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Abstract

The notion of Shared Risk Link Groups (SRLG) has been introduced to capture surviv-
ability issues where some links of a network fail simultaneously. In this context, the k-diverse
routing problem is to find a set of k pairwise SRLG-disjoint paths between a given pair of
end nodes of the network. This problem has been proven NP-complete in general and some
polynomial instances have been characterized.

In this paper, we investigate the k-diverse routing problem in networks where the SRLGs
are localized and satisfy the star property. This property states that a link may be subject
to several SRLGs, but all links subject to a given SRLG are incident to a common node.
We first provide counterexamples to the polynomial time algorithm proposed by X. Luo and
B. Wang (DRCN’05) for computing a pair of SRLG-disjoint paths in networks with SRLGs
satisfying the star property, and then prove that this problem is in fact NP-complete. We
then characterize instances that can be solved in polynomial time or are fixed parameter
tractable, in particular when the number of SRLGs is constant, the maximum degree of the
vertices is at most 4, and when the network is a directed acyclic graph.

Finally we consider the problem of finding the maximum number of SRLG-disjoint paths
in networks with SRLGs satisfying the star property. We prove that this problem is NP-
hard to approximate within O(|V |1−ε) for any 0 < ε < 1, where V is the set of nodes in the
network. Then, we provide exact and approximation algorithms for relevant subcases.

Keywords: Diverse routing; Shared Risk Link Group; Colored graph; Complexity;
Algorithms; Disjoint paths.

1 Introduction

To ensure reliable communications in connection oriented networks such as optical backbone
networks, many protection schemes have been proposed. One of the most used, called dedicated
path protection, consists in computing for each demand both a working and a protection path.
A general requirement is that these paths have to be disjoint, so that at least one of them can
survive a single failure in the network. This method works well in a single link failure scenario,
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as it consists in finding two edge-disjoint paths between a pair of nodes. This is a well-known
problem in graph theory for which there exist efficient polynomial time algorithms [27, 28].

However, the problem of finding two disjoint paths between a pair of nodes becomes much
more difficult, in terms of computational complexity, in case of multiple correlated link failures
that can be captured by the notion of Shared Risk Link Group (or SRLG, for short). In fact,
a SRLG is a set of network links that fail simultaneously when a given event (risk) occurs.
The scope of this concept is very broad. It can correspond, for instance, to a set of fiber links
of an optical backbone network that are physically buried at the same location and therefore
could be cut simultaneously (i.e. backhoe or JCB fade). It can also represent links that are
located in the same seismic area, or radio links in access and backhaul networks subject to
localized environmental conditions affecting signal transmission, or traffic jam propagation in
road networks. Note that a link can be affected by more than one risk. In practice, the failures
are often localized and common SRLGs satisfy the star property [24] (coincident SRLGs in [10]).
Under this property, all links of a given SRLG share an endpoint. Such failure scenarios can
correspond to risks arising in router nodes like card failures or to the cut of a conduit containing
links issued from a node (see Figure 1).

l1 l6l5l4l3l2

l8

l7

l1 l6l5l4l3l2

l8

l7

r4

r3

r2r1

v

v

Card1

Card3

Card2

Figure 1: Example of localized risks: link l4 shares risk r2, corresponding to Card 2 failure, with
links l5 and l6, and shares risk r4, corresponding to a conduit cut, with links l2 and l3.

The graph theoretic framework for studying optimization problems in networks with SRLGs
is the colored graph model [9, 32, 13, 10, 24, 7]. In this model, the network topology is modeled
by a graph G = (V,E) and the set of SRLGs by a set of colors C. Each SRLG is modeled by
a distinct color, and that color is assigned to all the edges corresponding to the network links
subject to this SRLG. Also, an edge modeling a network link subject to several SRLGs will be
assigned as many colors as SRLGs. A colored graph is therefore defined by the triple (V,E,C ),
where C is a coloring function, C : E → 2C , that assigns a subset of colors to each edge. The
colored graph model is also known as the labeled graph model [14]. Furthermore, some studies
assumed that an edge is assigned at most one color [7, 14, 22]. Notice that the computational
complexity of some optimization problems may be different in the model in which an edge is
assigned at most one color than in the model in which it can be assigned multiple colors, and the
impact of the transformation from one model to the other on problems complexities has been
investigated in [8]. In the setting of colored graphs, the star property means that all the edges
with a given color share a common vertex.
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1.1 Related work

In the context of colored graphs, basic graph connectivity problems have been re-stated in terms
of colors and proven much more difficult to address than their basic counterparts. For instance,
the minimum color st-path problem is to find a path from vertex s to vertex t in the graph
that minimizes the cardinality of the union of the colors of the edges along that path. This
problem has been proven NP-hard [26, 4, 5] and hard to approximate [7, 18] in general, W [2]-
hard when parameterized by the number of used colors and W [1]-hard when parameterized by
the number of edges of the path [14]. However, it has been proven in [8] that the minimum
color st-path problem can be solved in polynomial time in colored graphs with the star property.
Other optimization problems on graphs have been studied in the context of colored graphs such
as the minimum color cut [13, 7], the minimum color st-cut [7], the minimum color maximum
matching [14] .

The k-diverse routing problem in presence of SRLGs consists in finding a set of k SRLG-
disjoint paths between a pair of vertices (i.e. paths having no risk in common). Note that many
authors use, in the case k = 2, diverse routing instead of 2-diverse routing. With no restriction
on the graph structure and on the assignment of SRLGs to edges, even finding two SRLG-disjoint
paths is NP-complete [21], and therefore many heuristics have been proposed [26, 32, 17, 31, 30,
33]. The problem is polynomial in some specific cases of localized failures: when SRLGs have
span 1 (i.e. an edge can be affected by only one SRLG, and the set of edges belonging to the
same SRLG forms a connected component, see [7]), and in a specific case of SRLGs having the
star property [9] in which a link can be affected by at most two risks and two risks affecting the
same link form stars at different nodes (this result also follows from [7]).

1.2 Our results

We study the k-diverse routing problem when SRLGs have the star property and there are no
restrictions on the number of risks per link nor on the number of links per risk. This case has
been studied in [24] in which the authors claim that finding two SRLG-disjoint paths under the
star property can be solved in polynomial time. In this paper, we establish the following results:

1. We demonstrate that the algorithm proposed in [24] is not correct; indeed we exhibit,
in Section 3, counterexamples for which their algorithm concludes to the non existence of
two SRLG-disjoint paths although two such paths exist.

2. We prove, in Section 4, that finding k SRLG-disjoint paths is in fact NP-complete even
only for two paths.

3. On the positive side, we show in Section 5, that the k-diverse routing problem can be
solved in polynomial time in particular subcases which are relevant in practice. Namely,
we solve the problem in polynomial time when the maximum degree is at most 4 or when
the input network is a directed acyclic graph. Moreover, we show that the problem is
fixed-parameter tractable when parameterized by the number of colors in C.

4. Finally, we consider the problem of finding the maximum number of SRLG-disjoint paths.
We prove that, under the star property, the problem is hard to approximate within
O(|V |1−ε) for any 0 < ε < 1, where V is the set of nodes in the network, and we give
polynomial time algorithms for some of the above relevant subcases.

We give the notation used in this paper in Section 2.
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2 Notations and problem statement

We model the network as an undirected connected graph G = (V,E), where the vertices in V
represent the nodes and the edges in E represent the links. We associate a color with each
SRLG. Let us denote by C the set of all the colors. Then a network with SRLGs is modeled
by a colored graph that is a triple Gc = (V,E,C ), where (V,E) is a graph and C is a coloring
function, C : E → 2C , that assigns a subset of colors to each edge of E.

