
HAL Id: hal-01122754
https://hal.inria.fr/hal-01122754v2

Submitted on 6 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detecting Antipatterns in Android Apps
Geoffrey Hecht, Romain Rouvoy, Naouel Moha, Laurence Duchien

To cite this version:
Geoffrey Hecht, Romain Rouvoy, Naouel Moha, Laurence Duchien. Detecting Antipatterns in Android
Apps. [Research Report] RR-8693, INRIA Lille; INRIA. 2015. <hal-01122754v2>

https://hal.inria.fr/hal-01122754v2
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
86

93
--

FR
+E

N
G

RESEARCH
REPORT
N° 8693
March 2015

Project-Teams Spirals

Detecting Antipatterns in
Android Apps
Geoffrey Hecht, Romain Rouvoy, Naouel Moha, Laurence Duchien

RESEARCH CENTRE
LILLE – NORD EUROPE

Parc scientifique de la Haute-Borne
40 avenue Halley - Bât A - Park Plaza
59650 Villeneuve d’Ascq

Detecting Antipatterns in Android Apps

Geoffrey Hecht, Romain Rouvoy, Naouel Moha, Laurence
Duchien

Project-Teams Spirals

Research Report n° 8693 — March 2015 — 20 pages

Abstract: Mobile apps are becoming complex software systems that must be developed quickly
and evolve continuously to fit new user requirements and execution contexts. However, addressing
these constraints may result in poor design choices, known as antipatterns, which may incidentally
degrade software quality and performance. Thus, the automatic detection of antipatterns is an
important activity that eases both maintenance and evolution tasks. Moreover, it guides developers
to refactor their applications and thus, to improve their quality. While antipatterns are well-known
in object-oriented applications, their study in mobile applications is still in their infancy. In this
paper, we propose a tooled approach, called Paprika, to analyze Android applications and to detect
object-oriented and Android-specific antipatterns from binaries of mobile apps. We validate the
effectiveness of our approach on a set of popular mobile apps downloaded from the Google Play
Store.

Key-words: Android, antipattern, mobile app, software quality

Détection d’anti-patrons dans les applications Android
Résumé : Les applications mobiles deviennent des systèmes logiciels complexes qui doivent
être développés rapidement et évoluer continuellement pour s’adapter aux nouvelles exigences des
utilisateurs et à de multiples contextes d’exécution. La réponse à ces changements peut mener à
de mauvaises solutions de conceptions ou d’implémentations, connues sous le nom d’anti-patrons,
qui peuvent dégrader la qualité du logiciel ainsi que ses performances. Par conséquent, la détec-
tion automatique de ces anti-patrons est importante pour faciliter les tâches de maintenance et
d’évolutions des applications. Cela peut aussi aider les développeurs à réusiner leurs applications
et par conséquent augmenter leurs qualités. Bien que les anti-patrons soient bien connues pour
les applications orientés objets, leur étude pour les applications mobiles est encore à ses balbu-
tiements. Dans ce rapport, nous proposons une approchée outillée nommée Paprika qui permet
d’analyser les binaires d’applications Android afin de détecter des anti-patrons orientés objets et
spécifiques à Android. Nous validons l’efficacité de notre approche sur un ensemble de plusieurs
applications populaires téléchargées depuis le Google Play Store.

Mots-clés : Android, anti-patron, application mobile, qualité logicielle

Detecting Antipatterns in Android Apps 3

Contents
1 Introduction 4

2 Background on Android Package
and Bytecode 5

3 Related Work 5

4 Paprika: A tooled Approach to de-
tect Software Anti-Patterns 7
4.1 Overview of the Approach 7
4.2 Step 1: Collecting Metrics from

Application Artifacts 7
4.3 Step 2: Converting Paprika

Model as a Graph Model 10
4.4 Step 3: Detecting Anti-patterns

from Graph Queries 10

5 Empirical Validation 12
5.1 Research Questions 12
5.2 Subjects 13
5.3 Objects 13
5.4 Evaluation Protocol 13
5.5 Preliminary Assessments 14
5.6 Analysis Results 15

5.6.1 RQ1 Can antipatterns
originating from the
source code be detected
at the bytecode level? . . 15

5.6.2 RQ2 To what extent mo-
bile apps exhibit OO an-
tipatterns? 15

5.6.3 RQ3 To what extent
mobile apps exhibit
Android-specific antipat-
terns? 16

5.6.4 RQ4 Are OO and
Android-specific antipat-
terns present in the same
proportion? 16

5.6.5 Other observations 17
5.7 Threats to validity 17

6 Conclusion and future work 17

RR n° 8693

Detecting Antipatterns in Android Apps 4

1 Introduction

Along the last years, the development of mo-
bile applications (apps) has reached a great suc-
cess. In 2013, Google Play Store1 reached over
50 billion app downloads [3] and is estimated
to reach 200 billion by 2017 [6]. This suc-
cess is partly due to the adoption of established
Object-Oriented (OO) programming languages,
such as Java, Objective-C or C#, to develop
these mobile apps. However, the development
of a mobile app differs from a standard one
since it is necessary to consider the specifici-
ties of mobile platforms. Additionally, mobile
apps tend to be smaller applications, which rely
more heavily on external libraries and reuse of
classes [28, 32, 40].

In this context, the presence of common soft-
ware anti-patterns can be imposed by the un-
derlying frameworks [24, 38]. Software antipat-
terns are bad solutions to known design is-
sues and they correspond to defects related to
the degradation of the architectural properties
of a software system [16]. Moreover, antipat-
terns tend to hinder the maintenance and evo-
lution tasks, not only contributing to the tech-
nical debts, but also incurring additional costs
of development. Furthermore, in the case of
mobile apps, the presence of antipatterns may
lead to resource leaks (CPU, memory, battery,
etc.) [17], thus preventing the deployment of
sustainable solutions. The automatic detection
of such software antipatterns is therefore be-
coming a key challenge to assess the quality,
ease the maintenance and the evolution of these
mobile apps, which are invading our daily lives.
However, the existing tools to detect such soft-
ware antipatterns are limited and are still in
their infancy, at best [38].

Mobile apps are mainly distributed through
app stores, such as Apple Store, Google Play
Store or Windows Phone Store, which do not
provide access to their source code [28]. Cat-
alogs of open-source applications are available
online2, but there is no evidence that the hosted
apps are representative of the ones distributed
by official app stores. Therefore, it is neces-

1https://play.google.com/store
2https://f-droid.org

sary to analyze non open-source apps to acquire
substantial and significant knowledge and data
concerning the presence of antipatterns in most
of the mobile apps.

We thus aim at improving the quality of mo-
bile apps by mining legacy apps. This paper
focuses on the analysis of official mobile apps
to detect the presence of software antipatterns.
In particular, we introduce Paprika as a tooled
approach to analyze the code of Android apps
and to detect both common OO and Android-
specific antipatterns. Paprika innovates by
analyzing the Android package of mobile apps.
To the best of our knowledge, this is the first ap-
proach to detect common software antipatterns
from this package. Paprika extracts qual-
ity metrics from application bytecode that are
stored persistently. The resulting model can be
further queried by Paprika to detect the pres-
ence of software antipatterns. One example of
a detected OO antipattern is the Blob class,
which is a class with a low cohesion between
methods and a large number of attributes and
operations [16]. As another example, the In-
ternal Getter/Setter is an Android-specific an-
tipattern known to degrade the performance on
this system [1, 17]. It occurs when a method
calls a getter or a setter of its own class. We
assess our approach by reporting on the results
we obtained for the detection of 8 antipatterns
on 15 popular Android apps downloaded from
the Google Play Store. In this study, we ad-
dress the following 4 research questions:
RQ1 : Can antipatterns originating from the
source code be detected at the bytecode level?
Finding: Yes, by analyzing the bytecode we
are able to detect the presence of antipatterns.
The analysis of bytecode is efficient even when
code obfuscation is used to prevent reverse-
engineering.
RQ2 : To what extent mobile apps exhibit OO
antipatterns?
Finding: We found OO antipatterns in all an-
alyzed apps. Overall, the OO antipatterns are
as common in Android apps as in non-mobile
applications. However, a particularity exists
for mobile apps: the Activity class of the An-
droid Framework tends to be more sensitive
than other classes.

