors list = ∅ then16

success← true;17

while ¬ success ;18

if Parent 6= ∅ then19

sends Blocked list to Parent;20

else21

elects ρ = new parent among Blocked list;22

sends Blocked list - {ρ} to ρ;23

sends token to new parent;24

for item ∈ Blocked list do25

sends acknowledgments;26

RR n° 8690

Data handover on a peer-to-peer system 17

4

32 8 7

1

8 7 9

432
9

Figure 4: Disconnection of 1 and electing 4 as new root

If η is Idle, it switches to Blocked (by σ). σ moves η from its children to its
blocked list.

If σ and η are both exiting, the one of them with lower ID has a priority for
that request. The one with the higher ID switches to Blocked (by the other), and
updates its lists analogous to the previous point (lines 7 to 9 of algorithm 2). If σ
fails to move all its neighbors to the Blocked list it switches back to Idle and starts
over.

Now all neighbors of σ are Blocked (by σ) and thus its children list is empty
and all neighbors are listed in blocked. If σ is not the root of the tree, it chooses
ρ = Parent, otherwise it is in the situation of Lemma 1 and chooses ρ among its
children, as in Fig. 4, where ¶ chooses Ã among its children. Note that If σ has
neither Parent nor children, the system consists only of σ.

σ notifies its neighbors of the choice of ρ. ρ itself will discover by that message
that it has been chosen and that it will be the new root of the tree (lines 22 to 24
of algorithm 2). σ sends its list blocked (that are Á and Â in Fig. 4) (excluding ρ)
to ρ, Ã. σ waits for an acknowledgment from ρ that it has integrated the list into
the list of its children.

Finally, σ informs all its neighbors that it has completed the departure process.

4.4 Blocking mechanism
The Blocking state denotes a specific imposed situation. In fact, σ becomes
Blocked if another process ρ succeeds in switching it to that state. The Blocked
state is closely tied to Exiting, see above. There are two possible scenarios:

• σ is part of an unbalanced branch of the tree. Thus, it will be blocked for
a subsequent repositioning in the tree. In Section 4.6.1 below, we present
possible strategies for maintaining the tree as balanced in case of departure.

• An other process ρ that is disconnecting successfully (as described above)
blocked σ.

In fact, ρ (À in Fig. 4) will promote its children and its Parent to the Blocked
state, such that they delay any requests that might be pending in their sub-
trees (as processes Á, Â and Ã in Fig. 4). Among these blocked neighbors,

RR n° 8690

Data handover on a peer-to-peer system 18

ρ will chose another process η (that may be the same as σ) that will inherit
all information that ρ held for the system. This is the case of Ã. Namely, the
children of ρ will become children of η and if ρ held the token previously to
its departure, η will do so thereafter.

The blocking mechanism will also be applied to processes that are candi-
dates for displacement for the balancing strategies, see Section 4.6.1.

Note that σ may switch to the Blocked state if it is Idle or if it is Exiting and if
its ID is greater than that of another process ρ that attempts to exit simultaneously.

The actions that a neighbor σ of a disconnecting process ρ has to perform
during the Blocked state are summarized as follows:

1. σ waits to receive the name η of the process chosen by ρ as Parent and sets
η as its new Parent.

2. If σ is choosen as Parent, then it waits to receive the list of children from ρ,
and updates its list of children accordingly (as ¹ in Fig. 4).

If ρ is the same as Parent, we have that σ = η and we are in the situation of
Lemma 1. σ becomes the new root of the tree. It sets its Parent accordingly
and notes that it possesses the token.

3. After finishing its update, σ sends an acknowledgment to ρ. Then, σ waits
that ρ signals the completion of its departure and finally switches back to its
previous state (Idle or Exiting).

4.5 Balancing strategies
Many approaches have been proposed in the literature in order to achieve efficient
maintenance, mainly for binary trees, with the challenge of finding a balance cri-
teria that ensures a logarithmic height of the tree. We outline two approaches.

The first one is to restrict the shape of the tree such that it has order m. In Ja-
gadish et al. [2005, 2006], the authors proposed a balanced tree structure overlay
on a peer-to-peer network. It is based on a binary balanced tree (BATON) and on
m-order trees (BATON*). Therein joining and departures of nodes are handled
well and take no more than O(log n) steps. Thereby, new nodes will be inserted
into positions that are close to the leafs and a balanced growth of the tree is guar-
anteed. For departures, they replace non-leaf nodes by leaf-nodes.

Additionally, links between siblings and adjacent nodes are maintained. This
allows to jump in the tree, and to reach the root rapidly. This is particularly in-
teresting for new processes that try to get their ID from the root. The cost of all

RR n° 8690

Data handover on a peer-to-peer system 19

atomic operations handled by the structure will then be significantly reduced since
the height of the tree is controlled.

Thus, if we opt for this schema, we should review the progress of events that
make changes in the shape of the Parent tree (see below).

The second strategy is a ”lazy” mode. Balancing of the tree is delayed until it is
really needed. In this approach, no shape restriction is given as long as the height
of the tree does not exceed some value defined by a balance criteria Andersson
[1999], Galperin and Rivest [1993]. In Andersson [1999], the author defines α
log|weight(σ)|, where α is some constant > 1. weight(σ) refers to the weight of
any process σ as defined in Section 3.