We denote by E(c) the set of edges having color c ∈ C, by C (e) the set of colors associated
with edge e ∈ E, by cpe = maxe∈E |C (e)| the maximum number of colors per edge, and by
epc = maxc∈C |E(c)| the maximum number of edges having the same color. We assume that
C (e) 6= ∅ for each e ∈ E. Given a vertex v, Γ(v) denotes the set of neighbors of v and
d(v) = |Γ(v)| its degree. A color is incident to v if it is assigned to an edge incident to v. The
colored degree of v, denoted by dC(v), is the number of colors incident to v. The maximum degree
and the maximum colored degree of a graph are denoted by ∆ and ∆C , respectively.

We can now model the star property defined in the introduction as follows. A color c ∈ C is
called a star color if all edges of E(c) are incident to the same vertex. A colored graph has the
star property if it has only star colors.

Given a colored graph Gc and two vertices s and t, an st-path is an alternating sequence of
vertices and edges, beginning with s and ending with t, in which each edge is incident to the
vertex immediately preceding it and to the vertex immediately following it. A path is denoted
by the sequence of vertices and edges. We say that two paths P1 and P2 are color-disjoint if
(∪e∈P1C (e)) ∩ (∪e∈P2C (e)) = ∅, i.e. the edges of one path do not have any color in common
with the edges of the other path.

The k-diverse routing problem defined in the introduction consists then in finding k color-
disjoint paths and for every k can be formally formulated as follows:

Problem 1 (k-Diverse Colored st-Paths, k-DCP). Given a colored graph Gc and two vertices s
and t, are there k color-disjoint paths from s to t?

In this paper we study the k-DCP problem where the colored graphs have the star property.

3 Counterexamples to the algorithm of Luo and Wang

Luo and Wang [24] proposed an algorithm to find a pair of color-disjoint paths with minimum
total cost from a source s to a destination t in graphs with colors (SRLGs) satisfying the star
property. The algorithm is an adaptation of the Bhandari’s edge-disjoint shortest-pair of paths
algorithm [2, Chapter 3.3, pages 46-68] (which itself is a variation of the Suurballe-Tarjan’s
algorithm [27, 28]) and is based on augmenting a shortest path Pa between s and t.

In what follows, we argue that the algorithm is incorrect, as there are at least two problems
with it.

Counterexample 1

The first problem comes from the fact that the algorithm implies that the first and last edges
of the shortest s-t path Pa should be contained necessarily in the pair of paths returned by the
algorithm. However, if no edge incident to s (to t) is color-disjoint with the first (the last) edge
of Pa, respectively, the algorithm will ignore the existence of 2 color-disjoint paths even if they
exist.

The counterexample in Figure 2 illustrates this first problem: color c is shared between
edges {s, v0} and {s, v1} and color c′ 6= c is shared between edges {s, v0} and {s, v2}. All

4



other unmarked edges have distinct colors different from c and c′. The shortest path from s
to t is Pa = {s, v0, t}. Applied on the graph of Figure 2, the algorithm described in [24, page
451, lines 9–10] does not find any edge to start and hence terminates concluding that there
are no two color-disjoint paths. However two color-disjoint paths clearly exist, namely they are
P1 = {s, v1, w1, t} and P2 = {s, v2, w2, t}.

v2

w1

w2

v0

c′

c′c

c

v1

ts

Figure 2: Example 1.

Counterexample 2

The second problem is that the algorithm only checks color-disjointness around nodes of Pa
and never checks other nodes. It assumes implicitly that the only nodes that can be shared by
the two color-disjoint paths are nodes belonging to Pa and ignores the existence of any other
possibilities.
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Figure 3: Example 2

Figure 3, illustrating the second problem, shows a counterexample to the algorithm in [24]
that furthermore can give to the reader a flavor of the difficulty of the problem. In this figure,
we have 2 specific colors c and c′ 6= c forming a star in v. All other unmarked edges have
distinct colors different from c and c′. As vertex v is a cut-vertex any s-t path should contain
v. Moreover {a, v} cannot be used as it shares a color both with {v, b} and {v, b′}. Therefore,
to ensure the color-disjointness, one path should use the subpath u, v, b and the other one
should use the subpath u′, v, b′. We have two color-disjoint paths P1 = {s, a, z, w, u, v, b, t} and
P2 = {s, a′, w, u′, v, b′, t}. However, the algorithm of [24] uses the shortest path Pa = {s, a, v, b, t}
and then performs a backwards phase which never finds w again. Then the algorithm terminates,
missing the fact that there exist two color-disjoint paths. Note that the disjointness is not
ensured, if there exists in w some common color for example on the edges (w, u) and (w, u′),
showing that a local consideration around the shortest path is not sufficient. In fact, in the next
section we will prove that the problem is NP-complete.

5



v
h

e

f
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(b) v in H

Edge Colors
{v, xe} Cef , Cef ′
{v, x′e} Ce′f , Ce′f ′
{v, xf} Cef , Ce′f
{v, x′f} Cef ′ , Ce′f ′
{v, xh} Ch,
{v, x′h} C ′h,

(c) Color assignment

Figure 4: Color assignment for vertices with degree 3.

4 NP-completeness

In this section we will prove that, even with the star property, the k-DCP problem is NP-complete
for every constant k ≥ 2. We use a reduction from the problem described below of finding a
T -compatible path (or a path avoiding forbidden transitions), which was proven NP-complete
in [29]. This again contradicts the supposed correctness of the polynomial algorithm of [24],
unless P = NP .

Let G = (V,E) be an undirected graph. A transition in v ∈ V is a pair of edges incident to
v. With each vertex v we associate a set T (v) of admissible (or allowed) transitions in v. We
call transition system the set T = {T (v) | v ∈ V }. Let G = (V,E) be a graph and let T be a
transition system. A path P = {v0, e1, v1, . . . , ek, vk} in G, with vi ∈ V , ei ∈ E, is said to be
T -compatible if, for every 1 ≤ i ≤ k − 1, the pair of edges {ei, ei+1} is an admissible transition,
i.e. {ei, ei+1} ∈ T (vi). We can now define the T -Compatible path problem.

Problem 2 (T -Compatible path, T -CP). Given a graph G = (V,E), two vertices s and t in V ,
and a transition system T , does G contain a T -compatible path from s to t?

It has been proven in [29] that problem T -CP is NP-complete and it remains NP-complete
for the family G4 of simple graphs where vertices s and t have degree 3 and any other vertex has
degree 3 or 4, and the set of transitions T (v) is such that

• If d(v) = 3, T (v) consists of two pairs of edges {e, h} and {f, h} where e, f and h are the
3 edges incident to v;

• If d(v) = 4, T (v) consists of two pairs of distinct edges {e, f} and {g, h} where e, f, g and
h are the 4 edges incident to v.

Theorem 1. The k-DCP problem is NP-complete for any fixed constant k ≥ 2, even if all the
following properties hold:

• the star property;

• the maximum degree ∆ is fixed with ∆ ≥ max{8, k};

• cpe, epc and ∆C are fixed with either [cpe ≥ 4, epc ≥ 2, and ∆C ≥ max{16, k}] or
[cpe ≥ 2, epc ≥ 4 and ∆C ≥ max{4, k}].

