Adaptive Motion Pooling and Diffusion for Optical Flow

Abstract : We study the impact of local context of an image (contrast and 2D structure) on spatial motion integration by MT neurons. To do so, we revisited the seminal work by Heeger and Simoncelli (HS) using spatio-temporal filters to estimate optical flow from V1-MT feedforward interactions. However, the HS model cannot deal with several problems encountered in real scenes (e.g., blank wall problem and motion discontinuities). Here, we propose to extend the HS model with adaptive processing by focussing on the role of local context indicative of the local velocity estimates reliability. We set a network structure representative of V1, V2 and MT. We incorporate three functional principles observed in primate visual system: contrast adaptation, adaptive afferent pooling and MT diffusion that are adaptive dependent upon the 2D image structure (Adaptive Motion Pooling and Diffusion, AMPD).We evaluated both HS and AMPD models performance on Middlebury optical flow estimation dataset. Our results show that the AMPD model performs better than the HS model and its overall performance is comparable with many modern computer vision. The AMPD model has to be further improved by integrating feedback from MT to V1 to better recover true velocities around motion discontinuities. However, we think that this adaptive model can serve as a ground for future research in biologically-inspired computer vision.
Type de document :
Rapport
[Research Report] RR-8695, INRIA Sophia-Antipolis; University of Genoa; INT la Timone. 2015, pp.19
Liste complète des métadonnées

Littérature citée [44 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01131099
Contributeur : Pierre Kornprobst <>
Soumis le : mercredi 14 octobre 2015 - 14:11:48
Dernière modification le : jeudi 18 janvier 2018 - 02:25:25
Document(s) archivé(s) le : lundi 17 avril 2017 - 22:54:17

Fichier

RR-8695.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01131099, version 2

Citation

N. V. Kartheek Medathati, Manuela Chessa, Guillaume Masson, Pierre Kornprobst, Fabio Solari. Adaptive Motion Pooling and Diffusion for Optical Flow. [Research Report] RR-8695, INRIA Sophia-Antipolis; University of Genoa; INT la Timone. 2015, pp.19. 〈hal-01131099v2〉

Partager

Métriques

Consultations de la notice

306

Téléchargements de fichiers

191