Thus, as long as the tree is not too high, nothing is done. Otherwise, we
walk back up the tree, following a process insertion for example, until a node
σ (usually called a scapegoat) where height(σ) > αlog|weight(σ)|, is observed.
Thus, a partial rebuild of the subtree starting from the scapegoat node is made.
Many partial rebuilding techniques can be found in the literature as in Galperin
and Rivest [1993].

Based on these balancing policies, in the following we describe how to keep
our Parent tree balanced after the achievement of atomic operations handled by
processes in the ELMP algorithm (see Section 3).

4.5.1 Balancing following new insertions

Our model channels new insertions such that flooding the root by new processes
is avoided, since this could inhibit the handling of other requests. The follow-
ing steps that are carried out by a new process σ summarizes the processing of
insertion into the system.

1. σ first has to know some ρ, one of the other participants. With that informa-
tion, it searches bottom up in the Parent tree to find the actual root r. Note
that the root can be reached fast if we add adjacent links as in the BATON
structure Jagadish et al. [2005, 2006].

2. σ tries to include η, a process on the path to its blocked list.

3. If η is in a non-Idle state, σ restarts with a certain delay at Step 1 and re-
quests the same process ρ or another for the insertion issue. Note that η
allows a limited amount of insertion requests per unit of time.

4. Once σ reaches the current root r that is Idle, r moves to another state, Busy
for example and then:

(a) It assigns an ID to σ with the highest value. This ID is used in case of
a tie with another process, as in the case for departure.

RR n° 8690

Data handover on a peer-to-peer system 20

(b) If we make a shape restriction of the tree, r tries to find a Parent for
σ, probably down the tree, at a second-last node, that has less than m
children Jagadish et al. [2006].
In case of lazy mode, instead of finding a second-last node, σ simply
(after receiving the ID) inserts itself into ρ, the found process.
Afterwards, we back up along the path until a possible scapegoat node
is found. Note that this is can easily be done since height and weight
variables give appropriate information (for σ that is on the top) of the
subtree. If this is the case, a partial rebuild is issued. Note that pro-
cesses on the path of σ remain blocked until the subtree is known to
be balanced.

4.6 Balancing following a token request
The requesting processing we have presented in Section 4.1 does not affect the
shape of the tree. Indeed, at the end of a sending request, two processes (σ and
the old root) exchange their positions. Thus, the structure of the tree remains
unchanged.

4.6.1 Balancing following departure

The Exit strategy presented in Section 4.3 has to be slightly modified if we want to
keep the tree at an order m. σ that is Exiting will simply find another leaf process
as replacement that inherit all needed information, rather than making connection
between Parent and children, neither a new Parent among the list of children.

In case of lazy mode, assume σ that has not yet completed its departure be-
comes on the path of a partial balanced restructuring. Based on this information,
the Parent and subtrees on the top compute again their height and weight variables
and seek again a possible scapegoat process.

5 The proof of the ELMP algorithm
In this section, we will give formal proofs of the liveness and Safety properties.
The notion of liveness asserts that the critical section remains accessible for any
Requesting process. Safety ensures the exclusivity of access to the critical section.

Lemma 2 As soon as a request of σ reaches a tree-node ρ no other request of a
process below ρ can overtake it.

Proof: The Parent branch switch to Busy state upon being informed of the request
of σ. Thus, even if a request of another process σ′ that is launched after that of σ

RR n° 8690

Data handover on a peer-to-peer system 21

may move up in the tree, it will meet a Busy process. Thus, such a request cannot
progress before the one of σ is finished, it is the new root of the tree and Idle. �

Lemma 3 The Next and Predecessor variables form a doubly linked list.

Proof: The Next and Predecessor pointers are only set to a non-NULL value
during the handshake between the actual root r and the the inserting node σ, and
then point to each other. Next is only set to NULL when the process hands token
to its Next; Predecessor is only set to NULL when the process receives the token.
�

Lemma 4 (departure) A process σ that wants to leave the system can do so
within a finite time.

Proof: First consider a departing node σ that is not the root of the tree and
that is the only process in the system that is departing. Any child η of sigma will
either be Idle (and switch to Blocked) or be requesting the token for itself or some
descendant process. For the later, at the end of processing the request η’s Parent
will point to the actual root of the tree, and thus not be a child of σ anymore. A
similar argument holds for σ’s Parent: it may be in an non-Idle state for some
time, but at latest as it has processed token request from all its children, it will
become Idle again. Thus, after a finite time, all neighbors of σ will be Blocked,
and σ may leave the system.

Now suppose in addition, that there are other departing processes. A neighbor
η0 could eventually be Blocked (by η1), η1 Blocked (by η2), etc, but since our
system is finite, such a blocking chain leads to an unblocked vertex ηk that is
departing and that has no departing neighbors. Thus, the departure of ηk will
eventually be performed, and so the departures of all ηk−1, . . . , η1. Thus η0 will
eventually return to Idle and then either leave itself or be switched to Blocked (by
σ).

Observe that if η0 is the Parent of σ and has an ID that is lower than the one
of σ, it will leave the system before σ and σ may eventually become root.

Now, if σ also is the root, we have three possibilities:

• Another process requests the token eventually and σ will cease to be root.

• Another process ρ inserts itself to the system. σ will cease to be root.

