G. J. Butler and G. S. Wolkowicz, A Mathematical Model of the Chemostat with a General Class of Functions Describing Nutrient Uptake, SIAM Journal on Applied Mathematics, vol.45, issue.1, pp.138-151, 1985.
DOI : 10.1137/0145006

R. Fekih-salem, J. Harmand, C. Lobry, A. Rapaport, and T. Sari, Extensions of the chemostat model with flocculation, Journal of Mathematical Analysis and Applications, vol.397, issue.1, pp.292-306, 2013.
DOI : 10.1016/j.jmaa.2012.07.055

URL : https://hal.archives-ouvertes.fr/hal-00604633

R. Fekih-salem, T. Sari, and N. Abdellatif, Sur un modèle de compétition et de coexistence dans le chemostat, ARIMA J, vol.14, pp.15-30, 2011.

R. Fekih-salem, T. Sari, and A. Rapaport, La floculation et la coexistence dans le chemostat, Proceedings of the 5th conference on Trends in Applied Mathematics in Tunisia, pp.477-483, 2011.

R. Freter, H. Brickner, and S. Temme, An understanding of colonization resistance of the mammalian large intestine requires mathematical analysis. Microecology and Therapy, pp.147-155, 1986.

J. P. Grover, Resource Competition, 1997.
DOI : 10.1007/978-1-4615-6397-6

B. Haegeman, C. Lobry, and J. Harmand, Modeling bacteria flocculation as density-dependent growth, AIChE Journal, vol.66, issue.2, pp.535-539, 2007.
DOI : 10.1002/aic.11077

URL : https://hal.archives-ouvertes.fr/hal-01019312

B. Haegeman and A. Rapaport, How flocculation can explain coexistence in the chemostat, Journal of Biological Dynamics, vol.7, issue.1, pp.1-13, 2008.
DOI : 10.1016/S0043-1354(98)00392-3

URL : https://hal.archives-ouvertes.fr/hal-00857826

S. R. Hansen and S. P. Hubbell, Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes, Science, vol.207, issue.4438, pp.1491-1493, 1980.
DOI : 10.1126/science.6767274

G. Hardin, The Competitive Exclusion Principle, Science, vol.131, issue.3409, pp.1292-1297, 1960.
DOI : 10.1126/science.131.3409.1292

J. Heßeler, J. K. Schmidt, U. Reichl, and D. Flockerzi, Coexistence in the chemostat as a result of metabolic by-products, J. Math. Biol, issue.4, pp.53556-584, 2006.

S. B. Hsu, Limiting Behavior for Competing Species, SIAM Journal on Applied Mathematics, vol.34, issue.4, pp.760-763, 1978.
DOI : 10.1137/0134064

G. E. Hutchinson, The Paradox of the Plankton, The American Naturalist, vol.95, issue.882, pp.137-145, 1961.
DOI : 10.1086/282171

D. Jones, H. V. Kojouharov, D. Le, and H. L. Smith, The Freter model: A simple model of biofilm formation, Journal of Mathematical Biology, vol.47, issue.2, pp.137-152, 2003.
DOI : 10.1007/s00285-003-0202-1

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 2004.

P. De-leenheer, D. Angeli, and E. D. Sontag, Crowding effects promote coexistence in the chemostat, Journal of Mathematical Analysis and Applications, vol.319, issue.1, pp.48-60, 2006.
DOI : 10.1016/j.jmaa.2006.02.036

Z. Li, L. Chen, and Z. Liu, Periodic solution of a chemostat model with variable yield and impulsive state feedback control, Applied Mathematical Modelling, vol.36, issue.3, pp.1255-1266, 2012.
DOI : 10.1016/j.apm.2011.07.069

C. Lobry and J. Harmand, A new hypothesis to explain the coexistence of n species in the presence of a single resource, Comptes Rendus Biologies, vol.329, issue.1, pp.40-46, 2006.
DOI : 10.1016/j.crvi.2005.10.004

