R. Adami and U. Boscain, Controllability of the Schrödinger equation via intersection of eigenvalues, Proceedings of the 44th IEEE Conference on Decision and Control, pp.1080-1085, 2005.

J. H. Albert, Genericity of simple eigenvalues for elliptic PDE's, Proc. Amer, pp.413-418, 1975.

L. Allen and J. Eberly, Optical Resonance and Two-level Atoms. Dover Books on Physics Series, 1975.

A. M. Bloch, R. W. Brockett, and C. Rangan, Finite Controllability of Infinite-Dimensional Quantum Systems, IEEE Transactions on Automatic Control, vol.55, issue.8, pp.1797-1805, 2010.
DOI : 10.1109/TAC.2010.2044273

U. Boscain, M. Caponigro, T. Chambrion, and M. Sigalotti, A Weak Spectral Condition for the Controllability of the Bilinear Schr??dinger Equation with Application to the Control of a Rotating Planar Molecule, Communications in Mathematical Physics, vol.75, issue.4, pp.423-455, 2012.
DOI : 10.1007/s00220-012-1441-z

U. V. Boscain, F. Chittaro, P. Mason, and M. Sigalotti, Adiabatic Control of the Schr??dinger Equation via Conical Intersections of the Eigenvalues, IEEE Transactions on Automatic Control, vol.57, issue.8, pp.1970-1983, 2012.
DOI : 10.1109/TAC.2012.2195862

D. Braak, Integrability of the Rabi Model, Physical Review Letters, vol.107, issue.10, p.100401, 2011.
DOI : 10.1103/PhysRevLett.107.100401

C. Brouder, G. Panati, and G. Stoltz, Gell-Mann and Low Formula for Degenerate Unperturbed States, Annales Henri Poincar??, vol.317, issue.2, pp.1285-1309, 2009.
DOI : 10.1007/s00023-009-0018-7

URL : https://hal.archives-ouvertes.fr/hal-00394223

C. Brouder, G. Panati, and G. Stoltz, Many-Body Green Function of Degenerate Systems, Physical Review Letters, vol.103, issue.23, p.230401, 2009.
DOI : 10.1103/PhysRevLett.103.230401

URL : https://hal.archives-ouvertes.fr/hal-00394238

C. Brouder, G. Stoltz, and G. Panati, Adiabatic approximation, Gell-Mann and Low theorem, and degeneracies: A pedagogical example, Physical Review A, vol.78, issue.4, p.42102, 2008.
DOI : 10.1103/PhysRevA.78.042102

URL : https://hal.archives-ouvertes.fr/hal-00306471

S. Ervedoza and J. Puel, Approximate controllability for a system of Schrödinger equations modeling a single trapped ion. Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, pp.2111-2136, 2009.

E. Jaynes and F. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE, pp.89-109, 1963.
DOI : 10.1109/PROC.1963.1664

T. Kato, Perturbation theory for linear operators, Classics in Mathematics, 1995.
DOI : 10.1007/978-3-662-12678-3

M. Keyl, R. Zeier, and T. Schulte-herbrueggen, Controlling several atoms in a cavity, New Journal of Physics, vol.16, issue.6, 2014.
DOI : 10.1088/1367-2630/16/6/065010

B. Kneer and C. Law, Preparation of arbitrary entangled quantum states of a trapped ion, Physical Review A, vol.57, issue.3, pp.2096-2104, 1998.
DOI : 10.1103/PhysRevA.57.2096

C. Law and J. Eberly, Arbitrary Control of a Quantum Electromagnetic Field, Physical Review Letters, vol.76, issue.7, pp.1055-1058, 1996.
DOI : 10.1103/PhysRevLett.76.1055

E. Paduro and M. Sigalotti, Approximate controllability of the two trapped ions system, Quantum Information Processing, vol.75, issue.11, 2014.
DOI : 10.1007/s11128-015-0991-3

URL : https://hal.archives-ouvertes.fr/hal-01092509

G. Panati, H. Spohn, and S. Teufel, Space-adiabatic perturbation theory, Advances in Theoretical and Mathematical Physics, vol.7, issue.1, p.49, 2002.
DOI : 10.4310/ATMP.2003.v7.n1.a6

G. Panati, H. Spohn, and S. Teufel, Space-Adiabatic Perturbation Theory in Quantum Dynamics, Physical Review Letters, vol.88, issue.25, p.250405, 2002.
DOI : 10.1103/PhysRevLett.88.250405

URL : http://urania.sissa.it/xmlui/bitstream/1963/5985/2/FinalLetter.ps

I. I. Rabi, On the Process of Space Quantization, Physical Review, vol.49, issue.4, p.324, 1936.
DOI : 10.1103/PhysRev.49.324

I. I. Rabi, Space Quantization in a Gyrating Magnetic Field, Physical Review, vol.51, issue.8, p.652, 1937.
DOI : 10.1103/PhysRev.51.652

J. M. Raimond, M. Brune, and S. Haroche, Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys, vol.73, p.53805, 2001.
DOI : 10.1103/revmodphys.73.565

C. Rangan, A. Bloch, C. Monroe, and P. Bucksbaum, Control of Trapped-Ion Quantum States with Optical Pulses, Physical Review Letters, vol.92, issue.11, p.10, 2004.
DOI : 10.1103/PhysRevLett.92.113004

M. Reed and B. Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, 1975.

M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, 1978.

P. Rouchon, Quantum systems and control, ARIMA Rev. Afr. Rech. Inform. Math. Appl, vol.9, pp.325-357, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01277779

D. Schuster, A. Houch, J. Schreirer, A. Wallraff, J. Gambetta et al., Resolving photon number states in a superconducting circuit, Nature, vol.75, issue.7127, pp.515-518, 2007.
DOI : 10.1038/nature05461

URL : http://arxiv.org/abs/cond-mat/0608693

H. Spohn, Dynamics of Charged Particles and their Radiation Field, 2004.
DOI : 10.1017/CBO9780511535178

URL : http://arxiv.org/abs/math-ph/9908024

S. Teufel, Adiabatic Perturbation Theory in Quantum Dynamics, 2003.
DOI : 10.1007/b13355

H. Yuan and S. Lloyd, Controllability of the coupled spin-1