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of responses that lead the system to trusted states. The Impact FD is suitable for systems that present
node redundancy, heterogeneity of nodes, clustering feature, and allow a margin of failures which does
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algorithm which implements a Impact FD, as well as its proof of correctness, for systems whose links
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Impact FD: An Unreliable Failure Detector Based on Processes
Relevance and Con�dence in the System

Résumé : Ce rapport technique présente un nouveau détecteur de défaillance non �able, le Impact
Failure Detector (FD ) , dont la sortie correspond au niveau de con�ance d'un ensemble de processus.
En exprimant l'importance de chaque noeud par une valeur d'impact ainsi qu'une marge acceptable
de défaillance du système, le détecteur de défaillance Impact permet á l'utilisateur d'ajuster la con-
�guration de détection de défaillance selon les exigences de l'application : dans certains scénarios,
la panne d'un noeud de faible impact ou des noeuds redondants ne compromette pas la con�ance
sur le système, tandis que la panne d'un noeud avec un facteur d'impact élevé peut sérieusement en
compromettre. Par conséquent, une surveillance plus faible ou plus strictes est possible.

Mots-clés : détecteur de défaillance non �able, valeur d'impact, niveau de con�ance, redondancede
noeuds, tolerance aux pannes.
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1 Introduction

In distributed systems, failures can occur and the detection of them is a crucial task in the design
of fault tolerant distributed systems or applications. On the other hand, in asynchronous systems
there exist no bounds on message transmission neither on processes speed. Therefore, detection of
crashed processes is particularly dif�cult in those systems since it is impossible to determine whether
a process has really failed or if it and/or the network communication are just slow. Due to this lack
of delay bounds, it is well-known that consensus problem cannot be solved deterministically in an
asynchronous system subject to even a single crash failure [19].

To circumvent such an impossibility and give support to the development of fault tolerant dis-
tributed systems, Chandra and Toueg proposed in [11] the unreliable failure detector(FD) abstraction.
An unreliable FD can be seen as an oracle that gives (not always correct) information about process
failures. Many current FDs are based on a binary model, in which monitored processes are either
“trusted” or “suspected”. Thus, most of existing FDs, such as those de�ned in [11] [6], output the set
of processes that is currently suspected to have crashed. According to the type and the quality of this
information, several failure detector classes have been proposed.

This technical report presents a new unreliable failure detector, denoted the Impact failure detec-
tor. A preliminary proposal of it was presented in [34]. Contrarily to the majority of existing unreliable
failure detectors, the Impact FD provides an output that expresses the trust of the FD with regard to
the system (or set of processes) as a whole and not to each process individually. A system is considered
"trusted" if it behaves correctly for a speci�c purpose even in the face of failures, i.e., the system is able
to maintain the normal functionality.

The conception of the Impact FD was inspired on systems that have the following features: (1)
applications that execute on them are interested on information about the reliability of the system
as a whole and can tolerate a certain margin of failures. The latter may vary depending on the envi-
ronment, situation, or context, such as the systems that provide redundancy of software/hardware;
(2) systems that organize nodes with some common characteristic in groups; (3) systems where the
nodes can have different importance (relevance) or roles and, thus, their failures may have distinct
impact on the system. Systems that present node redundancy, heterogeneity of nodes, clustering fea-
ture, and allow a margin of failures which does not degrade the con�dence in the system can, thus,
bene�t from the Impact FD and its con�guration choices. They have motivated our work. Section 2
describes some examples of such systems, how the Impact FD can be applied and con�gured to them,
and the advantages, in these cases, of using the Impact FD instead of traditional FDs.

The Impact FD outputs a trust level related to a given set of processes Sof the monitored system.
We, thus, denote FD ( I p

S) the Impact failure detector module of process p that monitors the pro-
cesses ofS. When invoked in p, the Impact FD ( I p

S) returns the tr ust _level value which expresses
the con�dence that p has in set S. To this end, an impact value, de�ned by the user, is assigned to each
process of S and the tr ust _level is equal to the sum of the impact factors of the trusted nodes, i.e.,
those not suspected of failure by p. Furthermore, a threshold parameter de�nes a lower bound for the
trust level , over which the con�dence degree on S is ensured. Hence, by comparing the tr ust _level
with the threshold , it is possible to determine whether S is currently “trusted” or “untrusted” by p.
The impact factor indicates the relative importance of the process in the set S, while the threshold
offers a degree of �exibility for failures and false suspicions, thus allowing a higher tolerance in case
of instability in the system. For instance, in an unstable network, although there might be many false
suspicions, depending on the value assigned to the threshold, the system might remain trustworthy
[3]. We should also point out that the Impact FD con�guration allows nodes of S to be grouped into
subsets and threshold values can be de�ned for each of these subsets. In addition, similarly to the tra-
ditional FD, several classes of Impact FDs can be de�ned depending on their capability of suspecting
faulty processes (completenessproperty) and of not suspecting correct processes ( accuracy property).

Inria
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Arguing that traditional approaches which assume a maximum number of failures f may lead
to suboptimal solutions, such as in replication protocols where the number of replicas depend on f ,
Junqueira et al. proposed in [27] the survivor set approach, i.e., the unique collection of minimal sets of
correct processes over all executions, each set containing all correct processes of some execution. The
principle of the Impact FD also follows the authors' argument: the threshold expresses certain margin
of failures or false suspicions and the number of failures tolerated by the system is not necessarily
�xed but depends on sets of correct processes, their respective impact factors, and threshold value.
Therefore, the Impact FD presents, what we denoted, the �exibility property . The latter expresses its
capacity of considering different sets of responses that lead S to trusted states. In this context, we
also de�ne in this work, two properties, PR(IT )S

p and PR(} IT )S
p , which characterize the minimum

necessary stability condition of Sthat ensures con�dence (or eventual con�dence) in it by the monitor
process p. In other words, if PR(IT )S

p (resp., PR(} IT )S
p ) holds, the system Sis always (resp., eventually

always) trusted by the monitor process p. Note that the Impact FD threshold/impact factor approach
is strictly more powerful than the maximum number of failures f approach since the latter can be
expressed with the former but not the other way around.

