Acoustic eigenanalysis of 2D open cavity with Vekua approximations and the method of particular solutions

Abstract : This paper discusses the efficient extraction of acoustic resonances in 2D open cavities using a meshless method, the method of particular solutions. A first order, local non-reflecting boundary condition is chosen to account for the opening and Fourier-Bessel functions are employed to approximate the pressure at the borders of the cavity and inside. A minimization problem is then solved for the complex frequency range of interest. For the investigated cavity, the minimum values obtained match those found in previously published studies or by other numerical methods. But, unlike the perfectly matched layer absorbing boundary conditions now usually employed, this approach is free from spurious eigenfrequencies. Moreover, the specific treatments of the geometric singularities allow this method to be particularly efficient in the presence of corner singularities.
Type de document :
Article dans une revue
Engineering Analysis with Boundary Elements, Elsevier, 2014, 43, pp.7. 〈10.1016/j.enganabound.2014.03.006〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01131092
Contributeur : Gilles Chardon <>
Soumis le : dimanche 17 mai 2015 - 19:50:43
Dernière modification le : mardi 19 mai 2015 - 01:00:52
Document(s) archivé(s) le : mardi 15 septembre 2015 - 01:11:41

Fichier

leblanc_chardon_eabe_2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alexandre Leblanc, Gilles Chardon. Acoustic eigenanalysis of 2D open cavity with Vekua approximations and the method of particular solutions. Engineering Analysis with Boundary Elements, Elsevier, 2014, 43, pp.7. 〈10.1016/j.enganabound.2014.03.006〉. 〈hal-01131092〉

Partager

Métriques

Consultations de la notice

165

Téléchargements de fichiers

126