URL : https://hal.archives-ouvertes.fr/hal-01001131

C. Lobry, A. Rapaport, and F. Mazenc, Sur un mod??le densit??-d??pendant de comp??tition pour une ressource, Comptes Rendus Biologies, vol.329, issue.2, pp.63-70, 2006.
DOI : 10.1016/j.crvi.2005.11.004

P. R. Patnaik, Dynamic sensitivity of a chemostat for a microbial reaction with substrate and product inhibition, Applied Mathematical Modelling, vol.18, issue.11, pp.620-627, 1994.
DOI : 10.1016/0307-904X(94)90320-4

S. Pilyugin and P. Waltman, The Simple Chemostat with Wall Growth, SIAM Journal on Applied Mathematics, vol.59, issue.5, pp.1552-1572, 1999.
DOI : 10.1137/S0036139997326181

T. Sari, A Lyapunov function for the chemostat with variable yields, Comptes Rendus Mathematique, vol.348, issue.13-14, pp.747-751, 2010.
DOI : 10.1016/j.crma.2010.06.008

URL : https://hal.archives-ouvertes.fr/inria-00505288

T. Sari, Competitive Exclusion for Chemostat Equations with Variable Yields, Acta Applicandae Mathematicae, vol.57, issue.1, pp.201-219, 2013.
DOI : 10.1007/s10440-012-9761-8

URL : https://hal.archives-ouvertes.fr/hal-00780065

T. Sari and F. Mazenc, Global dynamics of the chemostat with different removal rates and variable yields, Mathematical Biosciences and Engineering, vol.8, issue.3, pp.827-840, 2011.
DOI : 10.3934/mbe.2011.8.827

URL : https://hal.archives-ouvertes.fr/hal-00418676

M. Scheffer, S. Rinaldi, J. Huisman, and F. J. Weissing, Why plankton communities have no equilibrium: solutions to the paradox, Hydrobiologia, vol.491, issue.1-3, pp.9-18, 2003.
DOI : 10.1023/A:1024404804748

J. K. Schmidt, B. König, and U. , Characterization of a three bacteria mixed culture in a chemostat: Evaluation and application of a quantitative terminal-restriction fragment length polymorphism (T-RFLP) analysis for absolute and species specific cell enumeration, Biotechnology and Bioengineering, vol.71, issue.4, pp.96738-756, 2007.
DOI : 10.1002/bit.21147

H. L. Smith and P. Waltman, The Theory of the Chemostat : Dynamics of Microbial Competition, 1995.
DOI : 10.1017/CBO9780511530043

B. Tang, A. Sitomer, and T. Jackson, Population dynamics and competition in chemostat models with adaptive nutrient uptake, Journal of Mathematical Biology, vol.35, issue.4, pp.453-479, 1997.
DOI : 10.1007/s002850050061

G. S. Wolkowicz and Z. Lu, Global Dynamics of a Mathematical Model of Competition in the Chemostat: General Response Functions and Differential Death Rates, SIAM Journal on Applied Mathematics, vol.52, issue.1, pp.222-233, 1992.
DOI : 10.1137/0152012

G. S. Wolkowicz and Z. Lu, Direct interference on competition in a chemostat, J. Biomath, vol.13, issue.3, pp.282-291, 1998.

L. Y. Zhang, Hopf bifurcation analysis in a Monod???Haldane predator???prey model with delays and diffusion, Applied Mathematical Modelling, vol.39, issue.3-4, pp.39-42, 2015.
DOI : 10.1016/j.apm.2014.09.007

X. Zhou, X. Song, and X. Shi, Analysis of competitive chemostat models with the Beddington???DeAngelis functional response and impulsive effect, Applied Mathematical Modelling, vol.31, issue.10, pp.312299-2312, 2007.
DOI : 10.1016/j.apm.2006.08.010