RR n° 8693

https://play.google.com/store
https://f-droid.org

Detecting Antipatterns in Android Apps 5

RQ3 : To what extent mobile apps exhibit
Android-specific antipatterns?
Finding: We found Android-specific antipat-
terns in all analyzed apps. They are really com-
mon and frequent, despite the fact that they are
easy to refactor.
RQ4 : Are OO and Android-specific antipat-
terns present in the same proportion?
Finding: The Android-specific antipatterns
are far more frequent and common than OO
antipatterns.

The rest of the paper is organized as follows.
We provide some background on Android pack-
age and bytecode in Section 2. We compare
to the related works in Section 3. The details
of our framework are introduced in Section 4.
We validate our approach empirically on 15 ap-
plications in Section 5. Section 6 summarizes
our work and outlines some avenues for future
works.

2 Background on Android
Package and Bytecode

This section provides a short overview of the
specificities of Android Application Package
(APK) and Dalvik bytecode.

Android apps are distributed using the APK
file format. APK files are archive files in
a ZIP format, which are organized as fol-
lows: 1. the file AndroidManifest.xml de-
scribes application metadata including name,
version, permissions and referenced library files
of the application, 2. the directory META-INF
that contains meta-data and certificate infor-
mation, 3. an asset and a res directory con-
taining non-compiled resources, 4. a lib direc-
tory for eventual native code used as library,
5. a resources.arsc file for pre-compiled re-
sources, and 6. a .dex file containing the com-
piled application classes and code in dex file for-
mat [4]. While Android apps are developed us-
ing the Java language, they use the Dalvik Vir-
tual Machine as a runtime environment. The
main difference between the Java Virtual Ma-
chine (JVM) and the Dalvik Virtual Machine
is that Dalvik is register-based, in order to be
memory efficient compared to the stack-based

JVM [4]. The resulting bytecode compiled from
Java sources and interpreted by the Dalvik Vir-
tual Machine is therefore different.

Disassembler exists for the Dex format [8]
and tools to transform the bytecode into in-
termediate languages or even Java are numer-
ous [11, 14, 19, 33]. However, there is an im-
portant loss of information during this trans-
formation for all the existing approaches. For
instance, additional algorithms have to be used
to infer the type of local variables or to deter-
mine the type of branches as for, while and
if constructions are replaced by goto instruc-
tions in the bytecode [4, 14]. Some dependen-
cies are also absent from the Dex files, result-
ing in phantom classes, which cannot be ana-
lyzed without the source code. And, of course,
the native code included in the lib directory
cannot be decompiled with these tools. It is
also important to note that around 30% of all
the mobile apps distributed on Google Store
are obfuscated [40] in order to prevent reverse-
engineering. The ProGuard tool used to obfus-
cated code is even pre-installed on the beta of
Android Studio provided by Google to replace
Eclipse ADT [2]. It is likely that code obfusca-
tion will be even more common in the future.
With obfuscation, most classes and methods
are renamed, often with just one or two alpha-
betical characters, leading to the loss of most
of lexical properties. Fortunately, the applica-
tion structure is preserved and classes from the
Android Framework are not renamed, thus al-
lowing to retrieve some information from the
classes that inherit them.

3 Related Work

In this section, we discuss the relevant litera-
ture about analysis and antipatterns detection
in mobile apps.

Mobile apps are mostly developed using
OO languages, such as Java or Objective-C.
Since their definition by Chidamber and Ke-
merer [18], OO metrics have gained popular-
ity to assess software quality. Numerous works
validated OO metrics to be efficient quality
indicators [13, 15, 23, 34]. This has lead

RR n° 8693

Detecting Antipatterns in Android Apps 6

to the creation of tooled approaches, such as
DECOR [29] or iPlasma [26], which are using
OO metrics to detect code smells and antipat-
terns in OO applications. Most of the code
smells and antipatterns, like long method or
blob class, detected by these approaches are in-
spired by the work of Fowler [21] and Brown et
al. [16]. These approaches are compatible with
Java, but since they were mostly developed be-
fore the emergence of mobile apps they are not
taking into account the specificities of Android
apps and are not compatible with Dex byte-
code.

With regard to mobile apps, Linares-
Vásquez et al. [24] used DECOR to perform
the detection of 18 different OO antipatterns
in mobile apps built using Java Mobile Edi-
tion (J2ME) [5]. This large-scale study was
performed on 1; 343 apps and shows that the
presence of antipatterns negatively impacts the
software quality metrics, in particular metrics
related to fault-proneness. They also found
that some antipatterns are more common in
certain categories of Java mobile apps. Con-
cerning Android, Verloop [38] used popular
Java refactoring tools, such as PMD [7] or
Jdeodorant [35] to detect code smells, like
large class or long method in open-source soft-
ware. They found that antipatterns tend to ap-
pear at different frequencies in classes that in-
herits from the Android Framework (called core
classes) compare to classes which are not (called
non-core classes). For example, long method
was detected twice as much in core classes in
term of ratio. However, they did not considered
Android-specific antipatterns in both of these
studies.

The detection and the specification of
mobile-specific antipatterns are still considered
as open issues. Reimann et al. [30] propose a
catalog of 30 quality smells dedicated to An-
droid. These code smells are mainly originated
from the good and bad practices documented
online in Android documentations or by devel-
opers reporting their experience on blogs. They
are concerning various aspect like implementa-
tions, user interfaces or database usages. They
are reported to have a negative impact on prop-
erties, such as efficiency, user experience or se-

curity. We chose to detect some of these code
smells with our approach, which are presented
in Section 4.4. We selected antipatterns that
can be detected by static analysis and despite
code obfuscation. Reimann et al. are also offer-
ing the detection and correction of code smells
via the Refactory tool [31]. This tool can de-
tect the code smells from an EMF model. The
source code can be converted to EMF if nec-
essary. However, we have not been yet able to
execute this tool on an Android app. Moreover,
there is no evidence that all the antipatterns of
the catalog are detectable using this approach.

Concerning the analysis of Android apps
and the study of their specificities, the
SAMOA [28] tool allows developers to ana-
lyze their mobile apps from the source code.
The tool collects metrics, such as the number
of packages, lines of code, or the cyclomatic
complexity. It also provides a way to visu-
alize external API calls as well as the evolu-
tion of metrics along versions and a comparison
with other analyzed apps. They performed this
analysis on 20 applications and discovered that
they are significantly different from classical
software systems. They are smaller, and make
an intensive usage of external libraries, which
leads to a more complex code to understand
during maintenance activities. Ruiz et al. [32]
analyzed Android packages to understand the
reuse of classes in Android apps. They extract
bytecode and then analyze classes signature for
this purpose. They discovered that software
reuse via inheritance, libraries, and frameworks
is prevalent in mobile apps compared to regu-
lar software. Xu [40] also examined APK of
122; 570 applications. He determines that de-
veloper errors are common in manifest and per-
missions. He also analyzed the apps’ code and
observed that Java reflection and code obfus-
cation are widely used in mobile apps, making
reverse-engineering harder. He also noticed the
heavy usage of external libraries in its corpus of
analyzed apps. Nonetheless, antipatterns were
not considered as part of these studies.