Taking into account the problem of solving consensus in asynchronous message-passing systems
enriched with failure detectors, we show that the Impact FD of class Impact Omega I ­ U (resp., Im-
pact Sigma I §U ) is equivalent to the Omega ­ (resp., Sigma §) FD. A failure detector is equivalent to
another if there exist an algorithm that transforms the �rst one into the second one (i.e., the second is
reducible to the �rst one) and an algorithm that transforms the latter into the former. Consequently,
a problem that can be solved with one of the FDs can also be solved by the other. It is worth remem-
bering that ­ FD [10] and § FD (or Quorum FD) [17] are two fundamental classes of failure detectors
since the ­ FD is the weakest one to solve consensus, provided that a majority of processes are correct,
while the pair of FDs < ­ ,§> is the weakest one to solve consensus for any number of process failures.
Furthermore, we also show that § is reducible to } IPU and } IW U FD is equivalent to Omega FD ( ­ )
if some conditions on the number or failures and/or membership hold.

We also present a timer-based distributed algorithm (and its proof of correctness) which imple-
ments a Impact FD. It uses the algorithm proposed by Chen et al.[12] to estimate heartbeat message
arrivals from monitored processes. The implementation can be applied to systems whose links are
lossy asynchronousor those whose all (or some) of them have eventually a bounded synchronous be-
havior ( }¡ t imel y ) [3]. Then, based on real trace �les collected from nodes of PlanetLab [33], we
conducted extensive experiments in order to evaluate the Impact FD. These trace �les contained a
large amount of data related to the sending and reception of heartbeat messages, including unsta-
ble periods of links and message, characterizing, therefore, distributed systems that use FDs based
on heartbeat. The testbed of the experiments comprises various con�gurations with different thresh-
old values, impact factor of nodes, and types of links. For evaluation sake, we used three of the QoS
metrics proposed in [12]: detection time , average mistake rate, and query accuracy probability . The
Impact FD implementation was also compared to a tradition timer-based FD one that outputs infor-
mation about failure suspicions of each monitored process. Performance evaluation results con�rm
the degree of �exible applicability of the Impact FD, that both failures and false suspicions are more
tolerated than in traditional FDs, and that the former presents better Qos than the latter if the appli-
cation is interested in the degree of con�dence in the system (trust level) as a whole.

The rest of this document is structured as follows. Section 2 describes some distributed systems
for which the Impact FD is suitable. Section 3 outlines some basic concepts of unreliable failure de-
tectors and equivalences between failure detectors. Section 4 presents the Impact failure detector, its
characteristics, and some of its properties while Section 5 shows the equivalence of some classes of
Impact FD in regard with § and ­ classes. In Section 6, we propose a timer-based algorithm that im-
plements the Impact FD considering different systems, de�ned by the type of their links. The section
also includes the proof of correctness of the algorithm. Section 7 presents a set of evaluation results
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6 Rossetto & Arantes & Sens & Geyer

obtained from experiments conducted with real traces on PlanetLab [33]. Section 8 discusses some
existing related work. Finally, Section 9 concludes the technical report and outlines some of our future
research directions.

2 Motivation Scenarios

Our proposed approach can be applied to different distributed scenarios and is �exible enough to
meet different needs. It is quite suitable for environments where there is node redundancy or nodes
with different capabilities. We should point out that both the impact factor and the threshold render
the estimation of the con�dence of Smore �exible. Hence, there might be a situation where some pro-
cesses inSare faulty or suspected of being faulty but S is still considered to be trusted. Furthermore,
the Impact FD can easily be con�gured and adapted to the needs of the application or system require-
ments. For instance, the application may require a stricter monitoring of nodes during the night than
during the day. For this kind of adaptation, it is only necessary to adjust the threshold.

The following examples show some scenarios to which the Impact FD can be applied
Scenario 1 : Ubiquitous Wireless Sensor Networks (WSNs) are usually deployed to monitor physi-

cal conditions in various places such as geographical regions, agriculture lands, battle�elds, etc. In
WSNs, there is a wide range of sensor nodes with different battery resources and communication
or computation capabilities [24]. However, these sensors are prone to failures (e.g., battery failure,
process failure, transceiver failure, etc.) [20]. Hence, it is necessary to provide failure detection and
adaptation strategies to ensure that the failure of sensor nodes does not affect the overall task of the
network. The redundant use of sensor nodes, reorganization of the sensor network, and overlapping
sensing regions are some of the techniques used to increase the fault tolerance and reliability of the
network [1].

Let us take as example an ubiquitous WSN which is used to collect environmental data from within
a vineyard and is divided into management zones in accordance with different characteristics (e.g.,
soil properties).

Each zone comprises sensors of different types (e.g., humidity control, temperature control, etc.)
and the density of the sensors depends on the characteristics of each zone. That is, the number of
sensors can be different for each type of sensor within a given zone. Furthermore, the redundancy of
the sensors ensures both area coverage and connectivity in case of failure. Each management zone can
thus be viewed as a single set which has sensors of the same type grouped into subsets. This grouping
approach allows a threshold to be de�ned as being equal to the minimum number of sensors that
each subset must have to keep the connectivity and application functioning all the time. Moreover,
in some situations, there might be a need to dynamically recon�gure the density of the zones. In this
case, the threshold value would change.

Scenario 2 : In large-scale WSN environments, grouping sensor nodes into clusters has been widely
adopted aiming the overall system scalability and reduction of resources consumption like battery
power and bandwidth. Each cluster i is composed of a node, denoted cluster head (CH), which per-
forms special tasks (e.g., routing, fusion, aggregation of messages, etc.), and several other sensor nodes
(SN). The latter periodically transmit their data to the their corresponding CH node which aggregate
and transmit them to the base station (BS) either directly or through the intermediate communica-
tion with other CH nodes. In this scenario, the concept of Impact FD can be applied considering each
cluster i as a subset of the system S whose size is initially n i . When de�ning the impact factor for the
processes of cluster i , two issues should be considered: 1) the failure of CH which implies that the
cluster is inaccessible compromising, therefore, the network connectivity and leading to untrusted
states of S; 2) When the number of alive SNs drops below a threshold, additional resources must be
deployed to replenish the system to maintain its population density. Taking these constraints into ac-
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count, we could have: impact factor = 1 to SNs, impact factor = n i to the CH of cluster i , and threshold
for this cluster equals to threshold i Æn i Å (n i ¡ f i ), where f i is the maximum number of SN's failures
of cluster i , Thus, when either the CH fails or more than f i SNs fail, the trust level will be below the
threshold and the BS must be warned to take some decision.