• Any child η of σ in children will either depart from the system or will even-
tually become Idle. Then σ will be able to enter in a handshake with η and
switch it to Blocked. Since children is finite and no new processes are added
to it, eventually all children of σ will be Blocked and listed in blocked.

RR n° 8690

Data handover on a peer-to-peer system 22

Finally observe that only a finite number processes can have an ID that is
smaller that the one of σ. Thus σ while waiting for its departure, it can become
root at most ID− 1 times �

Lemma 5 The Parent tree as well as the doubly linked list are never discon-
nected.

Proof: As long as there are no disconnections from the system (blocked state
and Lemma 3), the Parent tree and the doubly linked list remain connected in the
ELMP algorithm.

In case of departure of a given process σ, the Parent tree remains also con-
nected since during the effective departure of that process all neighbors are Blocked
until they receive a new Parent. �

Lemma 6 No other request of a process σ′ that arrived later at the root can be
completed before the request for σ.

Proof: Since no other request of a given process σ′ can be completed before
the previous inserted request of σ (Lemma 2), we show that it is also the case
during:

1. The departure of the Parent of a process σ.

2. Insertion of new processes to the actual root.

3. The tree restructuring process.

For (1), the Parent of a given process σ can not leave the system unless it is
in the Idle state. Since it is Idle before switching to Exiting, no request of another
process σ′ on the path of σ can be in progress.

Furthermore, the Blocked state of the neighbors ensures that all necessary in-
formation related to any operation triggered by processes of this branch of the tree
is conserved. Finally, on completion of the departure process, there is always a
process that inherits all necessary information held by the leaving process.

For (2), new insertions never compromise the order of requests at the root,
whatever the number of processes. Indeed, a process σ that wants to inserts itself
to the system first checks the availability of processes on its path to the root (Sec-
tion 4.5.1). Otherwise, σ tracks back. Thus, there is no request in progress which
can not be achieved.

For (3), whichever strategy is adopted for the tree-balancing, the blocked state
avoids any overlap between operations handled by the ELMP algorithm. �

Theorem 1 (Liveness) If a given process σ claims the critical section it may ac-
cess it within a finite time.

RR n° 8690

Data handover on a peer-to-peer system 23

Proof: This now follows directly from the following facts:

• The waiting time for the completion of a request is finite.

• The Parent tree as well as the doubly linked list are never disconnected
(Lemma 5)

• ELMP guarantees that requests are treated as the same chronological or-
der as their reception at the current root, even in case of departure or new
insertions (Lemma 6).

�

Theorem 2 (Safety) At any given time t, there is exactly one token in the system.
In other words, the system guarantees that at most one process carries out the
critical section, and additionally, that the token never gets lost.

Proof: Initially, there is one token in the system, it is held by the root, p0.
As the ELMP algorithm evolves, the token is passed from one process to another
across the linked list (Next, Predecessor). Whenever no process has claimed the
token, it remains at the current root of the Parent tree.

A process σ is only leaving the system if it has not requested the token. If it
holds the token without having requested it, we are in the situation of Lemma 1,
that is σ is the root of the tree and no other process has requested the token. In
such a case, the token is passed to the new root of the tree. �

6 Transparent distributed data management
The peer-to-peer GRID system we present in this section provides and manages
concurrent access to critical remote resources. It ensures consistency and avail-
ability of that resources distributed over peers that may appear and disappear. To
achieve these objectives, we use an API called DHO Gustedt [2006]. We pro-
pose to implement that API over a multi-level architecture that includes ELMP
algorithm. With a set of functions, DHO introduces an interface that mediates
between the abstract concept of a data resource and its concrete realization in a
process’ address space.

The main idea is to allow users to claim and manage remote resources in their
local memories, simply by inserting some functions in their existing code. Then,
an application process (peer) may gain access to a specific data without knowing
if that resource is already present locally or on a remote machine. For example, the
function dho ew request(DHO t* h) takes only an internal structure (called

RR n° 8690

Data handover on a peer-to-peer system 24

handle) as an argument. This then encapsulates all the necessary information
about the data request.

The important function to call prior to any request is:

dho create(DHO t* h, char const* name)

This function initiates the handle for a resource named name. All remaining
functions then only use that handle to specify the linked resource. Applications
using DHO routines need at least one handle per resource

6.1 Cooperation model with DHO
Two asynchronous processes are assigned in the local space of the same peer, the
resource manager and the lock manager.

They interact locally with each other but may act separately by interacting
with other processes, commonly with those of the neighborhood. Both processes
toggle between different states according the progress of local requests and of the
distributed environment.

As a reaction to any of the DHO function calls, the resource manager is con-
tacted, first. It manages the data resource for the local peer. It maps that resource
into the local address space and transfers the current version of it to or from an-
other peer.

However, to obtain exclusivity on the resource and to know its location, the
resource manager forwards the request to the second process, the lock manager.
The lock manager remotely negotiates the locking of the data with other lock man-
agers. As a whole, the lock managers of all peers ensure the overall consistency
of the data according to the ELMP algorithm (Section 3).

During negotiation phases, the peer, the resource manager and the lock man-
ager keep inherent information about their current activities by means of assigned
states that are saved in the handle. Fig. 6 outlines states of the resource manager
making up the DHO life cycle. The locking/mapping is effectively done when the
lock manager acquires the token.