RR n° 8693

Detecting Antipatterns in Android Apps 7

4 Paprika: A tooled Ap-
proach to detect Software
Anti-Patterns

In this section, we introduce the key compo-
nents of Paprika, our tooled approach for an-
alyzing the design of mobile apps in order to
detect software antipatterns.

4.1 Overview of the Approach

Paprika builds on a three-step approach,
which is summarized in Figure 1. As a first
step, Paprika parses the APK file of the mo-
bile app under analysis to extract some meta-
data (e.g., app name, package) and a represen-
tation of the code. Additional metadata (e.g.,
rating, number of downloads) are also extracted
from the Google Play Store and passed as ar-
guments. This representation is then automat-
ically visited to compute a model of the code
(including classes, methods, attributes) as a
graph annotated with a set of raw quality met-
rics (cf. Section 4.2). As a second step, this
model stored into a graph database (cf. Sec-
tion 4.3). Finally, the third step consists in
querying the graph to detect the presence of
common antipatterns in the code of the ana-
lyzed apps (cf. Section 4.4). Paprika is built
from a set of components fitting these steps in
order to leverage different analyzers, databases
or antipatterns detection mechanisms.

4.2 Step 1: Collecting Metrics
from Application Artifacts

Input: One APK file and its corresponding
metadata.
Output: A Paprika quality model including
entities, metrics and properties.
Description: This steps consists in generating
a model of the mobile app and extracting the
raw quality metrics from an input artifact. This
model is built incrementally, while analyzing
the bytecode, and complemented with proper-
ties collected from the Google Play Store. From
this representation, Paprika builds a model
based on six entities: App, Class, Method, At-

tribute and Variable. The properties described
in Table 1 are attached as attributes to these
entities, while they are linked together by the
relationships reported in Table 2.

Paprika proceeds with the extraction of
metrics for each entity. The 34 metrics cur-
rently available in Paprika are reported in Ta-
ble 3. Paprika supports two kinds of metrics:
OO and Android-specific. Boolean metrics are
used to determine different kinds of entities,
whereas integers are used for counters or when
the metrics are aggregated. Contrary to the
properties, metrics often require computation
or to process the bytecode representation. For
example, it is necessary to browse the inheri-
tance tree in order to determine if a class in-
herits from some Android Framework-specific
fundamentals classes, which include:

• Activity represents a single screen on the
user interface. Activity may start others
activities from the same or a different ap-
plication;

• Service is a task that runs in the back-
ground to perform long-running operations
or to work for remote processes;

• Content provider manages shared data and
transfer between apps;

• Broadcast receiver can listen and respond
to system-wide broadcast announcements
from the system or other apps;

• Application is used to maintain a global
application state.

Some composite metrics,
such as ClassComplexity or
LackofCohesionInMethods, require more
computation based on other raw metrics, thus
they are computed at the end of the process.
Implementation: We use the Soot frame-
work [37] and its Dexpler module [14] to ana-
lyze APK artifacts. Soot converts the Dalvik
bytecode of mobile apps into a Soot inter-
nal representation, which is similar to the Java
language. Soot can also be used to generate
the call graph of the mobile app. This model
is built incrementally by visiting the inter-
nal representation of Soot, and complemented

RR n° 8693

Detecting Antipatterns in Android Apps 8

Graph
DB

APK

Metadata

 Step 1 : Model Generation
(Section IV.B)

Construct
model

Extract
metrics

 Step 3 : Anti-pattern Detection
(Section IV.D)

Determine
thresholds

Execute
queries

Paprika
model

Graph
model

Anti-pattern
queries

Detected
anti-patterns

 Step 2 : Model Conversion
(Section IV.C)

Convert
entities

Convert
metrics

Figure 1: Overview of the Paprika approach to detect software antipatterns in mobile apps.

Table 1: List of Paprika properties.
Name Entities Comments
name All Name of the entity
app_key All Unique id of an application
rating App Rating on the store
date_download App APK download date
date_analysis App Date of the analysis
package App Name of the main package
size App APK size (MB)
developer App Developer name
category App Category in the store
price App Price in the store
nb_download App Number of downloads from the store
parent_name Class For inheritance
modifier Class public, protected or private

Variable
Method

type Variable Object type of the variable
full_name Method method_name#class_name
return_type Method Return type of the method
position Argument Position in the method signature

Table 2: List of Paprika relationships.
Name Entities Comments
APP_OWNS_CLASS App – Class
CLASS_OWNS_METHOD Class – Method
CLASS_OWNS_ATTRIBUTE Class – Attribute
METHOD_OWNS_ARGUMENT Method – Argument
EXTENDS Class – Class
IMPLEMENTS Class – Class
CALLS Method – Method Method call graph
USES Method – Variable Variable access

RR n° 8693

Detecting Antipatterns in Android Apps 9

Table 3: List of Paprika Metrics
Name Type Entities Comments
NumberOfClasses OO App
NumberOfInterfaces OO App
NumberOfAbstractClasses OO App
NumberOfMethods OO Class
DepthOfInheritance OO Class Integer, minimum is 1.
NumberOfImplementedInterfaces OO Class
NumberOfAttributes OO Class
NumberOfChildren OO Class
ClassComplexity OO Class Sum of methods complexity, Integer
CouplingBetweenObjects OO Class Chidamber and Kemerer [18], Integer
LackofCohesionInMethods OO Class LCOM2 [18], Integer
IsAbstract OO Class, Method
IsFinal OO Class, Variable, Method
IsStatic OO Class, Variable, Method
IsInnerClass OO Class
IsInterface OO Class
NumberOfParameters OO Method
NumberOfDeclaredLocals OO Method Can be different from source code
NumberOfInstructions OO Method Related to number of lines in source code
NumberOfDirectCalls OO Method Numbers of calls made by the method
NumberOfCallers OO Method
CyclomaticComplexity OO Method McCabe [27], Integer
IsGetter OO Method Computed to bypass obfuscation
IsSetter OO Method Computed to bypass obfuscation
IsInit OO Method Constructor
IsSynchronized OO Method
NumberOfActivities Android App
NumberOfBroadcastReceivers Android App
NumberOfContentProviders Android App
NumberOfServices Android App
IsActivity Android Class
IsApplication Android Class
IsBroadcastReceiver Android Class
IsContentProvider Android Class
IsService Android Class

RR n° 8693

Detecting Antipatterns in Android Apps 10

with properties collected from the Google Play
Store. Then, Paprika proceeds with the ex-
traction of metrics for each entity by explor-
ing the Soot model. One should note that, in
order to optimize performance and to reduce
execution time, these steps are not executed
sequentially, but rather executed in an oppor-
tunistic way while visiting the Soot model.

Compared to traditional approaches for an-
tipattern detection [38], using bytecode analy-
sis instead of source code analysis raises some
technical issues. For example, we cannot di-
rectly access widely-used metrics, such as the
number of lines of codes or the number of de-
clared locals of a method. Therefore, we use ab-
stract metrics, that are approximations of the
missing ones, like the number of instructions to
approximate the number of lines of code.