Scenario 3 : A third example might be a system consisting of a main server that offers a certain
quality of service X (bandwidth, response time, etc.). If it fails, N backup servers can replace it, since
each backup offers the same service but with a X/ N quality of service. In this scenario, both the
impact factor of the main server and the threshold would have the value of N ¤ Iback where Iback
is the impact value of each backup server, i.e., the system becomes unreliable whenever both the
primary server and one or more of the N servers fail (or are suspected of being faulty).

The Impact FD can be applied to all the above scenarios which have the following features: a) the
grouping of nodes that have some common characteristics into subgroups (subsets); b) the possibility
of having nodes with different levels of relevance and c) the �exibility of some systems in being able
to tolerate a margin of failure.

3 Unreliable Failure Detectors

Proposed by Chandra and Toueg in [11], an unreliable FD can be seen as an oracle that gives (not
always correct) information about process failures (either trusted or suspected). It usually provides a
list of processes suspected of having crashed.

According to [22], unreliable FDs are so named because they can make mistakes (1) by erroneously
suspecting a correct process 1 (false suspicion), or (2) by not suspecting a process that has actually
crashed. If the FD detects its mistake later, it corrects it. For instance, a FD can stop suspecting at time
t + 1, a process that it suspected at time t . Although an unreliable FD can not accurately determine
the real state of processes, its use increases knowledge about them and encapsulates the uncertainty
of the communication delay between two processes [11].

Unreliable failure detectors are usually characterized by two properties: completenessand accu-
racy, as de�ned in [11]. Completenesscharacterizes the failure detector's capability of suspecting faulty
processes, while accuracy characterizes the failure detector's capability of not suspecting correct pro-
cesses, i.e., restricts the mistakes that the failure detector can make. FDs are then classi�ed according
to two completeness properties and four accuracy properties [11]. The combination of these prop-
erties yield eight classes of failure detectors. This approach allows the design of fault tolerant appli-
cations and proof of their correctness based only on these properties, without having to address, for
example, low-level network parameters.

In this work, we are particularly interested in the following completeness and accuracy properties:

• Strong completeness: Eventually every process that crashes is permanently suspected by every
correct process.

• Weak completeness: Eventually every process that crashes is permanently suspected by some
correct process.

• Eventual strong accuracy: There is a time after which correct processes are not suspected by any
correct process.

• Eventual weak accuracy: There is a time after which some correct process is never suspected by
any correct process.

1A process is denoted correct if it does not crash during the whole execution.

RR n° hal-01136595



8 Rossetto & Arantes & Sens & Geyer

The class of the eventually perfect } P (resp., eventually strong } S) failure detectors satis�es the
strong completeness and the eventual strong (resp., eventual weak) accuracy properties; The class
of eventually weak failure detectors ( } W ) failure detectors satis�es the weak completeness and the
eventual weak accuracy properties. } W is the weakest class allowing to solve consensus in an asyn-
chronous distributed system with the additional assumption that a majority of processes are correct.

Note that the type of accuracy depends on the synchrony or stability of the network. For instance,
an algorithm that provides eventual accuracy (strong or weak) may rely on partially synchronous sys-
tems which eventually ensure a bound for message transmission delays and processes speed.

From Chandra and Toueg's work, numerous other failure detector implementations and classes
have been proposed in the literature. They usually differ in the system assumptions such as syn-
chronous model, type of node( identi�able, anonymous [8], homonymous [5]), type of link [3] [28],
[2] (lossy asynchronous, reliable, timely, eventually timely, etc.), behavior properties [31], [3]; type of
network (static [6] [28], dynamic [4], [21]), etc. They can also have different implementation choices
(timer-based [12],[29], message pattern [31]) and performance or quality of service (QoS) require-
ments [12]. The type of problem can also de�ne the properties of the FD (mutual exclusion [18], k-set
agreement [7], register implementation [17]), etc.

3.1 Omega and Sigma Failure Detectors

Many other classes of failures detectors have been de�ned in the literature. Two important ones,
largely exploited by distributed algorithms and applications, are the classes of Omega ( ­ ) [10] and
Sigma (or Quorum - §) [17] failure detectors.

The Leader Failure Detector Omega ( ­ ): Together with Hadzilacos, Chandra and Toueg extended
their work in [10], proposing the leader FD ­ .

The speci�cation of ­ states that eventually all the correct processes trust the same correct pro-
cess, i.e., it provides an eventual leader election functionality. ­ is also the weakest failure detector
to solve consensus in a distributed system, provided that a majority of processes are correct. Further-
more, contrarily to } S and } W , the knowledge of membership of the system is not necessary [26].
When it is known, a ­ FD trivially also implements a } W or } S failure detectors.

At each process p, the failure detector module of ­ at p outputs the identity of a single process,
denoted LE ADERp , such that the following property holds:

Eventual Leadership: There exists a correct process l and a time t after which, for every correct
process p, LE ADERp Æl .

We should point out that at any given time processes do not know if there is a leader; they only
know that eventually a leader will be elected by all correct processes and will remain leader.

The Quorum Failure Detector Sigma ( Si gma): A failure detector Sigma ( §) outputs, at each correct
process of the system and, at any time, a list of processes, called tr usted processes, such that:

• Intersection : Every two lists of trusted processes intersect;

• Completeness: Eventually, every list of processes trusted by a correct process contains only cor-
rect processes.

According to [16], the class of Sigma failure detectors is the weakest one to implement a register, in
any environment.