Proof. We first prove the statement for k = 2 and then extend it for any fixed k ≥ 3.
It is easy to see that the problem is in NP since, given two paths we just have to check

whether they are color-disjoint.
Given an instance (G, s, t, T ) of the T -CP problem with G in the family G4, we define an

instance of 2-DCP as follows. We associate with G a colored graph H = (VH , EH ,C ) where:
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(b) v in H

Edge Colors
{v, xe} Ceg, Ceg′ , Ceh, Ceh′
{v, x′e} Ce′g, Ce′g′ , Ce′h, Ce′h′
{v, xf} Cfg, Cfg′ , Cfh, Cfh′
{v, x′f} Cf ′g, Cf ′g′ , Cf ′h, Cf ′h′
{v, xg} Ceg, Ce′g, Cfg, Cf ′g
{v, x′g} Ceg′ , Ce′g′ , Cfg′ , Cf ′g′
{v, xh} Ceh, Ce′h, Cfh, Cf ′h
{v, x′h} Ceh′ , Ce′h′ , Cfh′ , Cf ′h′

(c) Color assignment

Figure 5: Color assignment for vertices with degree 4.

• For each node in G, we associate a node in H;

• For each edge e = {u, v} in G, we associate in H two nodes xe and x′e and two paths
of length 2: {u, xe, v} and {u, x′e, v}. H has then |V (G)| + 2|E(G)| vertices and 4|E(G)|
edges.

• We assign the colors to edges incident to a vertex v in H as follows:

– Distinct new colors are assigned to the edges incident to t.

– For each pair of edges e and f incident to s in G, such that e 6= f , we will use 4 colors
Cef , Cef ′ , Ce′f and Ce′f ′ . We assign colors Cef and Cef ′ to the edge {s, xe}; colors
Ce′f and Ce′f ′ to the edge {s, x′e}, colors Cef and Ce′f to the edge {s, xf} and colors
Cef ′ and Ce′f ′ to the edge {s, x′f}.

– For each v 6= s, t, and for each pair of edges e and f incident to v in G such that
e 6= f and {e, f} is not an admissible transition (i.e. {e, f} /∈ T (v)), we assign colors
Cef and Cef ′ (Ce′f and Ce′f ′) to the edge {v, xe} ({v, x′e}), and colors Cef and Ce′f
(Cef ′ and Ce′f ′) to the edge {v, xf} ({v, x′f}), respectively. As each vertex has either
degree 3 or 4, two cases can occur:

(i) If d(v) = 3, let e, f and h be the 3 edges incident to v and let T (v) = {{e, h}, {f, h}},
then the colors are assigned as described in Figure 4.

(ii) If d(v) = 4, let e, f, g and h be the 4 edges incident to v and T (v) = {{e, f}, {g, h}},
then the colors are assigned as described in Figure 5.

The transformation is polynomial time computable and the star property holds. Moreover,
note that each edge has at most 4 colors, each color is associated with two edges, the degree of
each vertex is at most 8 and the color degree is at most 16. It follows that cpe ≤ 4, epc ≤ 2,
∆ ≤ 8, and ∆C ≤ 16.

To prove the theorem, we will use the following properties.

Property 1. Given an edge e incident to s in G, the edge {s, xe} in H shares a color with all
the other edges incident to s, except {s, x′e}. In other words, the only pair of edges incident to s
having no color in common are of the form {{s, xe}, {s, x′e}} for some e.

Property 2. If v 6= s, t, d(v) = 3 and T (v) = {{e, h}, {f, h}}, then two edges incident to v
share a color if and only if one is {v, xe} or {v, x′e} and the other is {v, xf} or {v, x′f}.
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Property 3. If v 6= s, t, d(v) = 4 and T (v) = {{e, f}, {g, h}}, then two edges incident to v
share a color if and only if one is {v, xe}, {v, x′e}, {v, xf} or {v, x′f} and the other is {v, xg},
{v, x′g}, {v, xh} or {v, x′h}.

In other words, two edges incident to a node v are color-disjoint if and only if they correspond
to an admissible transition of v or are of the form {v, xe} and {v, x′e}.

We first show that if there exists a T -compatible path in G, then there exist two color-disjoint
paths in H. Let P = {s, e1, v1, . . . , ep, vp, ep+1, t} be a T -compatible path from s to t in G. Then
Q = {s ≡ v0, xe1 , v1, . . . , xep , vp, xep+1 , t} and Q′ = {s ≡ v0, x

′
e1 , v1, . . . , x

′
ep , vp, x

′
ep+1

, t} are two
color-disjoint paths in H. In particular, by Properties 1, 2, and 3, any edge {vi, xei+1} ({xei , vi})
has no color in common with {vi, x′ei+1

} ({x′ei , vi}), respectively, for each i = 0, 1, . . . , p.
Conversely, we now show that if there exist two color-disjoint paths in H, then there exists a

T -compatible path inG. Let the two color-disjoint paths inH beQ = {s, x1, v1, . . . , xp, vp, xp+1, t}
and Q′ = {s, y1, u1, . . . , yp′ , up′ , yp′+1, t}. We prove by induction on i ∈ {1, . . . , p + 1}, that
{xi, yi} = {xei , x′ei}, vi = ui and p = p′.

For i = 1, by Property 1, {s, x1} and {s, y1} have no color in common only if {x1, y1} =
{xe, x′e} for an edge e incident to s and then v1 = u1.

Let us suppose that the statement is true until i = l; we will prove it for i = l + 1. Let the
two edges entering ul = vl used by Q and Q′ be {xel , vl} and {x′el , vl}.

If d(vl) = 3, we distinguish two cases:

• el belongs to only one admissible pair of T (vl) say {el, hl} and the paths Q and Q′, being
color-disjoint, can only use the edges {vl, xhl} and {vl, x′hl}.

• el belongs to two admissible pairs in T (vl), {el, fl} and {el, hl}. If one path uses the edge
{vl, xhl} ({vl, x′hl}) the other path cannot use the edge {vl, xfl} or {vl, x′fl} by Property 2,
it has then to use edge {vl, x′hl} ({vl, xhl}), respectively.

Therefore, in both cases {xl+1, yl+1} = {xhl , x′hl} and vl+1 = ul+1.

If d(vl) = 4, by Property 3, the only possibility as Q and Q′ are color-disjoint is that they use
the edges {vl, xel+1

} and {vl, x′el+1
}, respectively, where {el, el+1} ∈ T (vl) and so the statement

is true for i = l + 1.
It follows that the path P = {s, e1, v1, . . . , ep, vp, ep+1, t} satisfies {ei, ei+1} ∈ T (vi) for every

i ∈ {1, . . . , p} and then it is T -compatible.

To show that the problem remains NP-complete even for fixed cpe ≥ 2, epc ≥ 4 and ∆C ≥ 4,
it is enough to modify the above transformation by using a different color assignment. In detail,
the color assignment differs from the one given above as follows:

• Edges incident to vertex s (which has degree 3) have the color assignment reported in
Table 1a;

• Edges incident to vertices with degree 4 in G have the color assignment reported in Ta-
ble 1b;

• The other vertices (i.e. t and those with degree 3 in G) keep the same color assignment as
before.

The above proof works with this color assignment with slight changes. Indeed in Property 3
edge {v, xe} shares colors with edge {v, xf}. But the proof is still valid as when d(vl) = 4,
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if Q (Q′) uses the edge {vl, xel} ({vl, x′el}), then Q (Q′) uses the edge {vl, xel+1
} ({vl, x′el+1

}),
respectively, where {el, el+1} ∈ T (vl). It follows that 2-DCP is NP-hard even for fixed cpe ≥ 2,
epc ≥ 4 and ∆C ≥ 4.

Edge Colors
{s, xe} C1, C2

{s, x′e} C3, C4

{s, xf} C1, C3

{s, x′f} C2, C4

{s, xh} C1, C4

{s, x′h} C2, C3

(a) Color assignment for vertex s.

Edge Colors
{v, xe} C1, C2

{v, x′e} C3, C4

{v, xf} C1, C2

{v, x′f} C3, C4

{v, xg} C1, C3

{v, x′g} C2, C4

{v, xh} C1, C3

{v, x′h} C2, C4

(b) Color assignments for vertices with degree 4.