Moreover, as evoked previously, many appli-
cations available on Android markets are ob-
fuscated to optimize size and make reverse-
engineering harder. Most methods, attributes,
and classes are therefore renamed with single
letters. Thus, we cannot rely on lexical data to
compute some quality metrics and we have to
apply some bypass strategies. For instance, to
determine the presence of a getter or a setter
we are not observing the method names, but
we rather focus on the number and the types
of instructions as well as the variable accessed
by the method.

4.3 Step 2: Converting Paprika
Model as a Graph Model

Input: A Paprika quality model with entity,
properties and metrics.
Output: A software quality graph model
stored in a database.
Description: We aim at providing a scal-
able solution to analyze mobile apps at
large.Therefore, we use a graph database as a
flexible yet efficient solution to store and query
the app model annotated with quality metrics
extracted by Paprika.

Since this kind of databases are not depend-
ing on a rigid schema, the Paprika model is
almost as it is described in the previous sec-
tion. All Paprika entities are represented by

nodes, their attributes and metrics are prop-
erties attached to these nodes. The relation-
ships between entities are represented by one-
way edges.
Implementation: We selected the graph
database Neo4j [10] and we are using its Java-
embedded version. We chose Neo4j because,
when combined with the Cypher [9] query
language, it offers good performance on large-
scale datasets, especially when embedded in
Java [22]. Furthermore, Neo4j is also able
to contain a maximum of 235 nodes and rela-
tionships, which match our scalability require-
ments. Finally, Neo4j offers a straightforward
conversion from the Paprika quality metrics
model to the graph database.

4.4 Step 3: Detecting Anti-
patterns from Graph Queries

Input: A graph database containing a model of
the applications to analyze and the antipatterns
queries.
Output: Software antipatterns detected in the
applications.
Description: Once the model loaded and
indexed by the graph database, we use the
database query language to detect common
software antipatterns. Entity nodes which im-
plements antipatterns are returned as results
for all analyzed applications.
Implementation: We use the Cypher query
language [9] to detect common software an-
tipatterns as illustrated by listings 1 and 2.

All OO antipatterns are detected using a
threshold to identify abnormally high value
from others commons values. To define such
thresholds, we collect all the values of a spe-
cific metric and we identify outliers. We use a
Tukey Box plot [36] for this task. Figure 2 illus-
trates this approach on the LCOM, number of
methods and number of attributes, which are
used in the request to detect Blob classes as
presented in Listing 1. All values superior to
the upper whisker are considered as very high
whereas all values inferior to the lower one are
very low. The upper border of the box repre-
sents the first quartile (Q1) whereas the lower
border is the third quartile (Q3), the distance

RR n° 8693

Detecting Antipatterns in Android Apps 11

between Q1 and Q3 is called the interquartile
range (IQR). The upper whisker value is given
by the formula Q3+1:5�IQR, which is equal to
12 for the number of methods in our example.
It means that if the number of methods exceeds
12, then it is considered as an outliers and can
be tagged as a class containing a high number
of methods. By combining the three thresholds,
we are able to detect Blob classes. The usage
of this statical method allows us to set thresh-
olds that are specific to the input dataset, con-
sequently results may vary depending on the
mobile apps included in the analysis process.
Thus, the thresholds are representative of all
applications in the dataset and not only the
currently analyzed application.

Currently, Paprika supports 8 antipatterns,
including 4 Android-specific antipatterns:

Blob Class (BLOB) - OO A Blob class,
also knows as God class, is a class with a large
number of attributes and/or operations [16].
The Blob class handles a lot of responsibilities
compared to other classes. Attributes and
methods of this class are related to different
concepts and processes, implying a very low
cohesion. Blob classes are also often associated
with numerous data classes. Blob classes
are hard to maintain and increase the diffi-
culty to modify the software. In Paprika,
classes are identified as Blob classes when-
ever the metrics numbers_of_attributes,
number_of_methods and
lack_of_cohesion_in_methods are very
high. The Cypher query for this antipattern
is described in Listing 1.

Listing 1: Cypher query to detect a Blob class.
MATCH (cl: Class)
WHERE

cl.lack_of_ cohesion _in_ methods > 15
AND cl. number _of_ methods > 12
AND cl. number _of_ attributes > 8

RETURN cl

Swiss Army Knife (SAK) - OO A Swiss
army knife is a class with numerous interface
signatures, resulting in a very complex class in-
terface designed to handle a wide diversity of

abstractions. This type of class is hard to un-
derstand and to maintain because of the result-
ing complexity [16]. A SAK is detected by Pa-
prika when a class implements a large number
of interfaces.

Long Method (LM) - OO Long methods
are implemented with much more lines of code
than other methods. They are often very com-
plex, and thus hard to understand and main-
tain. These methods can be split into smaller
methods to fix the problem [21]. Paprika iden-
tifies a long method when the number of in-
structions for one method is very high.

Complex Class (CC) - OO A complex
class is a class containing complex methods.
Again, these classes are hard to understand and
maintain and need to be refactored [21]. The
class complexity is calculated by summing the
internal methods complexities. The complexity
of a method can be calculated using McCabe’s
Cyclomatic Complexity [27].

Internal Getter/Setter (IGS) - Android
On Android, fields should be accessed directly
within a class to increase performance. The
usage of an internal getter or a setter con-
verts into a virtual invoke, which makes the
operation three times slower than a direct ac-
cess [1, 17]. Paprika is able to identify inter-
nal getter and setter despite code obfuscation,
and consequently identify such calls from the
method call graph. The Cypher query for this
Android-specific antipattern is reported in List-
ing 2. This query matches two methods from
the same class with the first one calling the sec-
ond one, flagged as a getter or a setter.

Listing 2: Cypher query to detect Internal Get-
ter/Setter.
MATCH (m1: Method) -[: CALLS]->(m2: Method),

(cl: Class)
WHERE

(m2. is_ setter OR m2. is_ getter)
AND cl -[: CLASS _OWNS_ METHOD]->m1
AND cl -[: CLASS _OWNS_ METHOD]->m2

RETURN m1

RR n° 8693

Detecting Antipatterns in Android Apps 12

Member Ignoring Method (MIM) - An-
droid In Android, when a method does not
access an object attribute, it is recommended
to use a static method. The static method in-
vocations are about 15%–20% faster than a dy-
namic invocation [1, 17]. Paprika can detect
such methods since the access of an attribute
by a method is extracted during the analysis
phase. The Cypher query for this antipattern
is described in Listing 3. This request explore
node properties to return non-static methods
which are not constructor and relations to de-
tect methods which are not using any class
variable nor calling other methods. Such de-
tected methods could have been made static to
increase performance without any other conse-
quences on the implementation.

Listing 3: Cypher query to detect Member Ig-
noring Method.
MATCH (m: Method)
WHERE

NOT HAS (.‘is_static ‘)
AND NOT HAS(m.is_init)
AND NOT m -[: USES]->(: Variable)
AND NOT (m) -[: CALLS]->(: Method)

RETURN m

No Low Memory Resolver (NLMR) -
Android When the Android system is run-
ning low on memory, the system calls the
method onLowMemory() of running activities,
which are supposed to trim their memory us-
age. If this method is not implemented by
the activity, the Android system kills the pro-
cess in order to free memory, and can cause
an abnormal termination of programs [17]. As
overridable methods of Android-specific classes
like Activity, Service, ContentProvider or
Broadcast receivers are not concerned by
obfuscation, consequently their presence can be
checked by Paprika.