The importance of § and ­ failures detectors was extended by Delporte-Gallet et. al.[16], proving
that the pair < ­ ,§> is the weakest FD to solve consensus (uniform or not) in asynchronous message-
passing where all but one process may fail.
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3.2 Reducibility and equivalence of failure detectors

According to [11], reducibility means that there exists an algorithm TD! D0 which transforms a failure
detector D into another failure detector D' in an environment " . Algorithm TD! D0 usesD to maintain
a variable output p at every p. Given a reduction algorithm TD! D0, any problem that can be solved
using failure detector D' in " , can be solved using D instead in " . Thus, if there is an algorithm TD! D0

that transforms D into D', we say that D' is reducible to D , noted D º D0 ; we also say that D' is weaker
than D (º is a transitive relation). Furthermore, if TD! D0 and TD0! D , we write D »ÆD0and say that D
and D' are equivalent .

Similarly, given two classes of failure detectors C and C0, if for each failure detector D 2 C there is a
failure detector D02 C such that D º D0, we write C º C0and say that C0is weaker than C. So, if C º C0,
then if a problem is solvable using C0, it is also solvable using C). If C º C0and C0º C, we write C »ÆC0

and say that C and C0are equivalent [11].

4 Impact Failure Detector

We consider a distributed system which consists of a �nite set of processes ¦ Æ{q1, . . . ,qn } with j¦ j
= n , (n ¸ 2) and that there is one process per node, site, or sensor. Therefore, the word processcan
mean a node, a sensor, or a site. Each process is uniquely identi�ed ( id j 1 · id · n) and identi�ers
are totally and consecutively ordered.

Processes can fail by crash and they do not recover. A process is considered correct if it does not
fail during the whole execution. We consider the existence of some global time denoted T . A failure
pattern is a function F : T ! 2¦ , where F(t ) is the set of processes that have failed before or at time
t . The function cor rect(F) denotes the set of correct processes, i.e., those that have never belonged
to a failure pattern ( F), while f aul t y (F) denotes the set of faulty processes, i.e., the complement of
cor rect(F) with respect to ¦ .

A process p 2 ¦ monitors a set S of processes of ¦ . Every process in S is connected to p by a com-
munication link and sends messages to it through this link. Notice that other links among processes
of S can exist.

The Impact FD can be de�ned as an unreliable failure detector that provides an output related to
the trust level with regard to a set of processes. If the trust level provided by the detector, is equal to,
or greater than, a given threshold value, de�ned by the user, the con�dence in the set of processes is
ensured. We can thus say that the system is trusted. We denote FD ( I p

S) the Impact failure detector
module of process p and S is a set of processes of ¦ . When invoked in p, the Impact FD ( I p

S) returns
the tr ust _levelp

S value which expresses the con�dence that p has in set S.
We note cor rect(FS) Æcor rect(F) \ S and f aul t y (FS) Æf aul t y (F) \ S.

4.1 Impact Factor and Subsets

Each processq 2 Shas an impact factor ( I q j I q È 0 : I q 2 R ). Furthermore, set Scan be partitioned into
m disjoint subsets ( S Æ{S1,S2, ...Sm }). Notice that the grouping feature of the Impact FD allows the
processes ofS to be partitioned into disjoint subsets, in accordance with a particular criterion. For in-
stance, in a scenario where there are different types of sensors, those of the same type can be gathered
in the same subset. Let then S¤ Æ{S¤

1 ,S¤
2 , ...S¤

m } be the set S partitioned into m disjoint subsets where
each S¤

i is a set composed of the tuple hid , I i , where id is a process identi�er and I is the value of the
impact factor of the process in question.

S¤ Æ{S¤
1 ,S¤

2 , ...S¤
m } is a set of processes such that 8 i , j , i 6Æj ,S¤

i \ S¤
j Æ ; and

S
{qj

­
q,_

®
2 S¤

i ;1 · i · m} ÆS.
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10 Rossetto & Arantes & Sens & Geyer

4.2 Trust Level

We denote tr usted p
S(t ) the set that contains the processes of S that are not considered faulty by p at

t 2 T . The trust level at t 2 T of process p Ý F(t ) in relation to S is denoted tr ust _levelp
S¤

. We have

then tr ust _levelp
S¤

(t ) Æ
Tr ust _level(t r usted p

S,S¤ ), where the function Tr ust _level(t r usted p
S,S¤ ) returns, for each sub-

set S¤
i , the sum of the impact factor of the elements hid q , I q i of S¤

i such that id q 2 tr usted .

Tr ust _level(t r usted ,S¤ ) Æ{tr ust _leveli j t r ust _leveli Æ
jS¤

i jP

j Æ1,
j 2(t r usted \ S¤

i )

I j , 1 · i · j S¤ j}

In other words, the tr ust _levelp
S¤

is a set that contains the trust level of each subset of S¤ ex-
pressing the con�dence that p has in the processes of S. Note that if all processes of S¤

i have failed
tr ust _leveli Æ0.

4.3 Margin of Failures

An acceptable margin of failures, denoted threshold S¤
, characterizes the acceptable degree of failure

�exibility in relation to set S¤ . The threshold S¤
is adjusted to the minimum trust level required for

each subset, i.e., it is de�ned as a set which contains the respective threshold of each subset of S¤ :
threshold S¤

Æ{threshold 1, . . . ,threshold m }.
The threshold S¤

is used by p to check the con�dence in the processes of S. If, for each subset of
S¤ , the tr ust _leveli (t ) ¸ threshold i , S is considered to be trusted at t by p, i.e., the con�dence of p
in S has not been compromised; otherwise S is considered untrusted by p at t .

Three points should be highlighted: (1) both the impact factor and threshold S¤
render the esti-

mation of the con�dence in S �exible. For instance, it is possible that some processes in S might be
faulty or suspected of being faulty but S is still trusted; (2) the Impact FD can be easily con�gured to
adapt to the needs of the environment; (3) the threshold S¤

can be tuned to provide a more restricted
or softer monitoring. Note that the Impact FD can also be applied when the application needs indi-
vidual information about each process of S. In this case, each process must be de�ned as a different
subset of S¤ .