Table 1: Color assignments for vertex s (Table 1a) and for vertices with degree 4 (Table 1b)
when cpe ≥ 2 and epc ≥ 4.

We can extend the proof to the case where k ≥ 3 in various ways. In a first version we added
k− 2 paths of length 2 from s to t, Pi = {s, wi, t} for i = 3, 4, . . . k, with a new color assigned to
each edge {s, wi}. The following construction which gives better results was suggested by one
referee; we modify H = (VH , EH ,C ) as follows:

• We introduce two additional vertices s′ and t′.

• We add k− 2 paths of length 2 from s′ to t′, Pi = {s′, wi, t′} for i = 3, 4, . . . k, with a new
color assigned to each edge {s′, wi} and {t′, wi}. These paths are pairwise color-disjoint.

• We add two paths of length 2 from s to s′, Ai = {s′, ai, s} for i = 1, 2, with a new color
assigned to each edge {s, ai} and {s′, ai}.

• We add two paths of length 2 from t to t′, Bi = {t, bi, t′} for i = 1, 2, with a new color
assigned to each edge {t, bi} and {t′, bi}.

Finding k color-disjoint paths from s′ to t′ in this new graph is equivalent to finding 2 color-
disjoint paths from s to t . Moreover, this assignment does not change cpe and epc,and ∆ and
∆C are either the same or equal to k.

5 Polynomial cases

In this section we give polynomial time algorithms for k-DCP for some important special cases.
In detail, we solve k-DCP for the cases where the number of colors is bounded by a constant (i.e.
|C| = O(1)), for some cases where the maximum degree of the graph is strictly smaller than 5,
and for the cases where the input graph is a Directed Acyclic Graph (DAG). All the given
algorithms work only when the star property hold, but the one for the case when |C| = O(1)
which works for any possible color assignment.

5.1 Bounded number of colors

In this section, we give an algorithm to find k color-disjoint paths in the special case where the
number |C| of colors in the network is bounded by a constant, i.e. |C| = O(1). We observe that
such an algorithm works for every graph topology and even if the star property does not hold.

9



We will reduce our problem to the Set Packing problem.

Problem 3 (Set Packing). Given a set X, a collection S of subsets of X and an integer k, is
there a collection of disjoint sets S ′ ⊆ S such that |S ′| = k?

The Set Packing problem is known to be NP-hard [16, Problem SP3, page 221] but is
polynomial-time solvable when the size of X is bounded [3].

A subset A ⊆ C of colors will be called realizable, if the subgraph GA induced by the edges
whose colors are all in A (i.e. edges e such that C (e) ⊆ A) contains at least one path from s to
t. Note that such a path uses only colors of A.

The idea of the algorithm is to enumerate all the realizable subsets of C and then find k
disjoint realizable subsets by using an exact algorithm for the Set Packing. As the size of C is
constant, the computational time required by such algorithm is polynomial.

The details of the algorithm along with its correctness and complexity are given in the next
theorem.

Theorem 2. The k-DCP problem is FPT when parameterized by the number of colors |C|. In
particular, there exists an algorithm for solving the k-DCP problem in time O(f(|C|)(|V |+ |E|)),
where f is a function depending solely on |C|.

Proof. Let X = C and let S be the family of realizable subsets of colors. Then there exists a
collection of k disjoint sets S ′ ⊆ S if and only if there exist k color-disjoint paths from s to
t. Indeed, to each subset A′ of S ′ is associated a path using uniquely colors of A′ (as A′ is
realizable) and two disjoint subsets correspond to two color-disjoint paths.

Determining if a subset of colors is realizable requires O(|V | + |E|) computational time.
Furthermore, it is known that there exist polynomial time algorithms to solve the Set Packing
problem when the size of X is bounded. For instance, the exact algorithm proposed in [3] has
time complexity O(|S|2|X||X|O(1)). As |X| = |C| and |S| ≤ 2|C|, we deduce that finding k color-
disjoint paths requires O(22|C||C|O(1)(|V |+ |E|)) overall time, and so that the k-DCP problem is
FPT when parameterized by the number of colors |C|.

5.2 Bounded degree

In this section, we assume that the star property holds and that |C| is unbounded and we give
algorithms for finding k color-disjoint paths when ∆ < 4 and for finding 2 color-disjoint paths
when ∆ = 4. First, note that the maximum number of color-disjoint paths in a graph is upper
bounded by ∆.

If ∆ ≤ 2 the problem is trivial as the graph is either a path or a cycle. In the first case,
there always exists only one path from s to t. In the second case, the only vertices where the
two possible paths can share colors are s and t and hence it is enough to check if the two edges
incident to s (and t) are color-disjoint.

If ∆ ≤ 3, observe that if two paths share an internal vertex of degree 3, they necessarily share
also an edge and hence all the colors of that edge. Consequently, they cannot be color-disjoint.
Furthermore, if two paths are color-disjoint the colors of their first edges should be disjoint and
also the colors of their last edges should be disjoint.

If ∆ = 3 and k = 3, there are 3 color-disjoint paths if and only if G has 3 vertex-disjoint
paths between s and t and the 3 first edges of these paths have disjoint colors and also the
3 last edges. That can be checked in O(|V | + |E|) time: constant time for checking the color
disjointness of the 3 first (last) edges, and O(|V | + |E|) time for checking the existence of 3
vertex-disjoint paths between s and t (see [15]).

If k = 2 and ∆ = 3 or 4, we give an algorithm in the proof of the following theorem:
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Algorithm 1: Solving 2-DCP when ∆ = 3, 4.
1 foreach admissible graph G(si, sj , ti′ , tj′) do
2 if there exist 2 vertex-disjoint paths from s to t in G(si, sj , ti′ , tj′) then
3 There exist two color-disjoint paths from s to t in G;
4 else
5 if all the cut-vertices that separate s from t in G(si, sj , ti′ , tj′) have degree 4 and

are not incident to bridges then
6 foreach cut vertex v that separates s from t in G(si, sj , ti′ , tj′) do
7 Let e and f be the edges incident to v in the connected component

containing s, and let e′ and f ′ be the incident edges in the connected
component containing t;

8 if not

 C (e) ∩ C (f) = ∅ and C (e′) ∩ C (f ′) = ∅

and
[

[C (e) ∩ C (e′) = ∅ and C (f) ∩ C (f ′) = ∅]
or [C (e) ∩ C (f ′) = ∅ and C (f) ∩ C (e′) = ∅]

] 
then

9 No 2 color-disjoint paths from s to t exist in G;

10 There exist two color-disjoint paths from s to t in G;

11 No 2 color-disjoint paths from s to t exist in G.

Theorem 3. Algorithm 1 solves 2-DCP in graphs with the star property and ∆ = 3 or 4 in time
O(|V |+ |E|).

Proof. We say that a pair {si, sj} of neighbors of s in G is admissible, if the edges joining s to
them have disjoint colors, i.e. C ({s, si}) ∩ C ({s, sj}) = ∅ and similarly we say that {ti′ , tj′} is
an admissible pair of neighbors of t if the edges joining them to t have disjoint colors. Then,
with each admissible pair {si, sj} and each admissible pair {ti′ , tj′}, we associate the admissible
graph G(si, sj , ti′ , tj′) obtained from G by deleting the edges {s, s`} with ` 6= i, j and the edges
{t`′ , t} with `′ 6= i′, j′.

We solve 2-DCP when ∆ = 3, 4 by using Algorithm 1 whose correctness is given in what
follows.

Note first that since all colors satisfy the star property, they are localized around vertices
and the color-disjointness of two paths can be ensured by the color-disjointness around their
shared vertices.