Leaking Inner Class (LIC) - Android In
Java, non-static inner and anonymous classes
are holding a reference to the outer class,
whereas static inner classes are not. This
could provoke a memory leak in Android sys-
tems [17, 25]. Given that the Paprika model

LCOM number_of_methods number_of_attributes

0
5

10
15

Figure 2: Box plots generated to define the
Blob class detection thresholds.

contains all inner classes of the application and
a metric to identify static class is attached to
classes, leaking inner classes are detected by a
dedicated query in Paprika.

5 Empirical Validation

This section describes the experimental proto-
col we followed to assess Paprika as well as
the results we obtained from the analysis of 15
mobile apps downloaded from the Google Play
Store.

5.1 Research Questions

The research questions we address along these
experiments are:
RQ1 : Can antipatterns originating from the
source code be detected at the bytecode level?
Motivation: The compilation into bytecode
and the eventual code obfuscation imply a loss
or a transformation of the information available
in the source. Java .jar files were already an-
alyzed with success for OO antipatterns [24],
but there is no evidence that the code was ob-
fuscated and that a similar approach will be
efficient when applied on Dalvik bytecode.
RQ2 : To what extent mobile apps exhibit OO
antipatterns?
Motivation: As previously exposed, Android

RR n° 8693

Detecting Antipatterns in Android Apps 13

apps are different from non-mobile applica-
tions. They are smaller and are relying more
heavily on external libraries and classes reuse.
Moreover, the Android Framework could have
an impact on developers pratice concerning an-
tipatterns. We want to investigate if these dif-
ferences have an impact on the presence of OO
antipatterns.
RQ3 : To what extent mobile apps exhibit
Android-specific antipatterns?
Motivation: There is a lack of studies con-
cerning the presence of Android-specific an-
tipatterns in mobile apps. We want to deter-
mine if these antipatterns actually exists in the
publicly available apps and how frequent they
are. This knowledge can help practitioners to
know where to focus their effort during main-
tenance tasks.
RQ4 : Are OO and Android-specific antipat-
terns present in the same proportion?
Motivation: In this research question, we in-
vestigate whether certain kind of antipatterns
are more frequent than others. OO antipat-
terns are well documented both in literature
and on Internet, but the resources are scarce
concerning Android antipatterns. We want to
investigate if this difference is justified by a lack
of knowledge due to the recency of the domain
or because Android antipatterns are scarcer in
mobile apps.

5.2 Subjects

We apply our Paprika approach to detect 8
different antipatterns, presented in Section 4.4,
they are all issued from the literature.

5.3 Objects

Witness application To validate and cali-
brate our approach, we first developed a wit-
ness mobile app implementing several instances
of each type of antipatterns. In particular, this
application implements 62 instances of the 8
antipatterns we consider in this paper. The
source code of the witness mobile app, available
on GitHub , represents 51 classes, including 6
activities and 205 methods. Classes generated
during the compilation, such as BuildConfig

and R, are included in this count.

Applications under analysis We also an-
alyzed 15 free Android apps that are available
from the Google Play Store [12]. All these mo-
bile apps and associated metadata were down-
loaded in June 2014, and are summarized in
Table 4. The reported size includes all the ap-
plication resources, including images, data files
or third-party libraries, which the latter are not
analyzed by Paprika. We selected these apps
because they were all ranked in the top 150
apps of their categories. It should be noted
that, although this top is based on the num-
ber of downloads, this number could be rather
high or low depending on the categories. In
order to validate Paprika, we diversified the
selected apps in terms of category, number of
downloads, size and rating, but we also consid-
ered some popular apps (e.g., Facebook, Skype,
Twitter). The complexity of mobile apps there-
fore varies from 3 classes (Free 5000 Movies) to
more than 9; 000 classes (Facebook).

5.4 Evaluation Protocol

We assessed our approach with a sensitivity
analysis, a comparison to other tools, and an
evaluation of the impact of the obfuscation on
our witness mobile app. Then, we analyzed
all the mobile apps using Paprika on an In-
tel Core i5-2450M and with 4GB RAM. We
first load all the mobile apps, which took be-
tween 5 and 15 minutes per app, depending on
size and complexity. All the resulting qual-
ity models were inserted in a single Neo4J
database instance. Then, as described in Sec-
tion 4.4, we compute the thresholds of queries
with Boxplot and we execute our 8 software
antipatterns queries for each application using
Cypher. Note that we excluded the witness
mobile app from the computation of thresh-
olds, to ensure that the results are represen-
tative from Google Play Store official applica-
tions.

RR n° 8693

Detecting Antipatterns in Android Apps 14

Table 4: Description of mobile apps under analysis
App name Size (Mb) Downloads Rating(/5) Classes Methods
Adobe Reader 8.02 100,000,000+ 4.3 902 5,214
Android Temperature 9.67 500,000+ 4 373 2,238
Facebook 22.14 500,000,000+ 3.9 9,117 46,867
Fitnet Apps 0.43 50+ 4.9 13 74
FLV HD MP4 Video Player 12.11 1,000,000+ 4.3 364 2,332
Free 5000 Movies 0.04 1,000,000+ 3 3 5
Opera Mini browser for Android 0.89 100,000,000+ 4.4 182 1,830
Savoir Maigrir avec J-M Cohen 1.87 50,000+ 2.9 449 2,190
Simulator Laser 4.92 5,000,000+ 2.1 225 1,205
Skype - free IM & video calls 17.55 100,000,000+ 4.1 2,364 12,901
Superbuzzer Trivia Quiz Game 2.80 500,000+ 3.9 858 5,265
Tcheck’it - Gagnez de l’argent 2.92 5,000+ 2.2 1,306 9,268
Twitter 9.94 100,000,000+ 4.1 4,335 29,309
Video Chat Rooms - Chat.Org 4.34 100,000+ 4.1 7 94
Zoom Camera Free 0.67 5,000,000+ 4 415 2,131

5.5 Preliminary Assessments
Sensitivity analysis We performed a sensi-
tivity analysis for the thresholds we compute
with median, mean, Q3 and Q3 + 1:5 � IQR
used as values for the detection of Blob, SAK,
LM and CC. As one can observe in Table 5, the
usage of Q3 + 1:5 � IQR offers the best results
for threshold-based queries.

Table 5: Sensitivity analysis for the threshold
Threshold Precision Recall F1
Median 0.348 1 0.5161
Mean 0.8 1 0.8889
Q3 0.7619 1 0.865
Q3+1.5*IQR 1 1 1

Globally, we expected the presence of 62 an-
tipatterns from the source code and discovered
62 of them in the witness mobile app by ana-
lyzing the APK with Paprika, which provides
a precision of 1, a recall of 1 and a F1 value of
1 for all the antipattern queries.

Comparison with other tools We com-
pared our approach with tools dedicated to
the detection of code smells and OO antipat-
terns form the source code of Java applications.
PMD is a popular tool for Java applications, it
analyzes code to detect programming flaws de-

fined by rules. It currently contains 347 rules,
including ExcessiveMethodLength which is sim-
ilar to the long method antipattern. These rules
are mostly define with static thresholds, which
can be adjusted in the preferences of PMD.
By default, a method is flagged by the Exces-
siveMethodLength rule if it contains more than
100 lines. However, this value sounds arbitrary
and inappropriate for mobile apps were 75%
of methods have less than 15 instructions as
showed by our statistical analysis performed on
our 15 applications. In particular, only 3 in-
stances are detected in our witness mobile app
with this predefined threshold. Other values
can be used as threshold, but PMD does not
provide any mechanism to help in setting this
value.