Figure5 illustrates our architecture with two peers, with DHO sample code
that claims the same data.

In the following, we describe the path of a request through different processes
inside and outside the same peer and finally, how resources are mapped into local
memory.

6.2 DHO life cycle
Now, we explore the progress of a given request from the call of dho ew request
function up to the locking phase. Since we will be interested in the performance

RR n° 8690

Data handover on a peer-to-peer system 25

...

...

...

1

2

44

33

2

5

6

DHO ew release(DHO t* handle)

DHO destroy(DHO t* handle, char const* A)

DHO create(DHO t* handle, char const* A)

DHO test(DHO t* handle)

DHO ew acquire(DHO t* handle)

DHO destroy(DHO t* handle, char const* A)

DHO create(DHO t* handle, char const* A)

DHO ew request(DHO t* handle)

DHO ew release(DHO t* handle)

DHO ew acquire(DHO t* handle)

DHO test(DHO t* handle)

DHO ew request(DHO t* handle)

Level 1

Level 2

Level 3

Resource: A
Next: 8
Predecessor: 1
State(resource manager): locked EW

State(lock manager): Busy

handle

Resource: A

handle

Rm Rm

LmLm

User code (Peer A) User code (Peer B)

sleep(TWblocked)

sleep(Tlocked) sleep(Tlocked)

sleep(TWblocked)

sleep(TWblocked)

Next: 5
Predecessor: 8
State(resource manager): Req EW

State(lock manager): Idle

Figure 5: Handling requests between two neighboring peers. Rm and Lm that
are respectively the resource manager and the lock manager are abbreviated for
readability

RR n° 8690

Data handover on a peer-to-peer system 26

of our approach, using notation with “TName” during that description we will also
name some of the delays of these phases.

The main phases of DHO and states through which a resource manager and a
lock manager go are designed to form a cycle. We emphasizes various steps and
interactions between processes by the corresponding numbered circles of Fig. 5.
The life cycle of a DHO locking and mapping request is described as follows:

Let σ be a given peer that is initially Idle. The corresponding resource man-
ager will be then valid just following the call of DHO create À.

1. Following the call of dho ew request, the peer becomes Req and the re-
source manager takes control Á. Below, the corresponding resource man-
ager sets the handle to the req ew state Â and forwards the request to the
lock manager of the same peer Ã. The latter asks its Parent for the token
and becomes Requesting. The lock manager goes back into the Idle state
upon completing the request and moves to the root position in the Parent
tree (Section 4.1).

2. The lock manager may expect any requests from its Children. It can then
become Busy or blocked by another peer.

3. Upon completing the routing request, the peer is placed at the head of the
linked list Next-Predecessor. The lock manager expects the token from
its Predecessor. Meanwhile, the application itself may continue while re-
source manager is (TWblocked) regardless if the resource has been acquired.
TWblocked refers the to computation of the application that may occur regard-
less of the fact that a resource has been claimed. This sentence is bizarre,
here: According to the DHO life cycle. The peer calls dho test, À.
The corresponding resource manager Á queries the lock manager Ã if it
already has got the token. Now, two cases may occur (see Fig. 6):

(a) If the lock is held, the resource manager switches to grant ew state and
updates the handle Â. By TWaitGrant, we will denote the time to achieve
this state.

(b) Otherwise, the peer calls the dho ew acquire function and then,
regains the Blocked state. Likewise, the resource manager updates the
handle for the blocked ew value Â. The time that the peer waits until
that call will be denoted TWblocked.

4. After the Predecessor has released the resource, it forwards the token to its
Next that is Requesting, Idle or blocked Å. Once the token is acquired, the
lock manager immediately informs Ã the resource manager that amends
the state Â for the grant ew value.

RR n° 8690

Data handover on a peer-to-peer system 27

push
dho

ew
release

t
e
s
t

dho ew acquire
ny

dho ew request

dho create

dho destroy

invalid valid

req ew

grant ew

blocked ew

fetch ew

locked ew

Figure 6: State diagram of resource manager

5. At that point, the resource manager enters the intermediate fetch ew (Tfetch)
state to fetch the data from its Predecessor Å and then to map Á the data
into to the address space of the handle.

6. Once the mapping is done, the resource manager and the peer become re-
spectively locked ew and Locked.

7. The cycle is completed by a call to dho ew release. The peer becomes
Idle, again. Now, the resource manager is in the Unlock state. This is an
intermediate state during which the peer has already released the resource,
although the corresponding lock manager still holds the token and is ready
to forward it to a possible Next. After that, the resource manager will be
valid , again.

In an abstract way, we can say that the peer (represented by DHO functions),
the resource manager and the lock manager form a three level hierarchical archi-
tecture, where the lock manager carries out instructions of the ELMP algorithm
at lowest level. The access is granted according to a FIFO access control policy
and the data is then presented to the application inside its local address space.

Table 1 presents the hierarchical order of possible states caused by successive
events triggered from the three levels.