By definition, if there exist two vertex-disjoint paths from s to t in G(si, sj , ti′ , tj′) the first
edges and last edges of such paths have disjoint colors and so we conclude that there are 2
color-disjoint paths (lines 2, 3).

Otherwise, if there exists a cut vertex (i.e., a vertex which removal disconnects s from t and
hence should be included in any path from s to t) v of degree 3, we cannot have color-disjoint
paths containing this vertex. That is in particular the case when ∆ = 3. If there exists a
cut-vertex v of degree 4 that is incident to a bridge, then v belongs to at most one 2-connected
component which is not a bridge. In this case, there are no two color-disjoint paths from s to
t. So, let us now assume that ∆ = 4, all the cut vertices are of degree 4 and, each cut vertex is
incident to two 2-connected components which are not bridges. Between every two cut vertices,
the two paths use vertex-disjoint subpaths. If at the cut vertex v one path uses edges e and e′

(e and f ′), the other path uses necessarily f and f ′ (f and e′), respectively, and the conditions
on colors are necessary and sufficient for the color disjointness of the paths at v (the center of
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the colors used in v).

Since we have at most 6 admissible pairs of neighbors of s (of t), respectively, we have at
most 36 graphs to consider. For each graph we have to check if it is 2-connected (that can be
done in time O(|V | + |E|) [19]) and if it is not 2-connected to satisfy coloring conditions at
each cut vertex (all of the cut-vertices can be determined in linear time using the algorithm for
finding the biconnected components of a graph in [19]), which can be done in constant time for
a given vertex and so overall in time O(|V |).

Note that Algorithm 1 cannot be extended in a straightforward manner neither to find 3
or 4 color-disjoint paths on a graphs with ∆ = 4, nor to the case of ∆ = 5, 6, 7 in polynomial
time. In fact, for these cases, while the number of admissible graphs stays bounded and finding
vertex-disjoint path segments stays polynomial, the number of possible ways to cross the cuts
explodes exponentially.

5.3 Directed acyclic graphs

In this section, we propose an algorithm for finding k color-disjoint paths in a colored directed
acyclic graph (DAG) with the star property. The definitions given for undirected colored graphs
can be easily extended to colored DAGs by assigning an acyclic orientation to the edges of the
graph. As each color is a star color we can associate with each color c its center v defined as the
common vertex to all arcs with color c. If the color has only one occurrence we choose arbitrarily
as associated center one of the end vertices of the arc containing this color. We will say that the
color c is centered in v.

The algorithm given in the proof of the next theorem uses ideas of [6], in particular that
of layered directed graph and a construction similar to that used to find a polynomial time
algorithm for disjoint paths with forbidden pairs (Theorem 6 of [6]).

Definition 1 (Layered directed graph). A directed graph G = (V,E) is layered if there is a
layering function l : V → [0, 1, . . . , (|V | − 1)] such that for every arc (u, v) ∈ E, l(v) = l(u) + 1.
We say that vertex u is in layer l(u) and arc (u, v) is in layer l(u). Layered directed graphs are
acyclic.

In Theorem 4, we present an algorithm for solving the k-DCP problem in a DAG with the
star property in time O(cpe2|V ||E|2k). This algorithm is therefore polynomial only when k is
a fixed constant.

We will then show in Section 6 that the problem is W [1]-hard and therefore it is not possible
to find an FPT algorithm (i.e. having time complexity O(f(k) ·poly(|V |+ |E|)), for any function
f), unless FPT = W [1].

Theorem 4. There exists an algorithm that solves k-DCP in a DAG with the star property in
timeO(cpe2|V ||E|2k).

Proof. Let D be a multicolored DAG and let s and t be two given vertices. As we want to find
(in polynomial time) directed paths from s to t, we can delete the vertices not on a directed
path from s to t, and so we suppose in what follows that D is this reduced DAG. Now s is the
unique vertex with no predecessor and t the unique vertex with no successor. The algorithm
that finds k color-disjoint paths from s to t in D uses two transformations:
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(c) The graph H associated
with LD

Figure 6: Transformations for the DAG.

Transformation 1 We first associate with a multicolored DAG D a multicolored layered
DAG LD as follows. We denote by Γ−(v) the set of vertices preceding v, i.e; vertices u such
that (u, v) ∈ E. We compute the function l : V → N defined as follows:

l(v) =

{
0 when v = s,

1 + maxu∈Γ−(v) l(u) otherwise.

In such a level function, t has the maximum value as there is a directed path from any vertex
to t in the reduced DAG. In the example of Figure 6a, we have l(u1) = 1, l(u2) = 2, l(u3) = 3,
l(u4) = l(u5) = l(u6) = 4, and l(t) = 5.

Now we replace every arc (u, v), such that l(v) > l(u) + 1, with a directed path Puv from u
to v of length l(v) − l(u) (thus possibly adding new vertices and arcs). We assign to the first
arc of the directed path Puv the colors of the arc (u, v) centered in u (or a new color if there are
no colors centered in u) and to the last arc of the directed path Puv the colors of the arc (u, v)
centered in v (or a new color if there are no colors centered in v) and to the intermediate arcs, if
any, new distinct colors. The resulting layered DAG LD is such that there exist k color-disjoint
paths in the DAG D from s to t if and only if there exist k color-disjoint paths in LD from s
to t. In Figure 6b, we indicate the layered DAG LD obtained from the DAG D of Figure 6a.
We have given a name to each arc with a lower index indicating the level of the arc; we also
indicate inside parentheses the colors attributed to each arc. For example the arc (s, u3) which
had colors c1, c4 has been replaced by a path with 3 arcs: e0 at level 0 which gets the color c1

(centered at s), e1 at level 1 which gets a new color d and e2 at level 2 which gets the color c4

(centered at u3).
Therefore, in what follows we consider a layered DAG LD with two specific vertices s and t.
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Transformation 2 We use in this transformation ideas similar to that used in [6] to solve the
problem of finding a pair of vertex-disjoint paths with forbidden pairs of edges. Here instead
of vertex-disjointness we seek edge-disjointness and the forbidden pairs of edges are forbidden
pairs of subpaths sharing a color.

With LD we will associate a directed graph H with two specific vertices s and t, such that
there exist k color-disjoint directed paths in LD from s to t if and only if there exists a directed
path from s to t in H. For the ease of presentation, we first give the transformation for k = 2.

There is a vertex in H for every pair {ei, fi} of arcs in LD at the same layer i, with 0 ≤ i ≤
l(t)− 1, such that C (ei) ∩ C (fi) = ∅. We also add to H two vertices s and t. Now we join, by
an arc in H, s to all the vertices (pairs) {e0, f0}. Similarly we join every vertex {el(t)−1, fl(t)−1}
in H by an arc to t. Finally, for 0 ≤ i ≤ l(t) − 2, we join in H each vertex {ei, fi} to a vertex
{ei+1, fi+1} if in LD we have the following properties:

1. the terminal vertex ui (vi) of ei (fi) is the initial vertex of ei+1 (fi+1), respectively, and

2. either ui 6= vi

3. or ui = vi and the set of colors of C (ei) ∪ C (ei+1) is disjoint from the set of colors of
C (fi) ∪ C (fi+1)

4. or ui = vi and the set of colors of C (ei) ∪ C (fi+1) is disjoint from the set of colors of
C (fi) ∪ C (ei+1).

Figure 6c indicates the graph H obtained from the layered DAG LD of Figure 6b. For example,
we have three vertices corresponding to pairs of arcs of layer 2 of LD: e2f2, e2g2 and f2g2

but only two vertices corresponding to pairs of arcs of layer 3: e3f3 and e3g3. Vertex e2g2 is
connected to vertex e3g3 as condition 3 is fulfilled but it is not connected to f3g3 as none of the
conditions 3 and 4 is fulfilled.