To address this problem, approaches like
JDeodorant or Ptidej use statistical anal-
ysis on the current application to determine
thresholds. In this way, JDeodorant is able
to detect one instance of Blob class using the
average ratio of cohesion over coupling for all
classes [20]. Using the Paprika approach, we
detect two Blob classes. However, when remov-
ing most of the classes to keep only these two
Blob classes, JDeodorant is not able anymore
to detect any Blob class even if these classes
have not been modified. By computing the
thresholds from a crowd of mobile apps instead

RR n° 8693

Detecting Antipatterns in Android Apps 15

of a single instance, Paprika provides a robust
approach to detect antipatterns.

Impact of obfuscation on antipatterns de-
tection To evaluate the impact of code ob-
fuscation on our results, we performed the same
detection on our witness mobile app obfuscated
using the popular Proguard 5.1 and Stringer
Java Obfuscator 1.6.11. Proguard is an open-
source Java obfuscator compatible with An-
droid, which is embedded in many develop-
ment environments like Netbeans, EclipseME
or Google’s Android Studio. Stringer Java
Obfuscator is a commercial tool that provides
string encryption and is compatible with most
IDE. Both tools support classes, methods and
variables renaming as well as code optimiza-
tion. As reported in Proguard FAQ, these tools
are not performing any flow obfuscation in or-
der to avoid negative effects on performance
and size. However, the optimization step can
restructure the code, including dead code re-
moval. As we can observe in Table 6, Stringer
has no impact on the detection, while Proguard
slightly affects the recall of our detection. All
detected instances are true positive as shown
by the precision.

The impact of Proguard on recall can be ex-
plained by two factors. First, the Proguard op-
timization process removes an instance of long
method while optimizing resources concerning
application style in the Android R class. Then,
the obfuscation process prevents us from de-
tecting inner classes in the bytecode, hence all
leaking inner classes are not detected anymore.
The impact of obfuscation is therefore limited,
especially since we were able to detect inner
classes in all mobile apps studied in this paper.

5.6 Analysis Results

Table 7 summarizes the results we obtained for
the detection of 8 antipatterns from our input
dataset composed of 15 Android official apps
and a witness app. The detailed results and
statistics for all mobile apps are available on-
line. The antipatterns are grouped by the type
of entities concerned, either classes or methods
or entities. The integer value represents the

number of occurrences of the antipatterns in
the mobile app. The percentage is the ratio
of this value with regard to the total number of
classes, methods or activities in the mobile app.
Each antipattern is attached to one instance of
the entity type, but it should be noted that a
same entity can be affected by more than one
antipattern. For example, a class can be a com-
plex class and a blob class simultaneously. We
further exploited these results to answer our re-
search questions.

Table 7: Paprika results for the detection of 8
antipatterns in 15 applications.

Class
BLOB SAK CC LIC
(OO) (OO) (OO) (Android)

Total
Ratio

711 157 2,367 7,509
3.55% 0.78% 11.83% 37.52%

Method Activity
LM IGS MIM NLMR
(OO) (Android) (Android) (Android)

Total
Ratio

12,592 503 22,997 122
10.41% 0.42% 19.02% 39.23%

5.6.1 RQ1 Can antipatterns originating
from the source code be detected
at the bytecode level?

The results on our witness mobile app already
proved that we were able to detect antipatterns
from bytecode. This observation can be ac-
knowledged with the results on the 15 applica-
tions. We computed the thresholds to be rep-
resentative for all these applications. Antipat-
terns were detected in all of them regardless of
their specificities and despite code obfuscation.

5.6.2 RQ2 To what extent mobile apps
exhibit OO antipatterns?

LM (10.41 % of methods) and CC (11.83% of
classes) are frequent and common in all mo-
bile apps with the same order of magnitude.
Around 3% of all classes are Blobs. Our obser-
vation also shows that almost one third of all
activities are considered as Blobs. Our hypoth-
esis is that the design of the Android Frame-
work tends to encourage the presence of "blob

RR n° 8693

Detecting Antipatterns in Android Apps 16

Table 6: Impact of obfuscation on antipatterns detection
Tool Precision Recall F1
Stringer obfuscation 1 1 1
Stringer obfuscation and optimization 1 1 1
Proguard optimization 1 0.9838 0.9918
Proguard optimization and obfuscation 1 0.9032 0.9491

activities". This practice was previously identi-
fied in one mobile app [28]. Our results seems to
confirm that this is a frequent antipattern, but
further investigation are needed to confirm this
assumption on a larger dataset. Furthermore,
the proportions for these three antipatterns are
similar to the one observed in non-mobile ap-
plications by the DECOR approach [29]. How-
ever, we detected less than 1% SAK, whereas
with the DECOR approach it is around 2.9%.
The higher value of SAK is in Facebook (1.15%
of classes), which is an application making a
large usage of interfaces as we discovered when
analyzing our results. In conclusion, OO an-
tipatterns are common in Android apps and
they are as frequent as in non-mobile applica-
tions, except for SAK.

5.6.3 RQ3 To what extent mobile apps
exhibit Android-specific antipat-
terns?

The NLMR is the most frequent antipattern in
proportion as it appears in all the applications
(39.23% of all activities) except in the single
activity of Video Chat Rooms. This high pres-
ence can be explained by the fact that develop-
ers are not aware of how Android manages the
memory and that the method onLowMemory()
exists. Another reason is that small mobile
apps with less than 100 classes probably do not
have any cache or resources to free. Twitter,
Facebook, and Skype are interesting cases be-
cause they have very few NLMR compared to
the numbers of activities (around 15%). This
shows that the memory management is consid-
ered when these applications are developed and
therefore they are presenting a better quality
for memory management.

In proportion, the LIC is the second most
frequent antipattern (37.52% of all classes) and

it appears in all mobile apps. Even if the ratio
is really high, we are not surprised by this ob-
servation. The usage of inner and anonymous
classes is common in Java and Android appli-
cations. Our assumption is that mobile devel-
opers do not consider the performance impli-
cations of inner classes, even in systems where
memory leaks are more problematic due to the
limited resources. Another explanation is that
they cannot use static classes or weak references
due to implementations constraints. An inner
class may need to access the attributes of its
outer class.

The MIM is another frequent antipattern
(19.02 % of all methods) for all the analyzed
mobile apps. Our hypothesis is that developers
are using static methods only when needed by
the implementation and not for efficiency pur-
poses.

These antipatterns are detected by exploring
the model, thus their detection is not impacted
by thresholds. Consequently, this values are
independent of the analyzed dataset and their
presence is acknowledged. They are known to
affect the efficiency of mobile apps and thus,
a refactoring focusing on the concerned classes
and methods can improve the mobile app per-
formance without any trade-off.

5.6.4 RQ4 Are OO and Android-specific
antipatterns present in the same
proportion?

Our results shows that Android-specific an-
tipatterns are more frequent than OO ones. It
is interesting to notice that the MIM, NLMR
and LIC are all antipatterns, which have been
recently defined for Android and thus they are
not yet really well referenced by the literature
and developer’s documentations, that may be a
cause of their strong presence. Also, one should

RR n° 8693

Detecting Antipatterns in Android Apps 17

note that the results on those antipatterns may
greatly vary between applications, for example
around 93% of Adobe Reader activities do not
implement a method onLowMemory() whereas
it is only around 15% for Twitter. Therefore,
we assume that the developers practices are the
root cause to their presence.