4.4 Examples

Table 1 shows several examples of sets and their respective thresholds. In the �rst example (a) there
is just one subset with three processes. Each process has impact factor equal to 1 and the threshold
de�nes that the sum of impact factor of non faulty processes must be at least equals to 2, i.e., the
system is considered trusted whenever there are two or more correct processes. Example (b) shows a
con�guration where processes must be monitored individually. Each process is the only element of a
subset and the threshold de�nes that if any of the processes fails, the system is not trusted anymore.
In the third example (c), Shas two sets with three processes each. The threshold requires at least two
correct processes in each subset. The last example (d) has a single subset with �ve processes with
different impact factors. The threshold de�nes that the set is trusted whenever the sum of impact
factor of correct processes is at least equals to seven.

In Table 2, we consider a set S¤ composed by three subsets: S¤
1 , S¤

2 , and S¤
3 (S¤ Æ{{

­
q1,1

®
,
­
q2,1

®
,
­
q3,1

®
},

{
­
q4,2

®
,
­
q5,2

®
,
­
q6,2

®
},

{
­
q7,3

®
,
­
q8,3

®
,
­
q9,3

®
}}). The values of threshold S¤

Æ{1,4,6} de�ne that the subset S¤
1 (resp., S¤

2 and
S¤

3 ) must have at least one (resp., two) correct process. The table shows several possible outputs for
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The Impact Failure Detector 11

Table 1: Examples of sets and threshold
S¤ threshold S¤

a {{
­
q1,1

®
,
­
q2,1

®
,
­
q3,1

®
}} {2}

b {{
­
q1,1

®
}, {

­
q2,1

®
}, {

­
q3,1

®
}} {1,1,1}

c {{
­
q1,1

®
,
­
q2,1

®
,
­
q3,1

®
}, {

­
q4,2

®
,
­
q5,2

®
,
­
q6,2

®
}} {2,4}

d {{
­
q1,1

®
,
­
q2,1

®
,
­
q3,1

®
,
­
q4,5

®
,
­
q5,5

®
}} {7}

FD (I p
S) depending of process failures: the set S¤ is considered trusted at t if, for each subset S¤

i ,
t r ust _leveli (t ) ¸ threshold i .

Table 2: Example of FD ( I p
S) output: S¤ has three subsets

t F(t) t r usted p
S(t ) t r ust _levelp

S¤
(t ) Status at t

1 {q2} {q1,q3,q4,q5,q6,q7,q8,q9} {2,6,9} Trusted
2 {q1,q2,q5} {q3,q4, q6,q7,q8,q9} {1,4,9} Trusted
3 {q1,q2,q5,q6} {q3,q4, q7,q8,q9} {1,2,9} Untrusted

S¤ Æ{{
­
q1,1

®
,
­
q2,1

®
,
­
q3,1

®
}, {

­
q4,2

®
,
­
q5,2

®
,
­
q6,2

®
}, {

­
q7,3

®
,
­
q8,3

®
,
­
q9,3

®
}}

threshold S¤
Æ{1,4,6}

4.5 Flexibility of the Impact FD

The �exibility of the Impact FD characterizes its capability in accepting different set of responses that
lead to a trusted state of S. We de�ne PS as the set that contains all possible subsets of processes
which satisfy a de�ned threshold :

PSÆT Power Set(S¤ , threshold S¤
)jT Power Set(S¤ , threshold S¤

) Æ
£ Power Set(Si

¤ , threshold i
S¤

)

where £ Si corresponds to the cartesian product of several sets.
Initially, the TPowerSetfunction generates the power set 2 for each subset (Si

¤ ) of S¤ . Then, only
the subsets of Si

¤ whose sum of their parts is greater than, or equal to, threshold i are selected. That
is, the output is the sets of possible trusted set that satisfy the threshold for each subset Si

¤ . Follow-
ing this, the cartesian product is applied to generate all possible combinations, i.e., all the generated
subsets of processes satisfy the threshold S¤

.
Let's consider the following example:

S¤ Æ{{
­
q1,1

®
,
­
q2,1

®
}, {

­
q3,1

®
,
­
q4,1

®
}, {

­
q5,1

®
,
­
q6,1

®
}}

threshold S¤
= {1,1,1}

PSÆT Power set(S¤ , threshold S¤
)

PowerSet(S¤
1 , threshold 1) = {{q1}, {q2}, {q1,q2}}

PowerSet(S¤
2 , threshold 2) = {{q3}, {q4}, {q3,q4}}

PowerSet(S¤
3 , threshold 3) = {{q5}, {q6}, {q5,q6}}

PS = PowerSet(S¤1 , threshold 1) £ PowerSet(S¤
2 , threshold 2) £ PowerSet(S¤

3 , threshold 3)

2the power set of any set S is the set of all subsets of S, including the empty set and S itself

RR n° hal-01136595



12 Rossetto & Arantes & Sens & Geyer

PS = {{q1,q3,q5}, {q1,q3,q6}, {q1,q3,q5,q6},
{q1,q4,q5}, {q1,q4,q6}, {q1,q4,q5,q6},
{q1,q3,q4,q5}, {q1,q3,q4,q6}, {q1,q3,q4,q5,q6},. . . }

For instance, if t r usted p
S(t1) Æ{q1,q3,q5} and tr usted p

S(t2) Æ{q1,q3,q4,q6}, t r usted p
S(t1) and

tr usted p
S(t1) 2 PS, and, therefore, p considers that the system S is trusted at both t1 and t2.

We de�ne now two properties, PR(IT )S
p and PR(} IT )S

p , that characterize the stability condition
that ensures the con�dence (or eventual con�dence) of p on S.

Impact Threshold Property - PR (IT )S
p : For a failure detector of a correct process p, the set t r usted p

S

is always a subset of PS.

PR(IT )S
p ´ p 2 cor rect(F),8 t ¸ 0,t r usted p

S(t ) 2 PS

Eventual Impact Threshold Property - PR (} IT )S
p : For a failure detector of a correct process p, there is

a time after which the set t r usted p
S is always a subset of PS.