The existence of two disjoint colored directed paths in LD named P = (s, e0, u0, e1, . . . , el(t)−2,
ul(t)−1, el(t)−1, t) and Q = (s, f0, v0, f1, . . . , fl(t)−2, vl(t)−1, fl(t)−1, t) implies the existence of a di-
rected path from s to t namely PQ = (s, {e0, f0}, {e1, f1}, . . . , {el(t)−1, fl(t)−1}, t) in H.

Conversely, let W be a path in H written in the form W = (s, w0, w1, . . . , wl(t)−1, t) where
wi corresponds to the pair {ei, fi} and wi+1 to the the pair {ei+, fi+1} such that the set of
colors of C (ei) ∪ C (ei+1) is disjoint from the set of colors of C (fi) ∪ C (fi+1); such ordering
is possible since one of the color conditions is fulfilled. Then, the two directed paths P =
(s, e0, u0, e1, . . . , el(t)−2, ul(t)−1, el(t)−1, t) and Q = (s, f0, v0, f1, . . . , fl(t)−2, vl(t)−1, fl(t)−1, t) are
color-disjoint. In the example of Figure 6c, H has many directed paths from s to t. For
example with the directed path P = (s, {e0, g0}, {e1, h1}, {e2, f2}, {e3, g3}, {e4, g4}, t), the two
color-disjoint directed paths P1 = (s, e0, e1, e2, g3, g4, t) and P2 = (s, g0, h1, f2, e3, e4, t) in LD
and the two color-disjoint directed paths (s, u3, u4, t) and (s, u1, u2, u3, u6, t) in D are associated.

The algorithm can be generalized to find k color-disjoint paths from s to t in a DAG D, for
any k ≥ 2. We first transform D to a layered graph LD as before. Then, in the second transfor-
mation, instead of having a vertex for every pair of arcs of the same layer, we create a vertex for
every k-tuple of arcs {e1

i , e
2
i , . . . , e

k
i } at the same layer i, such that the C (eji ) , for j = 1, . . . , k,

are disjoint. Then an arc is added from node {e1
i , e

2
i , . . . , e

k
i } to node {e1

i+1, e
2
i+1, . . . , e

k
i+1} if

there exists an ordering of the eji and of the eji+1 such that the terminal vertex of eji is the initial
vertex of eji+1 and the sets C (eji ) ∪ C (eji+1) are pairwise disjoint.

To decide if a k-tuple {e1
i , e

2
i , . . . , e

k
i } is a vertex of H, we need to check the color-disjointness

of C (eji ) , for j = 1, . . . , k. This can be done in at most k(k−1)
2 cpe2 steps. Deciding on the

existence of an edge between two vertices of H can be done in k!k(k − 1)cpe2 (O(cpe2)) time;
indeed we can choose an ordering of {e1

i , e
2
i , . . . , e

k
i } and for each of the k! possible orderings
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of {e1
i+1, e

2
i+1, . . . , e

k
i+1}, we check whether the sets C (eji ) ∪ C (eji+1) are pairwise disjoint in at

most k(k − 1)cpe2 steps. Finally, as each arc in D is replaced in LD by a path containing at
most one arc of each layer, the number of arcs at a given layer in LD is at most |E|. So, the
graph H has at most l(t)|E|k vertices and l(t)|E|2k edges. Therefore, we get the complexity of
the theorem as l(t) ≤ |V |.

Remark 1. The algorithm presented in the proof of Theorem 4 can be adapted to find a minimum
cost pair of color-disjoint paths in an arc-weighted DAG by applying the following modifications.

Let us consider a weight function on the arcs of a DAG D. We assign the original weight
of the arc (u, v) to the first arc of the path replacing it in LD. Then, in H we assign to the
edge joining s to {e0, f0} the sum of the weights of e0 and f0, and to the edge joining {ei, fi} to
{ei+1, fi+1} the sum of the weights of {ei+1 and fi+1}. With these modifications, the shortest
path in H corresponds to the optimal pair of color-disjoint paths in D.

Remark 2. We can also use the algorithm presented in the proof of Theorem 4 to find a pair
of color-disjoint paths with the minimum total number of colors by applying the following modi-
fications.

Let C−((u, v)) (C +((u, v))) be the set of colors of arc (u, v) centered at u (v), respectively.
In H, we assign to the arc from {ei, fi} to {ei+1, fi+1} a weight equal to |C +(ei) ∪ C−(ei+1) ∪
C +(fi) ∪ C−(fi+1)|, to the arc from s to {e0, f0} a weight equal to |C−(e0) ∪ C−(f0)| and to
the arc from {el(t)−1, fl(t)−1} to t a weight equal to |C +(el(t)−1)∪C +(fl(t)−1)|. We have proven
above that every directed path P from s to t in H corresponds to two color-disjoint directed
paths P1 and P2 from s to t in the layered graph LD (and equivalently to two color-disjoint
paths from s to t in D ) and with the way we have defined the weights in H, the weight of P is
equal to the number of colors used by P1 and P2. The shortest path in the weighted graph H
will then correspond to the pair of color-disjoint paths with the minimum number of colors.

6 Maximum number of color-disjoint paths

In this section we reformulate the problem of finding SRLG-disjoint paths as an optimization
problem where we aim at finding the maximum number of color-disjoint paths:

Problem 4 (Max Diverse Colored st-Paths, MDCP). Given a colored graph Gc and two vertices
s and t, find the maximum number of color-disjoint st-paths.

In the next theorem we give complexity results for MDCP by using an approximation factor
preserving reduction from Maximum Set Packing (MSP).

Definition 2 (Maximum Set Packing, MSP). Given a set X and a collection S of subsets of X,
find the maximum cardinality set packing, i.e., a collection of disjoint sets S ′ ⊆ S such that |S ′|
is maximized.

It has been proven that problem MSP is equivalent to the problem of finding a maximum clique
in a graph under a PTAS reduction where the number n of vertices in the graph corresponds
to |S| [1]. In detail, approximation algorithms and inapproximability results (in terms of the
number of vertices in the graph) carry over to the MSP problem. It is NP -hard to approximate
the problem of finding a maximum clique within O(n1−ε), for any 0 < ε < 1 [20] and then,
unless P = NP , MSP is not approximable within O(|S|1−ε), for any 0 < ε < 1. Moreover,
if the cardinality of all sets in S is upper bounded by a constant c ≥ 3, then the problem is
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APX-complete [23]. The next theorem gives inapproximability results for the MDCP problem.
The proof uses an approximation-preserving reduction from MSP to MDCP where the vertices of
V correspond to the elements of S.

Theorem 5. Unless P = NP , MDCP cannot be approximated within O(|V |1−ε), for any 0 < ε <
1, even if epc is fixed, epc ≥ 2. Moreover, it is APX-hard if cpe is fixed, cpe ≥ 3. These
inapproximability results hold even in DAGs with the star property.

Proof. Given an instance IMSP of MSP over a set X and a collection S , we define an instance
IMDCP of MDCP on a graph GC as follows.

• for each element Si of S, we associate a vertex vSi ;

• we add two vertices s and t and the edges {s, vSi} and {vSi , t}, for each Si ∈ S;

s

t

vS1 vS3vS2

c6

c13, c23

c5c4

c13 c23

s

t

vS1 vS3vS2

c6

c13, c23c12, c13 c12, c23

c5c4

Figure 7: Examples where S = {S1 = {a, b, c}, S2 = {d, e, f}, S3 = {a, b, d}} (left) and S =
{S1 = {a, b, d}, S2 = {b, c, d}, S3 = {b, e, f}} (right).