The overall architecture is constructed to allow an overlap of the activities of
the different processes. For example, by the set of states {Req, fetch ew,Busy}, we
can easily deduce that there are several activities that are simultaneous handled by
the same peer. Hence, that peer has issued a request that is currently in mapping

RR n° 8690

Data handover on a peer-to-peer system 28

p Idle Req Blocked Locked
h valid Unlock req ew grant ew fetch ew blocked ew locked ew

lh blocked Busy blocked Busy Requesting Busy blocked Busy blocked Busy blocked Busy blocked Busy

Table 1: List of combined states. For readability, the Idle state of the lock manager
is not represented. p: peer, h: handle, lh: lock manager

Listing 1: An example of an out of order DHO cycle�
DHO create (hand le , A) ;
DHO ew request (h a n d l e) ;
s l e e p (T1) ;
DHO ew request (h a n d l e) ; / / The p r e v i o u s r e q u e s t i s dropped
s l e e p (T2) ;
DHO ew release (h a n d l e) ; / / I g n o r e d
DHO ew release (h a n d l e) ; / / I g n o r e d
DHO create (hand le , A) ;� �

phase. Meanwhile, the associated lock manager may deal with another request
that it received.

6.3 Mobility of peers
The dho destroy function implements a voluntary departure of the hosting
peer regardless of the currently assigned state. Note that all DHO functions that
follow after dho destroy are ignored since the resource manager is invalid.

As a general policy, an application may chose not to respect the logical order
of the calls to DHO functions as presented in level 1 of Fig. 5. The consistency
of the locks is always guaranteed even if a DHO cycle is broken or canceled. The
concerned peer (as in Listing 1) will just loose its acquired FIFO position in the
queue of requests.

Once the resource manager receives the departure request from the corre-
sponding peer, it informs the corresponding lock manager, and this lock manager
carries out the departure part of the ELMP algorithm (Section 4.3). First, the lock
manager switches to Exiting. Then, it forwards the token to its Next or to one of
its neighbors, while the corresponding resource manager invites that neighbor to
mapping the data. At the end of the disconnecting process, the resource manager
destroys the handle by assigning an invalid state. Finally, the peer enters the Exit
state for the resource.

The dho create function makes the handle valid, again. The peer is con-
nected to a given Parent according to the ELMP algorithm and according to the

RR n° 8690

Data handover on a peer-to-peer system 29

Listing 2: Benchmark with DHO�
char c o n s t * name ;
d h o t * a ;
double T I d l e , T WBlocked , T Lock ;
d h o c r e a t e (name , &a) ;
do {

s l e e p (T I d l e) ;
d h o e w r e q u e s t (a) ;
s l e e p (T WBlocked) ;
d h o t e s t (a) ;
d h o e w a c q u i r e (a) ;
s l e e p (T Lock) ;
d h o e w r e l e a s e (a) ;

} whi le (t ime < 1 0 0) ;
d h o d e s t r o y (&a) ;� �

adopted balanced strategy (Section 4.5.1). From that point onward, the resource
manager will be able to handle exclusive requests submitted by the user, whilst
the lock manager will be ready to deal with those coming from children in the
Parent tree.

7 Performance evaluation
An experimental study of the DHO library according to a client/server pattern
was already reported Hernane et al. [2011]. We use the same experimental envi-
ronment, a socket based library belonging to the SIMGRID toolkit, see Velho and
Legrand [2009] and the same benchmark (Listing 2). As we can see, the code is
written independently of the underlying structure.

In this benchmark, peers carry out 100 DHO cycles by requesting the data
resource 100 times. Results refer to average values.

Three durations, TIdle, TWblocked and TLocked have been varied. These are appli-
cation dependent and may refer to computational periods in real applications. TIdle

denotes the delay between two calls, TWblocked is the time that the peer waits until
the call of dho ew acquire, while TLocked is the locking time, that is the time
that the application spends inside the critical section.

We performed experiments simulating a realistic platform (GRID’5000).
Besides the DHO cycle duration, Equation (3), we will analyze TWait, Equa-

tion (1), and TBlocking, Equation (2). TWait is the waiting time of a request, i.e the
time between the call to request and the completion of the data fetching opera-

RR n° 8690

Data handover on a peer-to-peer system 30

tion. TBlocking is the time a peer is blocked before acquiring the resource, i.e. the
time between the call to acquire and, again, the completion of fetching. They
are expressed by the following equalities, see Section 6.2 above for the different
times:

TWait = TWaitGrant | TWblocked + Tgrant | Tblocked + Tfetch (1)
TBlocking = Tblocked + Tfetch (2)

TDho = TIdle + TWait + TLocked (3)

7.1 DHO cycle evaluation with synchronous locks
We aim to asses the ability of our peer-to-peer GRID system to deal with compet-
ing requests for the same resource that are issued simultaneously. Since this is the
setting that stresses the platform the most, for the remainder of our discussion we
will set TIdle to 0. That is, peers insert a new request as soon as the previous cycle
is finished. We also have verified that our system is in no way disturbed when
dealing with different values for TIdle. Doing so, simply extends the overall appli-
cation time by the added TIdle value. So we will not go into details for scenarios
that vary TIdle.

First, we are looking into the dependency between TLocked and the size of the
data resource. First, we focus on synchronous locks with TWblocked = 0, that is
where the peer and the handle are blocked as soon as the request is issued. This
corresponds to a classical lock sequence that does not separate lock request and
acquisition.

