A high-order semi-Lagrangian/finite volume scheme for Hamilton-Jacobi-Bellman-Isaacs equations

Abstract : We present a numerical scheme for the approximation of Hamilton-Jacobi-Bellman-Isaacs equations related to optimal control problems and differential games. In the first case, the Hamiltonian is convex with respect to the gradient of the solution whereas the second case corresponds to a non convex (minmax) operator. We introduce a scheme based on the combination of semi-Lagrangian time discretization with a high-order finite volume spatial reconstruction. The high-order character of the scheme provides an efficient way towards accurate approximations with coarse grids. We assess the performance of the scheme with a set of problems arising in minimum time optimal control and pursuit-evasion games.
Type de document :
Chapitre d'ouvrage
System Modeling and Optimization, System Modeling and Optimization (444), Springer, pp.105-117, 2014, IFIP Advances in Information and Communication Technology, 978-3-662-45503-6
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01122940
Contributeur : Estelle Bouzat <>
Soumis le : mercredi 4 mars 2015 - 19:56:12
Dernière modification le : lundi 21 mars 2016 - 11:30:43
Document(s) archivé(s) le : vendredi 5 juin 2015 - 11:25:57

Fichier

FalcKalIFIP.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01122940, version 1

Collections

Citation

Maurizio Falcone, Dante Kalise. A high-order semi-Lagrangian/finite volume scheme for Hamilton-Jacobi-Bellman-Isaacs equations. System Modeling and Optimization, System Modeling and Optimization (444), Springer, pp.105-117, 2014, IFIP Advances in Information and Communication Technology, 978-3-662-45503-6. 〈hal-01122940〉

Partager

Métriques

Consultations de la notice

226

Téléchargements de fichiers

106