First Coloring

• for each Si, Sj ∈ S, such that i 6= j and Si ∩ Sj 6= ∅, we add a new color cij and associate
it with {s, vSi} and {s, vSj};

• for each edge not yet colored (in particular for each edge {vSi , t}) we put a new color.

See Figure 7 for two examples. In the left figure as S1 ∩ S3 6= ∅ and S2 ∩ S3 6= ∅ we have a
color c13 on {s, vS1} and {s, vS3} and a color c23 on {s, vS2} and {s, vS3}. On the right figure we
have furthermore a color c12 on {s, vS1} and {s, vS2} as S1 ∩ S2 6= ∅. By definition each color is
associated with at most two edges and hence epc ≤ 2.

Second Coloring
We define a color cx for each element x ∈ X and, for each Si = {x1, . . . , xh} ∈ C, we

associate the |Si| colors cx1 , . . . , cxh with the edge {s, vSi}. For each edge not yet colored (in
particular for each edge {vSi , t} we put a new color. In this way, if the cardinality of all sets in
S is upper bounded by a constant c ≥ 3, then cpe ≤ c.

In both cases the transformation is polynomial-time computable and the star property holds.
Furthermore, the graph we obtain is the bipartite complete graph K2,|S|. This graph can be
oriented into a DAG in a straightforward way.
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Now we can associate to a family S ′ = {S1, S2, . . . , Sq} of sets in S, the set P of paths
Pj = (s, vSj , t), j = 1, 2, . . . , |S ′| of GC and vice versa. Note that by construction two sets Si
and Sj are disjoint if and only if the corresponding paths Pi and Pj are color-disjoint.

Consider an optimal solution S ′OPT for MSP, with S ′OPT = {S1, S2, . . . , S|S′OPT |}; the associ-
ated set P of paths Pj = (s, vSj , t), for each j = 1, 2, . . . , |S ′OPT | is a feasible solution for IMDCP
with |P| = |S ′OPT |, and so,

OPT (IMSP) ≤ OPT (IMDCP). (1)

Now suppose that there exists an α-approximation algorithm A for MDCP, the output of this
algorithm for the instance IMDCP is a set P of disjoint paths Pj = (s, vSj , t), j = 1, 2, . . . , |P|,
whose cardinality satisfies |P| = valA(IMDCP) ≥ 1

αOPT (IMDCP). Consider the algorithm A′ applied
to IMSP which gives as output the family S ′ = {S1, S2, . . . , S|P|} associated with P. The family
S ′ is a feasible solution for IMSP, whose value is valA′(IMSP) = |P| ≥ 1

αOPT (IMDCP) and by
inequality (1) valA′(IMSP) ≥ 1

αOPT (IMSP) and so A′ is an α-approximation algorithm for MSP.
Finally the first statement of the theorem follows from the O(|S|1−ε) inapproximability of

MSP, for any 0 < ε < 1, and from the fact that |V | = |S|+ 2. Note that in the first coloring each
color is associated with at most two edges which implies that epc ≤ 2. The second statement
follows from the fact that MSP is APX-hard if the cardinality of all sets in S is upper bounded
by a constant c ≥ 3 and that using the second coloring cpe ≤ c. The results for DAGs come
from the fact that the graph K2,|S| obtained in the transformation can be oriented into a DAG
in a straightforward way.

Parameterized complexity

The next results are expressed in terms of parameterized complexity [12]. Recall that a problem
with input size n is fixed parameter tractable with respect to some parameter k (and so is in
FPT ) if it can be solved in time O(f(k) · nO(1)) where the function f depends only on k. A
problem is W [1]-hard if a W [1]-complete problem (e.g., deciding if the graph contains a clique
of size k) can be reduced to it in FPT-time.

Theorem 6. MDCP is W [1]-hard when parameterized by the number k of color-disjoint paths,
even in DAGs and when the star property holds.

Proof. It is enough to observe that the reduction used in Theorem 5 is a parameterized-preserving
reduction where the parameter is the number of color-disjoint paths which corresponds to the
number of disjoint subsets in a set packing. In [11] (see also [25, Chapter 11.4.2, pages 193–195])
it has been shown that MSP is W [1]-hard if the parameter is the number of disjoint subsets.

The above theorem implies that, unless FPT = W [1], MDCP is not in FPT when param-
eterized by the number of color-disjoint paths, that is there is no algorithm which finds k
color-disjoint paths in O(f(k) · poly(|V |+ |E|)) time in DAGs, unless FPT = W [1]. Moreover,
Theorem 1 shows that even finding a fixed number k ≥ 2 of color-disjoint paths is NP-complete
in general undirected graphs. This implies that MDCP is ParaNP-hard in undirected graphs, that
is, it is impossible to devise an algorithm which finds k color-disjoint paths in O((|V |+ |E|)f(k))
time, unless P = NP .

The algorithm in Section 5.1 can be used to find an exact polynomial-time algorithm for MDCP
when |C| = O(1). In fact, it is enough to search for the maximum k for which such algorithm
returns k color-disjoint paths. As the maximum number of color-disjoint paths is upper bounded
by ∆, we can use a binary search approach to solve the problem, applying at most log ∆ times
the algorithm of Section 5.1. The next corollary follows.
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Corollary 1. The MDCP problem is FPT when parameterized by the number of colors |C|. More-
over, there exists an algorithm for solving the MDCP problem in time O(f(|C|)(|V |+ |E|) log ∆),
where f is a function depending solely on |C|, and ∆ is the maximum degree of the graph.

We can use the algorithms for bounded degree presented in Section 5.2 for solving MDCP when
∆ ≤ 4. We get a polynomial-time exact algorithm for ∆ ≤ 3 and a 2-approximation algorithm
for ∆ = 4 as the maximum number of color-disjoint paths is upper bounded by ∆ = 4. Both
algorithms require O(|V |+ |E|) time.

∆∆∆ epcepcepc cpecpecpe k-DCPk-DCPk-DCP MDCPMDCPMDCP

Undirected
graphs

unbounded
1 unbounded Solvable in O(|V |+ |E|) Solvable in O(∆|E|)

unbounded 1 Solvable in O(|V |+ |E|) [7] Solvable in O(∆C |E|) [7]

≥ 8
≥ 2 ≥ 4

NP-hard for ∆ ≥ max{8, k} Not approximable within
O(|V |1−ε), for any 0 < ε < 1≥ 4 ≥ 2

≤ 3 unbounded unbounded Solvable in O(|V |+ |E|) Optimum in O(|V |+ |E|)

= 4 unbounded unbounded Solvable in O(|V | + |E|) for
k = 2

2-approximation in O(|V |+ |E|)

|C| =
O(1), even
without
star

unbounded unbounded unbounded
Solvable in O(f(|C|)(|V | +
|E|)), in FPT when param-
eterized by |C|

Optimum in O(f(|C|)(|V | +
|E|) log ∆), in FPT when param-
eterized by |C|

DAG unbounded

≥ 3 ≥ 3

Solvable in O(cpe2|V ||E|2k)

NP-hard
≥ 2 ≥ 6

≥ 2 unbounded Not approximable within
O(|V |1−ε), for any 0 < ε < 1

unbounded = 3 APX-hard

unbounded unbounded W [1]-hard when parameterized
by the number of paths

Table 2: Summary of complexity results.