Results in comparison to the previous client-server based approach are shown
in Fig. 7. We observe that the new peer-to-peer algorithm behaves much more
regularly, in particular for the extremes of the resource size. By doing some re-
gression of the values we find that the cycle time behaves as:

TDHO ' [Tlocked + Tfetch + α · η](q + 1) (4)

Where:

• α = 10.4 is a constant value that denotes a correction factor in the commu-
nication model of SimGrid, see Velho and Legrand [2009].

• η ' 430µs is an observed value that represents the cost produced by the
various exchanges between managers, namely between neighbors.

• q denotes the length of the request FIFO, represented by the doubly linked
list (Next, Predecessor).

RR n° 8690

Data handover on a peer-to-peer system 31

 0

 500

 1000

 1500

 2000

 2500

 3000

100 KiB 1MiB 10MiB 50MiB 100MiB 1GiB

T
(D

H
O

)(
s
)

Resource(MiB)

Peer−to−peer
Client−server

(a) TDHO for 5s inside critical section

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

100 KiB 1MiB 10MiB 50MiB 100MiB 1GiB

T
(D

H
O

)(
s
)

Resource(MiB)

Peer−to−peer
Client−server

(b) TDHO for 15s inside critical section

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

100 KiB 1MiB 10MiB 50MiB 100MiB 1GiB

T
(D

H
O

)(
s
)

Resource(MiB)

Peer−to−peer
Client−server

(c) TDHO for 25s inside critical section

Figure 7: Cycle time, TDHO in the Client-server paradigm and the peer-to-peer
GRID system.

η has been approximately 70µs in the client-server paradigm. Indeed, an extra
delay arises for the management of the peer-to-peer GRID system, specially for
the partial conversion of the tree structure that requires a great number of messages
between members of a given neighborhood.

Conversely, we observed that q was significantly reduced compared to the
client-server paradigm where the length was the number of pending requests. In-
deed, our distributed system involves various processes that operate simultane-
ously during the query processing such that the bottleneck of a centralized server
is avoided (see Table 1). The involved processes are mainly those from the neigh-
borhood of the peer that has inserted a request. For example, the mapping phase
involves resource managers related to the peer and its Predecessor. Meanwhile,
nothing prevents the associated lock managers to deal with possible arrived re-
quests. If the fetch ew state is time consuming in cases of large data sizes, the
corresponding peer may simultaneously engage in other related operations of the
peer-to-peer GRID system.

RR n° 8690

Data handover on a peer-to-peer system 32

7.2 DHO cycle evaluation with asynchronous locks
A second series of experiments now concerns a setting that uses non-blocking
locks, that is they distinguish a resource request and resource acquisition. Appli-
cations as above with an expected TWblocked time of 0 are strongly dependent of
the resource, whilst those with a significant value of TWblocked may make progress
a while acquiring the resource asynchronously.

Here, after an application dependent time TWblocked, the dho test function
returns the state of the handle. If grant ew, then dho ew acquire just acts as an
intermediate phase for the fetch ew state before then switching to that of locked ew

(Fig. 6). This series of benchmark is conducted with 50 peers. The data resource

 0

 5

 10

 15

 20

 25

 30

0 5 10 15 25

D
u

ra
ti
o

n
s
(s

)

T(Wblocked)(s)

T(DHO)
T(Blocking)

T(Wait)

(a) 0s in critical section

 240

 245

 250

 255

 260

 265

 270

 275

 280

 285

0 5 10 15 25

D
u

ra
ti
o

n
s
(s

)

T(Wblocked)(s)

T(DHO)
T(Blocking)

T(Wait)

(b) 5s in critical section

 720

 730

 740

 750

 760

 770

 780

0 5 10 15 25

D
u

ra
ti
o

n
s
(s

)

T(Wblocked)(s)

T(DHO)
T(Blocking)

T(Wait)

(c) 15s in critical section

Figure 8: Average duration of TDHO, TWait and TBlocked by varying TWblocked.

size is fixed to 50MiB. Fig. 8 shows the observed delays (TDHO, TWait and TBlocking)
with a set of experiences that fixes Tlocked and vary TWblocked. With Tlocked = 0 and
TWblocked = 0, (Fig. 8(a)), peers request then the resource once the mapping is
completed. In this case, it is clear that TDHO corresponds to TWait, so the lines are
superimposed.

Also, we note that TWait slightly increases in case of non-zero values of TWblocked,
Figs. 8(b) and 8(c), but this is not due to an extra latency for receiving the token.

RR n° 8690

Data handover on a peer-to-peer system 33

In fact, the resource manager assigns the granted ew state to the handle right af-
ter being informed by the lock manager that the token has been acquired. The
growth of TWait rather reflects that the grant is taken a bit later (Tgrant) because of
the increased application delay TWblocked.

From Figs. 8(b) and 8(c), we can conclude that if 5s is taken for TWblocked, a
good overlapping is provided for the application, specially between computation
and data transfer.

7.3 DHO cycle evaluation with mobility of peers
The last series of benchmarks concerns the mobility of peers. We aim to measure
the overhead that is produced by removing and joining peers from and to the
remaining system.

We divide the set of peers into two parts:

1. peers in the first subset perform a complete cycle, as that of Listing 2.