5.6.5 Other observations

One can observe that Fitnet Apps and Video
Chat Rooms - Chat.Org are the applications
with the biggest proportion of antipatterns. It
is interesting to note that they are very small
mobile apps when looking at the numbers of
classes and methods. We are observing that
very small apps tend to have a higher propor-
tion of antipatterns, however our sample is too
small to validate this assumption statistically.
Moreover, this correlation between the mobile
app complexity and the ratio of antipatterns
does not seem to hold when comparing medium
and big applications. In order to confirm the
assumptions we have made and to look for cor-
relations between the applications characteris-
tics, we are planning to conduct the thorough
study on a bigger sample containing thousands
of mobile apps.

5.7 Threats to validity
In this section, we discuss the threats to validity
of our study based on the guidelines provided
by Wohlin et al. [39].
Construct validity threats concern the re-

lation between theory and observations. In
this study, these threats could be due to er-
rors during the analysis process. We validate
our approach on a witness mobile app devel-
oped to explicitly include 8 antipatterns and we
checked manually that the stored models, met-
rics and antipatterns detected were correspond-
ing to the source code even when obfuscation
and optimization were used.
Internal validity concerns our selection of

subject systems and analysis methods. The
usage of Boxplot to define thresholds could
be criticized since it depends on the analyzed
dataset and could have lead to other conclu-
sions with other applications. However, only

half of the software antipatterns queries de-
pends on these thresholds. Moreover, the usage
of all the dataset to determine the thresholds is
a guarantee that the thresholds are more rep-
resentative than if they were arbitrary defined
or calculated with only one application.
External validity threats concern the possi-

bility to generalize our findings. We tried to
collect a wide diversity of mobile apps, and
we are thus thinking that they are significant
and representative of what is distributed by the
Google Play Store and installed on Android sys-
tems. However, future studies should consider
larger sets of official Android apps. Moreover,
the approach and results reported in this paper
are specific to Android and cannot be general-
ized to other systems, such as iOS or Windows
Phone.
Reliability validity threats concern the pos-

sibility of replicating this study. We attempt
to provide all the necessary details to replicate
our experiments. In addition to the results pre-
sented in this paper, the source code of our
mobile app as well as our graph databases are
available online.

Finally, the conclusion validity threats refer
to the relation between the treatment and the
outcome. We paid attention not to make con-
clusions that cannot be validated with the pre-
sented results.

6 Conclusion and future
work

In this paper, we presented Paprika, an inno-
vative tooled approach to detect antipatterns
directly from Android packages. Paprika does
not require the source code to perform this
detection, and works even when the code has
been obfuscated to prevent reverse-engineering.
Thus, Paprika is allowing the analysis of any
application available from app stores.

Our approach was applied on a witness appli-
cation to validate its efficiency on the detection
of 4 OO antipatterns and 4 Android-specific an-
tipatterns. This validation confirmed that Pa-
prika is able to detect such antipatterns. We
also performed a study on 15 popular applica-

RR n° 8693

Detecting Antipatterns in Android Apps 18

tions downloaded on the Google Play Store and
found significant results. We discovered that
antipatterns implemented in the source code
can be detected at the bytecode level (RQ1).
Both types of antipatterns were found in all
analyzed applications. Results also show that
OO antipatterns are as present in Android ap-
plications as in non-mobile applications, with
the exception of the Swiss army knife antipat-
tern (RQ2). We also discovered that Android-
specific antipatterns are highly frequent and
common in all applications (RQ3), indeed they
are even more frequent that OO antipatterns
(RQ4).

Concerning future work, we plan to imple-
ment the detection of more antipatterns and to
perform our analysis on a larger set of appli-
cations. In this purpose, we already collected
thousands of applications from the Google Play
Store. We hope that this large-scale study will
validate the tendencies we observed in this pa-
per, but also that we will observe a correla-
tion between the frequency of antipatterns and
their metadata like the rating or the category.
We will also study the evolution of antipat-
terns between different versions of an applica-
tion. Finally, we are planning to use our large
database of knowledge to discover new antipat-
terns, which are existing in the wild but have
not been defined in the literature, yet.

Acknowledgements

These researches are co-funded by Université
of Lille, Université du Québec à Montréal, In-
ria, The Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and Fonds
de recherche du Québec - Nature et technologies
(FQNRT).

References

[1] Android performance tips. http:
//developer.android.com/training/
articles/perf-tips.html. [Online;
accessed November-2014].

[2] Android studio. https://developer.
android.com/sdk/installing/studio.
html. [Online; accessed November-2014].

[3] Android will account for 58com-
manding a market share of 75
https://www.abiresearch.com/press/
android-will-account-for-58-of-smartphone-app-down.
[Online; accessed November-2014].

[4] Dalvik bytecode. https://source.
android.com/devices/tech/dalvik/
dalvik-bytecode.html. [Online; ac-
cessed November-2014].

[5] Java platform, micro edition (java me).
http://www.oracle.com/technetwork/
java/embedded/javame/index.html.
[Online; accessed November-2014].

[6] Mobile applications futures 2013-
2017. http://www.portioresearch.
com/en/mobile-industry-reports/
mobile-industry-research-reports/
mobile-applications-futures-2013-2017.
aspx. [Online; accessed November-2014].

[7] Pmd. http://pmd.sourceforge.net/.
[Online; accessed November-2014].

[8] Smali: An assembler/disassembler for
android’s dex format. https://code.
google.com/p/smali. [Online; accessed
November-2014].

[9] Cypher. http://neo4j.com/
developer/cypher-query-language.
[Online; accessed November-2014].

[10] Neo4j. http://neo4j.com. [Online; ac-
cessed November-2014].

[11] Tools to work with android .dex and java
.class files. https://code.google.com/
p/dex2jar. [Online; accessed November-
2014].

[12] Google play store. https://play.
google.com, 2014. [Online; accessed
November-2014].

RR n° 8693

http://developer.android.com/training/articles/perf-tips.html
http://developer.android.com/training/articles/perf-tips.html
http://developer.android.com/training/articles/perf-tips.html
https://developer.android.com/sdk/installing/studio.html
https://developer.android.com/sdk/installing/studio.html
https://developer.android.com/sdk/installing/studio.html
https://www.abiresearch.com/press/android-will-account-for-58-of-smartphone-app-down
https://www.abiresearch.com/press/android-will-account-for-58-of-smartphone-app-down
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
http://www.oracle.com/technetwork/java/embedded/javame/index.html
http://www.oracle.com/technetwork/java/embedded/javame/index.html
 http://www.portioresearch.com/en/mobile-industry-reports/mobile-industry-research-reports/mobile-applications-futures-2013-2017.aspx
 http://www.portioresearch.com/en/mobile-industry-reports/mobile-industry-research-reports/mobile-applications-futures-2013-2017.aspx
 http://www.portioresearch.com/en/mobile-industry-reports/mobile-industry-research-reports/mobile-applications-futures-2013-2017.aspx
 http://www.portioresearch.com/en/mobile-industry-reports/mobile-industry-research-reports/mobile-applications-futures-2013-2017.aspx
 http://www.portioresearch.com/en/mobile-industry-reports/mobile-industry-research-reports/mobile-applications-futures-2013-2017.aspx
http://pmd.sourceforge.net/
https://code.google.com/p/smali
https://code.google.com/p/smali
http://neo4j.com/developer/cypher-query-language
http://neo4j.com/developer/cypher-query-language
http://neo4j.com
https://code.google.com/p/dex2jar
https://code.google.com/p/dex2jar
https://play.google.com
https://play.google.com

Detecting Antipatterns in Android Apps 19

[13] K. Aggarwal, Y. Singh, A. Kaur, and
R. Malhotra. Empirical analysis for inves-
tigating the effect of object-oriented met-
rics on fault proneness: a replicated case
study. Software process: Improvement and
practice, 14(1):39–62, 2009.