PR(} IT )S
p ´ 9 t 2 T,p 2 cor rect(F),8 t 0¸ t , t r usted p

S(t 0) 2 PS

If PR(IT )S
p (resp., PR(} IT )S

p ) holds, the system S is always (resp., eventually always) trusted by p.

4.6 Classes of Impact FD

Similarly to the completenessand accuracy properties de�ned in [11] (see Section 3), we de�ne the
following ones:
Impact completenessp

S: For a failure detector of a correct process p, there is a time after which p
does not trust any crashed process of S;

9t 2 T,p 2 cor rect(F),8 q 2 f aul t y (FS) : 8 t 02 T ¸ t ,q Ý tr usted p
S(t 0)

Eventual impact st r ong accur acy p
S: For a failure detector of a correct process p, there is a time

after which all correct processes of S belong to t r usted p
S;

9t 2 T,8 t 02 T ¸ t ,p 2 cor rect(F),8 q 2 cor rect(FS) : q 2 tr usted p
S(t 0)

Eventual impact weak accur acy p
S: For a failure detector of a correct process p, there is a time

after which some correct process of S always belongs to t r usted p
S.

9t 2 T,8 t 02 T ¸ t ,p 2 cor rect(F),9q 2 cor rect(FS) : q 2 tr usted p
S(t 0)

Let consider that p in S and SÆ¦
We can then de�ne some classes of Impact FD, similarly those de�ned in [11] and [17]:

• } IP (Eventual Perfect Impact Class): For SÆ¦ , 8 p 2 cor rect(F),
impact completenessp

S and eventual impact st r ong accur acy p
S properties are satis�ed;

• } IS (Eventual Strong Impact Class): For SÆ¦ , 8 p 2 cor rect(F),
impact completenessp

S and eventual impact weak accur acy p
S properties are satis�ed;

• } IW (Eventual Weak Impact Class): For SÆ¦ , 9p 2 cor rect(F) such that
impact completenessp

S property ( weak completeness) is satis�ed and 8 p 2 cor rect(F), even-
tual impact weak accur acy q

S property is satis�ed;

Inria
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• I ­ : (Impact Omega Class): For S Æ¦ , 8 t ¸ 0,jt r usted (t )j Æ1, and 9l 2 cor rect(F) such that
9t1 2 T,8 t2 2 T ¸ t1,8 p 2 cor rect(F), t r usted p

S(t2) Æ{l }.

• I § : (Impact Sigma Class): For SÆ¦ , the two following properties are satis�ed:

Intersection: 8 t1, t2 2 T,8 p1,p2 2 ¦ : t r usted p
S(t1) \ t r usted p

S(t2) 6Æ ;

Completeness: 9t 2 T,8 p 2 cor rect(F) : 8 t 02 T ¸ t , t r usted p
S(t 0) µ cor rect(F)

We point out that the trust level output of the failure detectors of the above classes depends on S¤ ,
i.e., the impact factor assigned to the processes as well as how they are grouped in subsets.

5 Impact FD Equivalences

By considering that all processes of S Æ¦ have impact value equals to its identi�er value and each
process belongs to a different subset of S¤ , we show that I §U (resp.I ­ U ) FD is equivalent to § (resp.,
Omeg a) FD. In addition, § is reducible to } IPU , provided there exist a majority of correct processes,
and } IW U FD is equivalent to Omega FD ( ­ ), provided that the membership of the system is known.
Both § and ­ FDs were de�ned in Section 3 while I §U , I ­ U , } IPU , and } IW U FDs will be de�ned in
this section.

Let's assume that ¦ Æ{q1, . . . ,qn } are uniquely identi�ed by {1,2, . . . , n } respectively with j¦ j = n , (n ¸
2). For both cases, i.e., Omeg a's and Si gma's reductions, we consider that p in S, SÆ¦ .

Furthermore, S¤ requires the unique identi�er format : jS¤ j Æn, 8 S¤
i 1 · i · n ,S¤

i Æ{h_,i i }, i.e., each
of the n subsets of S¤ has just one process of S whose impact factor is equal to its identi�er. This way,
it is possible to deduce, by the output of the Impact FD of process p (trust_level), the processes that
are trusted by p. For instance, consider the following con�guration of S¤ and a possible trust level
output of the Impact FD of p at t (processesq1 and q4 suspected of failure):

S¤ Æ¦ ¤ Æ{{
­
q1,1

®
}, {

­
q2,2

®
}, {

­
q3,3

®
}, {

­
q4,4

®
}, {

­
q5,5

®
}}

t r ust _levelSp (t ) Æ{0,2,3,0,5}

The set of processes trusted by p at t corresponds to those tr ust _leveli (1 · n) of t r ust _level(t )
which are greater than 0.

t r usted (t ) Æ{2,3,5}

We denote I U the set of failure detectors of Impact FD class that require the unique identi�er for-
mat for S¤ . Similarly, } IPU , } ISU , I §U , I ­ U , and } IW U FDs are } IP , } IS, I § , I ­ , and } IW FDs
respectively that also require the same S¤ unique identi�er format.

The following functions are used by the reductions algorithms:

• Tr ust _levelToProcs(t r ust _level): returns the set of processes of the tr ust _level whose tr ust _leveli
is greater than zero, i.e., the processes considered trusted:

Tr ust _levelToProcs(t r ust _level) Æ{tr ust _leveli j t r ust _leveli È 0;1 · i · j ¦ j}

• ProcsToTr ust_level(t r usted ): returns the set t r ust _level related to the trusted set, com-
posed by the identi�ers of processes that are trusted: t r ust _leveli is equal to i , if i belongs to
t r usted ; otherwise it is equal to 0.