2. In the second one, peers perform an out-of-order cycle as given in Listing 1.

Note that the use of dho destroy and dho create functions imply mobil-
ity of the half of the system. Once dho destroy is issued, the resource manager
destroys the handle and becomes invalid. Then, all following DHO functions are
ignored. Thus, the lock manager performs the Exit strategy and the Insertion
process (see section 4.5.1) of the EMPL algorithm.

We only show the duration of uninterrupted DHO cycles that form the first
class, namely for the cases that 25%, 33% and 50% belong to the second class,
respectively.

The overhead is approximately the same for both sizes (Table 2) and the ad-
ditional latencies introduced by the departure of peers are negligible. Indeed, the
adopted structure and balancing strategies guarantee logarithmic complexity of
messages in all operations. We would expect, however, a relative increase of these
values with an even higher mobility frequency of peers.

Disconnection 50 peers 120 peers
25% 2.27s ±0.842% 4.27s ±0.725%
33% 2.65s ±0.98% 6.46s ±1.05%
50% 4.29s ±1.56% 10.34s ±1.68%

Table 2: The overhead caused by a group of disconnecting peers on DHO cycle
durations of the remaining peers.

RR n° 8690

Data handover on a peer-to-peer system 34

8 Conclusion and Futur Work
We have presented a peer-to-peer Grid system and API for the design of parallel
and distributed applications that integrates seamless handling of data resources.
The DHO API aims to ease development of resoure-intensive applications, while
the architecture upon which the system is based on guarantees transparency, ro-
bustness, flexibility and scalability. The big challenge we have been addressing is
to achieve all these properties along with a consistent data access between users
who are spread over a large distributed environment that evolves in time.

The ELMP algorithm ensures the required consistency. It also guarantees dy-
namicity and extensibility of the basic structure. Liveness and Safety properties
of the corresponding algorithm have been demonstrated. The balanced tree struc-
ture guarantees scalable performance. All operations within the ELMP algorithm
have a logarithmic cost, accounted in the number of messages that are issued per
operation.

The proposed peer-to-peer Grid system interfaces DHO routines and ELMP
algorithm. The resource manager and the lock manager introduce independent
levels in the architecture. Still, they cooperate closely together in response to var-
ious concurrent requests that are made by users. Non-blocking functions provided
by DHO allow to overlap computations and data transfer. Additionally, a second
type of overlap may occur between the different task that the two managers per-
form.

Indeed, even though they interact together to ensure consistency of the ap-
plication, they may carry out some tasks independently. The experimental study
has show an interesting property of this schema, namely the possible load sharing
between the two managers.

We have presented the first evaluation of our design. However, future works
are heading towards different directions. The API and library could be enhanced
by further: by functions that enable safety locking part of the same data resource
(mainly of large size) by different processes.

In the original DHO interface Gustedt [2006] there is a DHO duplicate
function to achieve this goal. It duplicates an existing handle but takes additional
arguments: offset and lengthwhich specify the desired subrange of the data.
To integrate this concept, an extended amended version of the entire design is
required. It will be interesting to address fault-tolerance issues. The current ap-
proach deals voluntary departures of peers and not unexpected ones. Finally, we
plan to test the present approach with real world applications.

RR n° 8690

Data handover on a peer-to-peer system 35

References
D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. Seti@home:

An experiment in public-resource computing. Commun. ACM, 45(11):56–61,
Nov. 2002. ISSN 0001-0782. doi: 10.1145/581571.581573. URL http:
//doi.acm.org/10.1145/581571.581573.

A. Andersson. General balanced trees. J. Algorithms, 30(1):1–18, 1999. doi:
10.1006/jagm.1998.0967. URL http://dx.doi.org/10.1006/jagm.
1998.0967.

G. Antoniu, L. Bougé, and M. Jan. Juxmem: An adaptive supportive plat-
form for data sharing on the grid. Scalable Computing: Practice and Expe-
rience, 6(3), 2005. URL http://www.scpe.org/index.php/scpe/
article/view/336.

G. Antoniu, L. Cudennec, M. Jan, and M. Duigou. Performance scalabil-
ity of the JXTA P2P framework. In Parallel and Distributed Process-
ing Symposium (IPDPS 2007), pages 1–10. IEEE, March 2007. URL
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?
punumber=4203121.

P. Arquet. Introduction à MPI – Message Passing Interface, 2001. www2.lifl.
fr/west/courses/cshp/mpi.pdf.

Y. Caniou, E. Caron, G. Le Mahec, and H. Nakada. Transparent Collaboration of
GridRPC Middleware using the OGF Standardized GridRPC Data Management
API. In The International Symposium on Grids and Clouds (ISGC), page 12p.
Proceedings of Science, February 26 - March 2 2012.

Y. Caniou, H. Croubois, and G. L. Mahec. Standardized multi-protocol data man-
agement for grid and cloud gridrpc frameworks. In Globe’14, pages 61–72,
2014.

G. Fedak, C. Germain, V. Neri, and F. Cappello. Xtremweb: a generic global
computing system. In Cluster Computing and the Grid, 2001. Proceedings.
First IEEE/ACM International Symposium on. IEEE Computer Society, 2001.

I. Galperin and R. L. Rivest. Scapegoat trees. In Proceedings of the Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’93, pages 165–174,
Philadelphia, PA, USA, 1993. Society for Industrial and Applied Mathemat-
ics. ISBN 0-89871-313-7. URL http://dl.acm.org/citation.cfm?
id=313559.313676.