[14] A. Bartel, J. Klein, Y. Le Traon, and
M. Monperrus. Dexpler: converting an-
droid dalvik bytecode to jimple for static
analysis with soot. In Proc. of the
ACM SIGPLAN International Workshop
on State of the Art in Java Program anal-
ysis, pages 27–38. ACM, 2012.

[15] V. R. Basili, L. C. Briand, and W. L.
Melo. A validation of object-oriented de-
sign metrics as quality indicators. IEEE
Transactions on Software Engineering,
22(10):751–761, 1996.

[16] W. J. Brown, H. W. McCormick, T. J.
Mowbray, and R. C. Malveau. AntiPat-
terns: refactoring software, architectures,
and projects in crisis. Wiley New York, 1.
auflage edition, 1998.

[17] M. Brylski. Android smells cata-
logue. http://www.modelrefactoring.
org/smell_catalog, 2013. [Online; ac-
cessed November-2014].

[18] S. R. Chidamber and C. F. Kemerer. A
metrics suite for object oriented design.
IEEE Transactions on Software Engineer-
ing, 20(6):476–493, 1994.

[19] W. Enck, D. Octeau, P. McDaniel, and
S. Chaudhuri. A study of android appli-
cation security. In USENIX security sym-
posium, volume 2, page 2, 2011.

[20] M. Fokaefs, N. Tsantalis, E. Stroulia, and
A. Chatzigeorgiou. Jdeodorant: identifica-
tion and application of extract class refac-
torings. In Proceedings of the 33rd Interna-
tional Conference on Software Engineer-
ing, pages 1037–1039. ACM, 2011.

[21] M. Fowler. Refactoring: improving the de-
sign of existing code. Pearson Education
India, 1999.

[22] F. Holzschuher and R. Peinl. Performance
of graph query languages: comparison of
cypher, gremlin and native access in neo4j.
In Proc. of the Joint EDBT/ICDT 2013
Workshops, pages 195–204. ACM, 2013.

[23] W. Li and R. Shatnawi. An empiri-
cal study of the bad smells and class er-
ror probability in the post-release object-
oriented system evolution. Journal of sys-
tems and software, 80(7):1120–1128, 2007.

[24] M. Linares-Vásquez, S. Klock, C. McMil-
lan, A. Sabané, D. Poshyvanyk, and Y.-
G. Guéhéneuc. Domain matters: bring-
ing further evidence of the relationships
among anti-patterns, application domains,
and quality-related metrics in java mobile
apps. In Proc. of the 22nd International
Conference on Program Comprehension,
pages 232–243. ACM, 2014.

[25] A. Lockwood. How to leak a context:
Handlers and inner classes. http://www.
androiddesignpatterns.com/2013/01/
inner-class-handler-memory-leak.
html, 2013. [Online; accessed November-
2014].

[26] C. Marinescu, R. Marinescu, P. F. Mi-
hancea, and R. Wettel. iplasma: An inte-
grated platform for quality assessment of
object-oriented design. In In ICSM (In-
dustrial and Tool Volume). Citeseer, 2005.

[27] T. J. McCabe. A complexity measure.
IEEE Transactions on Software Engineer-
ing, (4):308–320, 1976.

[28] R. Minelli and M. Lanza. Software ana-
lytics for mobile applications–insights and
lessons learned. In 17th European Confer-
ence on Software Maintenance and Reengi-
neering (CSMR), pages 144–153. IEEE,
2013.

[29] N. Moha, Y.-G. Guéhéneuc, L. Duchien,
and A. Le Meur. Decor: A method for
the specification and detection of code and
design smells. Software Engineering, IEEE
Transactions on, 36(1):20–36, 2010.

RR n° 8693

http://www.modelrefactoring.org/smell_catalog
http://www.modelrefactoring.org/smell_catalog
http://www.androiddesignpatterns.com/2013/01/inner-class-handler-memory-leak.html
http://www.androiddesignpatterns.com/2013/01/inner-class-handler-memory-leak.html
http://www.androiddesignpatterns.com/2013/01/inner-class-handler-memory-leak.html
http://www.androiddesignpatterns.com/2013/01/inner-class-handler-memory-leak.html

Detecting Antipatterns in Android Apps 20

[30] J. Reimann, M. Brylski, and U. Aß-
mann. A Tool-Supported Quality Smell
Catalogue For Android Developers. In
Proc. of the conference Modellierung
2014 in the Workshop Modellbasierte und
modellgetriebene Softwaremodernisierung
– MMSM 2014, 2014.

[31] J. Reimann, M. Seifert, and U. Aßmann.
On the reuse and recommendation of
model refactoring specifications. Software
& Systems Modeling, 12(3):579–596, 2013.

[32] I. J. M. Ruiz, M. Nagappan, B. Adams,
and A. E. Hassan. Understanding reuse
in the android market. In 20th Interna-
tional Conference on Program Comprehen-
sion (ICPC), pages 113–122. IEEE, 2012.

[33] M. Schönefeld. Reconstructing dalvik ap-
plications. In 10th annual CanSecWest
conference, 2009.

[34] Y. Singh, A. Kaur, and R. Malhotra. Em-
pirical validation of object-oriented met-
rics for predicting fault proneness models.
Software quality journal, 18(1):3–35, 2010.

[35] N. Tsantalis, T. Chaikalis, and A. Chatzi-
georgiou. Jdeodorant: Identification and
removal of type-checking bad smells. In
Software Maintenance and Reengineering,
2008. CSMR 2008. 12th European Confer-
ence on, pages 329–331. IEEE, 2008.

[36] J. W. Tukey. Exploratory Data Analysis.
Addison-Wesley, 1977.

[37] R. Vallée-Rai, P. Co, E. Gagnon, L. Hen-
dren, P. Lam, and V. Sundaresan. Soot-
a java bytecode optimization framework.
In Proc. of the conference of the Centre
for Advanced Studies on Collaborative re-
search, page 13. IBM Press, 1999.

[38] D. Verloop. Code Smells in the Mobile Ap-
plications Domain. PhD thesis, TU Delft,
Delft University of Technology, 2013.

[39] C. Wohlin, P. Runeson, M. Höst, M. C.
Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in software engineering.
Springer, 2012.

[40] L. Xu. Techniques and Tools for Analyzing
and Understanding Android Applications.
PhD thesis, University of California Davis,
2013.

RR n° 8693

RESEARCH CENTRE
LILLE – NORD EUROPE

Parc scientifique de la Haute-Borne
40 avenue Halley - Bât A - Park Plaza
59650 Villeneuve d’Ascq

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Background on Android Package and Bytecode
	Related Work
	Paprika: A tooled Approach to detect Software Anti-Patterns
	Overview of the Approach
	Step 1: Collecting Metrics from Application Artifacts
	Step 2: Converting Paprika Model as a Graph Model
	Step 3: Detecting Anti-patterns from Graph Queries

	Empirical Validation
	Research Questions
	Subjects
	Objects

	Conclusion and future work