ProcsToTr ust_level(t r usted ) Æ{tr ust _leveli j t r ust _leveli Æi if i 2 t r usted ;

else tr ust _leveli Æ0;1· i · j ¦ j}

We consider that the FDs and the algorithms presented in this section run on all nodes of ¦ . Note
that the input of ­ and § FDs is ¦ while the input of I §U , I ­ U , } IPU , and } IW U is ¦ ¤ .
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14 Rossetto & Arantes & Sens & Geyer

5.1 Equivalence between I §U FD and § FD

• § is reducible to I §U (I §U º §): Algorithm 1

• I §U is reducible to § (§ º I §U ): Algorithm 2

Algorithm 1 Transforming I §U to §
1: Begin

Input
2: ¦

Init
3: S¤ Æ ;
4: for i Æ1 to ¦ do
5: S¤ ÆS¤ [ {{hqi , i i }}
6: end for

T1
7: Upon invocation of §() do
8: return Tr ust _levelToProcs(I §(S¤ ))
9: end

10: End

Algorithm 1 transforms the output of Impact I §U FD to the output of § FD. When invoked in
p, I §U returns the trust level value of p in relation to processes of ¦ that p trusts. The function
Tr ust _levelToProcsthen transforms the trust level to the set of trusted processes (line 8).

Algorithm 2 Transforming § to I §U

1: Begin
Input

2: ¦ ¤

Init
3: SÆ ;
4: for i Æ1 to ¦ ¤ do
5: SÆS[ {i }
6: end for

T1
7: Upon invocation of I §() do
8: return ProcsToTr ust_level(§(S))
9: end

10: End

The Algorithm 2 transforms the output of § FD to the output of Impact I §U FD, i.e., the trust level.
When invoked in p, the Sigma FD returns the set t r usted which contains the identi�er of trusted
processes. This set is then transformed in the trust level (line 8).

Sketch of Proof

Lemma 1. Algorithm 1 transforms the output of I §U FD to the output of § FD.

Proof. Immediate from the intersection and completeness properties of I §U and function Tr ust _levelToProcs
that transforms a trust level value to a set of trusted processes identi�ers.
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Lemma 2. The Algorithm 2 transforms the output of § FD to the output of I §U FD.

Proof. Immediate from the intersection and completeness properties of I § FD and function ProcsToTr ust_level
that transforms a set of trusted processes identi�ers to a trust level value.

Theorem 1. § FD is equivalent to I §U FD

Proof. The theorem holds directly from Lemma 1 and Lemma 2.

5.2 Equivalence between I ­ U FD and ­ FD

• ­ is reducible to I ­ U (I ­ U º ­ ): Algorithm 3

• I ­ U is reducible to ­ (­ º I ­ U ): Algorithm 4

Algorithm 3 Transforming I ­ U to ­
1: Begin

Input
2: ¦

Init
3: S¤ Æ ;
4: for i Æ1 to ¦ do
5: S¤ ÆS¤ [ {{hqi , i i }}
6: end for

T1
7: Upon invocation of ­ () do
8: trusted = Tr ust _levelToProcs(I ­ (S¤ ))
9: return l such that l 2 t r usted

10: end
11: End

Algorithm 3 transforms the output of Impact I ­ U FD to the output of ­ FD. When invoked in p,
I ­ U returns the trust level value of p in relation to a process that p considers as leader. Then, the
function Tr ust _levelToProcs returns a trusted set composed only by the leader process, which is
returned by the function (line 8).

The Algorithm 4 transforms the output of ­ FD to the output of Impact I ­ U FD, i.e., the trust level.
When invoked in p, the Omeg a FD returns a process that it considers as leader which is then included
in the trusted set. This set is transformed in the trust level (line 8).

Sketch of Proof

Lemma 3. Algorithm 3 transforms the output of I ­ U FD to the output of ­ FD.

Proof. Immediate from the leadership property of I ­ U and function Tr ust _levelToProcs.

Lemma 4. The Algorithm 4 transforms the output of ­ FD to the output of I ­ U FD.

Proof. Immediate from the leadership property of I ­ FD and function ProcsToTr ust_level.

Theorem 2. ­ FD is equivalent to I ­ U FD

Proof. The theorem directly holds from Lemma 3 and Lemma 4.
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Algorithm 4 Transforming ­ to I ­ U

1: Begin
Input

2: ¦ ¤

Init
3: SÆ ;
4: for i Æ1 to ¦ ¤ do
5: SÆS[ {i }
6: end for

T1
7: Upon invocation of I ­ () do
8: t r usted Æ{­ (S)}
9: return ProcsToTr ust_level(t r usted )

10: end
11: End

5.3 § FD is reducible to } IPU with a majority of correct processes

We consider that every pair of processes in ¦ is connected by a bidirectional link which does not
lose messages, neither corrupts them, nor generates spontaneous messages. In addition, there exist a
majority of correct processes, i.e., the maximum number o failures f Ç j¦ j/2. Then, § FD is reducible
to } IPU :

Algorithm 5 Transforming } IPU to §
1: Begin

Input
2: ¦

Init
3: t r ust _level Æ ; ; S¤ Æ ;
4: for i Æ1 to j¦ j do
5: S¤ ÆS¤ [ {{

­
qi , i

®
}}

6: end for
Task T1

7: Upon invocation of §() do
8: t r usted Æ ;
9: repeat

10: t r ust _level Æ } IP(S¤ )
11: t r usted Ætr usted [ Tr ust _levelToProcs(t r ust _level)
12: until jt r usted j È j ¦ j/2
13: return t r usted
14: end
15: End

Algorithm 5 transforms the output of Impact } IPU FD to the output of Sigma FD. When invoked
in p, } IPU returns the trust level value of p in relation to processes of ¦ (line 10). Then, the func-
tion Tr ust _levelToProcs(t r ust _level) is called. The algorithm returns when there are a majority of
process i whose tr ust _leveli is greater than zero, i.e., a majority of processes considered trusted by
p (line 12).
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The Impact Failure Detector 17

Sketch of Proof

Lemma 5. Let's consider that the call to } IP() never blocks. The invocation of §() by p (Algorithm 5)
always returns a set of processes whose size is greater thanj¦ j/2 .