RR n° 8690

http://doi.acm.org/10.1145/581571.581573
http://doi.acm.org/10.1145/581571.581573
http://dx.doi.org/10.1006/jagm.1998.0967
http://dx.doi.org/10.1006/jagm.1998.0967
http://www.scpe.org/index.php/scpe/article/view/336
http://www.scpe.org/index.php/scpe/article/view/336
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4203121
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4203121
www2.lifl.fr/west/courses/cshp/mpi.pdf
www2.lifl.fr/west/courses/cshp/mpi.pdf
http://dl.acm.org/citation.cfm?id=313559.313676
http://dl.acm.org/citation.cfm?id=313559.313676

Data handover on a peer-to-peer system 36

J. Gustedt. Data Handover: Reconciling message passing and shared memory. In
J. L. Fiadeiro, U. Montanari, and M. Wirsing, editors, Foundations of Global
Computing, number 05081 in Dagstuhl Seminar Proceedings, Dagstuhl, Ger-
many, 2006. URL http://drops.dagstuhl.de/opus/volltexte/
2006/297.

S. L. Hernane, J. Gustedt, and M. Benyettou. Modeling and experimental val-
idation of the data handover API. In J. Riekki, M. Ylianttila, and M. Guo,
editors, GPC, volume 6646 of Lecture Notes in Computer Science, pages 117–
126. Springer, 2011. ISBN 978-3-642-20753-2.

S. L. Hernane, J. Gustedt, and M. Benyettou. A dynamic distributed algorithm for
read write locks. In PDP, pages 180–184, 2012.

H. V. Jagadish, B. C. Ooi, and Q. H. Vu. Baton: A balanced tree structure for
peer-to-peer networks. In In VLDB, pages 661–672, 2005.

H. V. Jagadish, B. C. Ooi, K.-L. Tan, Q. H. Vu, and R. Zhang. Speeding up
search in peer-to-peer networks with a multi-way tree structure. In Proceedings
of the 2006 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’06, pages 1–12, New York, NY, USA, 2006. ACM. ISBN 1-59593-
434-0. doi: 10.1145/1142473.1142475. URL http://doi.acm.org/10.
1145/1142473.1142475.

L. Lamport. Ti clocks, and the ordering of events in a distributed system. Com-
mun. ACM, 21:558–565, July 1978. ISSN 0001-0782.

M. Maekawa. An algorithm for mutual exclusion in decentralized systems. ACM
Trans. Comput. Syst., 3:145–159, May 1985. ISSN 0734-2071.

D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard,
S. Rollins, and Z. Xu. Peer-to-peer computing. 2002.

M. Naimi and M. Tréhel. How to detect a failure and regenerate the token in the
log(N) distributed algorithm for mutual exclusion. In Proceedings of the 2nd
International Workshop on Distributed Algorithms, pages 155–166, London,
UK, 1988. Springer-Verlag. ISBN 3-540-19366-9.

M. Naimi, M. Tréhel, and A. Arnold. A log(N) distributed mutual exclusion
algorithm based on path reversal. J. Parallel Distrib. Comput., 34:1–13, April
1996. ISSN 0743-7315.

openmp. The OpenMP API specification for parallel programming. www.
openmp.org.

RR n° 8690

http://drops.dagstuhl.de/opus/volltexte/2006/297
http://drops.dagstuhl.de/opus/volltexte/2006/297
http://doi.acm.org/10.1145/1142473.1142475
http://doi.acm.org/10.1145/1142473.1142475
www.openmp.org
www.openmp.org

Data handover on a peer-to-peer system 37

K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM
Transactions on Computer Systems, 7:61–77, 1989.

G. Ricart and A. K. Agrawala. An optimal algorithm for mutual exclusion in
computer networks. Commun. ACM, 24:9–17, January 1981. ISSN 0001-0782.

J. Sopena, L. B. Arantes, M. Bertier, and P. Sens. A fault-tolerant token-based
mutual exclusion algorithm using a dynamic tree. In Euro-Par’05, pages 654–
663, 2005.

P. Velho and A. Legrand. Accuracy study and improvement of network simulation
in the SimGrid framework. In Simutools ’09, pages 1–10, Brussels, Belgium,
2009. ICST. ISBN 978-963-9799-45-5.

RR n° 8690

RESEARCH CENTRE
NANCY – GRAND EST

615 rue du Jardin Botanique

CS20101

54603 Villers-lès-Nancy Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction and Overview
	Motivations
	Contributions

	The Naimi:1987:DFR:645945.674994 Algorithm
	The basics
	Concurrent requests

	A balanced tree structure
	Exclusive Locks for Mobile Processes (ELMP) algorithm
	Requesting the token
	Handling an incoming request
	Disconnecting
	Blocking mechanism
	Balancing strategies
	Balancing following new insertions

	Balancing following a token request
	Balancing following departure

	The proof of the ELMP algorithm
	Transparent distributed data management
	Cooperation model with DHO
	DHO life cycle
	Mobility of peers

	Performance evaluation
	DHO cycle evaluation with synchronous locks
	DHO cycle evaluation with asynchronous locks
	DHO cycle evaluation with mobility of peers

	Conclusion and Futur Work