7 Conclusion

Our results, presented in this paper and summarized in Table 2, give an almost complete charac-
terization of the problem of finding SRLG-disjoint paths in networks with SRLGs satisfying the
star property. For the case epc = 1, the problem of finding k color-disjoint paths is equivalent
to finding k edge-disjoint paths, thus a flow algorithm such as the Ford-Fulkerson’s [15] can
be used to solve k-DCP in time O(|V | + |E|) and MDCP in time O(∆|E|). As for the case
cpe = 1, every edge has one color and since the star property is satisfied, all colors have span
1 (i.e. an edge has only one color and the set of edges having the same color forms a connected
component). The problem of finding color disjoint-paths in graphs with span 1 has been proven
polynomial in [7]. To conclude, we point out some open questions for further research:

• The complexity of the problem is still open for the cases where the maximum degree of
the network is equal to 5, 6 or 7 and for the cases where epc ∈ {2, 3} and cpe ∈ {2, 3}.
Solving these cases will give a complete complexity characterization of the problem with
respect to the maximum degree of the network and the parameters epc and cpe.

• In the problem definition, we assumed that C (e) 6= ∅, for each e ∈ E, which means that
each edge of the network must have at least one color associated with. If we allow edges
with no colors, then color-disjoint paths are not necessarily edge-disjoint, since an edge
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that is not affected by any SRLG can be shared by any number of paths. Therefore,
an interesting direction would be to constrain the paths to be edge-disjoint as well; so,
the problem would be to find k SRLG-disjoint edge-disjoint paths in the case where the
number of SRLGs is bounded by a constant and the number of edges with no SRLG is
linear in the size of the network. This does not affect the hardness results that hold for the
(restricted) case where each edge has a color and hence also for the (more general) case
where colorless edges are allowed. However, the polynomial-time algorithms proposed in
Section 5 do not work in this case.

• It would be interesting to consider the unsolved cases for directed graphs since we only
have results for the specific case of DAGs so far.

Acknowledgments

We thank the three referees for their very helpful comments and remarks which improved the
quality of the article.

References

[1] G. Ausiello, A. D’Atri, and M. Protasi. Structure preserving reductions among convex
optimization problems. J. Comput. Syst. Sci., 21(1):136–153, Aug. 1980.

[2] R. Bhandari. Survivable Networks: Algorithms for Diverse Routing. Kluwer Axademic
Publishers, 1998.

[3] A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion-exclusion. SIAM
J. Comput., 39(2):546–563, 2009.

[4] H. Broersma, X. Li, G. Woeginger, and S. Zhang. Paths and cycles in colored graphs.
Australas. J. Combin., 31:299–311, 2005.

[5] R. D. Carr, S. Doddi, G. Konjevod, and M. Marathe. On the red-blue set cover problem.
In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’00, pages 345–353, Philadelphia, PA, USA, 2000. Society for Industrial and Applied
Mathematics.

[6] V. T. Chakaravarthy. New results on the computability and complexity of points–to analysis.
In ACM SIGPLAN-SIGACT symposium on principles of programming languages (POPL),
pages 115–125. ACM, 2003.

[7] D. Coudert, P. Datta, S. Perennes, H. Rivano, and M.-E. Voge. Shared risk resource group:
Complexity and approximability issues. Parallel Processing Letters, 17(2):169–184, June
2007.

[8] D. Coudert, S. Pérennes, H. Rivano, and M.-E. Voge. Combinatorial optimization in net-
works with Shared Risk Link Groups. Research report RR-8575, Inria, July 2014.

[9] P. Datta and A. Somani. Graph transformation approaches for diverse routing in shared
risk resource group (SRRG) failures. Computer Networks, 52(12):2381–2394, Aug. 2008.

[10] J. Doucette and W. Grover. Shared-risk logical span groups in span-restorable optical net-
works: Analysis and capacity planning model. Photonic Network Communications, 9(1):35–
53, 2005.

19



[11] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness II: On
completeness for W[1]. Theoretical Computer Science, 141(1-2):109–131, 1995.

[12] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, 2013.

[13] A. Faragó. A graph theoretic model for complex network failure scenarios. In 8th INFORMS
Telecommunications Conference, Dallas, Texas, Mar. 2006.

[14] M. R. Fellows, J. Guob, and I. Kanj. The parameterized complexity of some minimum label
problems. Journal of Computer and System Sciences, 76(8):727–740, Dec. 2010.

[15] L. R. Ford and D. R. Fulkerson. A simple algorithm for finding maximal network flows and
an application to the hitchcock problem. Canadian Journal of Mathematics, 9:210–218,
1957.

[16] M. Garey and D. Johnson. Computers and Intractability: A Guide to the theory of NP-
completeness. Freeman NY, 1979.

[17] L. Guo and L. Li. A novel survivable routing algorithm with partial shared-risk link groups
(SRLG)-disjoint protection based on differentiated reliability constraints in wdm optical
mesh networks. IEEE/OSA Journal of Lightwave Technology, 25(6):1410–1415, June 2007.

[18] R. Hassin, J. Monnot, and D. Segev. Approximation algorithms and hardness results for
labeled connectivity problems. Journal of Combinatorial Optimization, 14(4):437–453, Nov.
2007.

[19] J. Hopcroft and R. Tarjan. Algorithm 447: Efficient algorithms for graph manipulation.
Commun. ACM, 16(6):372–378, June 1973.

[20] J. Håstad. Clique is hard to approximate within n1−ε. Acta Mathematica, 182(1):105–142,
1999.

[21] J. Hu. Diverse routing in mesh optical networks. IEEE Transactions on Communications,
51:489–494, Mar. 2003.

[22] Q. Jiang, D. Reeves, and P. Ning. Improving robustness of PGP keyrings by conflict
detection. In RSA Conference Cryptographers’ Track (CT-RSA), volume 2964 of LNCS,
pages 194–207. Springer, Feb. 2004.

[23] V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. Inf. Process.
Lett., 37(1):27–35, Jan. 1991.

[24] X. Luo and B. Wang. Diverse routing in WDM optical networks with shared risk link group
(SRLG) failures. In Proc. DRCN, pages 445–452. IEEE, Oct. 2005.

[25] R. Niedermeier. Invitation to fixed-parameter algorithms. Oxford lecture series in mathe-
matics and its applications. Oxford University Press, 2006.

[26] L. Shen, X. Yang, and B. Ramamurthy. Shared risk link group (SRLG)-diverse path provi-
sioning under hybrid service level agreements in wavelength-routed optical mesh networks.
IEEE/ACM Transactions on Networking, 13:918–931, Aug. 2005.

[27] J. W. Suurballe. Disjoint paths in a network. Networks, 4(2):125–145, 1974.

20



[28] J. W. Suurballe and R. E. Tarjan. A quick method for finding shortest pairs of disjoint
paths. Networks, 14(2):325–336, 1984.

[29] S. Szeider. Finding paths in graphs avoiding forbidden transitions. Discrete Applied Math-
ematics, 126(2–3):261–273, 2003.

[30] A. Todimala and B. Ramamurthy. IMSH: an iterative heuristic for SRLG diverse routing
in WDM mesh networks. In IEEE International Conference on Computer Communications
and Networks (ICCCN), pages 199 – 204. IEEE, 2004.

[31] A. Todimala and B. Ramamurthy. Survivable virtual topology routing under shared risk
link groups in WDM networks. In International Conference on Broadband Communications,
Networks and Systems (BroadNets), pages 130–139, San Jose, CA, USA, Oct. 2004. IEEE.

[32] S. Yuan, S. Varma, and J. Jue. Minimum-color path problems for reliability in mesh
networks. In Proc. IEEE INFOCOM, volume 4, pages 2658–2669, Houston, TX, USA,
Mar. 2005.

[33] Q. Zhang, J. Sun, G. Xiao, and E. Tsang. Evolutionary algorithms refining a heuristic:
A hybrid method for shared-path protections in WDM networks under SRLG constraints.
IEEE Transactions on Systems, Man and Cybernetics, Part B, 37(1):51–61, Feb. 2007.

21