Proof. Since the call to } IP() (line 10) never blocks by assumption, the only way for function §() to
not return from a call would be if it looped forever because the until condition of line 12 was never
satis�ed. However, since there is no message loss by assumption, p eventually receives every heart-
beat message sent by other processes. Furthermore, since f Ç j¦ j/2 by assumption, if all the f failures
take place, the eventual impact accuracy of } IP ensures that eventually the set trusted will contain
a majority of processes (the correct ones) of the system, avoiding, thus, that the algorithm blocks
permanently in line 12. Therefore, the condition of this line always becomes true and, by calling func-
tion Trust_levelToProcs, function Si gma() returns a set of trusted processes whose size is greater than
j¦ j/2.

Lemma 6. Algorithm 5 ensures the intersection property of the § FD.

Proof. By assumption, all processes of ¦ execute both } IPU FD and Algorithm 5. Therefore, the
lemma holds directly from Lemma 5 since, when invoked by p, Algorithm 5 always outputs a set of
at least j¦ j/2 Å 1 processes.

Lemma 7. Algorithm 5 ensures the completeness property of the § FD.

Proof. By assumption, all processes of ¦ execute both } IPU FD and Algorithm 5. Thus, 8 p 2 cor rect(F),
the lemma holds directly from the completeness¦p property of } IP FD.

Theorem 3. Algorithm 5 transforms } IPU to § FD.

Proof. The theorem holds directly from Lemma 6 and Lemma 7.

We should point out that } IPU FD is not reducible to § FD since the eventual impact strong accu-
racy of } IPU FD can not be ensured from the output of § FD.

5.4 Equivalence between } IW U FD and ­ FD

We consider that f Ç n ¡ 1. } IW U is equivalent to ­ . Note that the membership ( ¦ ) is known by all
processes [26]:

• ­ is reducible to } IW U (} IW U º ­ ). The idea is to transform } IW U FD to } W FD (Algorithm
6) and then use any algorithm of the literature, such as [10], [32], [13] (see Section 8), which
transforms } W to ­ .

• } IW U is reducible to ­ (­ º } IW U ): Algorithm 7.

} IW U FD can be trivially reduced to } W FD (Algorithm 6) as well as ­ FD to } IW U FD (Algorithm
7).

Sketch of Proof

Lemma 8. Algorithm 6 ensures the completeness property of the } W FD.
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Algorithm 6 Transforming } IW U to } W
1: Begin

Input
2: ¦

Init
3: S¤ Æ ; ;
4: for i Æ1 to j¦ j do
5: S¤ ÆS¤ [ {{

­
qi , i

®
}}

6: end for
Task T1

7: Upon invocation of } W do
8: t r ust _level Æ } IW U (S¤ )
9: suspectedÆ¦ ¡ Tr ust _levelToProcs(t r ust _level)

10: return suspected
11: end
12: End

Algorithm 7 Transforming ­ to } IW U

1: Begin
Input

2: ¦ ¤

Init
3: t r usted Æ ; ; SÆ ; ;
4: for i Æ1 to j¦ ¤ j do
5: SÆS[ {i }
6: end for

Task T1
7: Upon invocation of } IW do
8: t r usted Æ{­ (S)}
9: return ProcsToTr ust_level(t r usted )

10: end
11: End
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Proof. At every invocation of } W by p, Algorithm 6 outputs a set of suspected processes composed by
all processes of ¦ which are not currently trusted by p (line 9). By assumption, } IW U and Algorithm
6 are executed by all nodes of ¦ . } IW U FD ensures that 9p 2 cor rect(F) such 8 q 2 f aul t y (F) : 9t 2
T,8 t 02 T ¸ t ,q Ý tr usted p

¼(t 0). By Algorithm 6, all the faulty processes also belong to the suspect
set (line 9). Hence, 9p 2 cor rect(F),8 q 2 f aul t y (F), : 9t 2 T,8 t 02 T ¸ t ,q 2 suspect, and, thus, the
weak completenessproperty of } W FD is satis�ed.

Theorem 4. Algorithm 6 transforms } IW U FD to } W FD.

Proof. Lemma 8 ensures the weak completenessof } W FD. Since } IW U and Algorithm 6 are executed
by all nodes of ¦ by assumption, the eventual impact weak accur acy ¦

p property of } IW U FD is satis-
�ed 8 p 2 cor rect(F) and, therefore, the eventual impact weak accuracy of } W is also satis�ed. Thus,
the theorem holds.

Lemma 9. Algorithm 7 executed by the correct process p ensures both theimpact completeness¦p and

the eventual impact weak accur acy¦
p of } IW U .

Proof. The eventual leadership property of ­ FD ensures that there exists t 2 T and a correct process
l 2 ¦ such that for all correct processes 2 ¦ , 8 t 0 2 T ¸ t , Omeg a() Æl and tr usted Æ{l } (line 8).
Consequently, after t , no faulty processes belong to trusted set (completeness¦p of } IW U ) and there

exists a correct process l which is trusted by all p 2 cor rect(F) (eventual impact weak accur acy ¦
p of

} IW U ).

Theorem 5. Algorithm 7 transforms ­ FD to } IW U FD.

Proof. The theorem holds directly from Lemma 9 and the call to ProcsToTrust_level(line 9) that trans-
form a set of processes to a trust level value.

6 Implementation of Impact FD

The Impact FD can have different implementations in accordance with the characteristics of the sys-
tem: the synchronization model, whether or not the process p has knowledge about the composition
of S (membership) and the type of nodes. In this section, we present a timer-based implementation of
the Impact FD (Algorithms 9 and 10).

The system S consists of n processes grouped in m subsets. The monitor process p ÝS.

Process synchrony : We consider that each process has a local clock that can accurately measure in-
tervals of time, but the clocks of the processes are not synchronized. Processes are synchronous, i.e.,
there is an upper bound on the time required to execute an instruction. For simplicity, and without
loss of generality, we assume that local processing time is negligible with respect to message commu-
nication delays.

Links and type of systems : For the current implementation, we consider that links are directed (either
unidirectional or bidirectional) and there exists a link from q ( 8 q 2 S) to p.

Every link between p and q satis�es the following integrity property : p receives a messagem from q
at most once, and only if q previously sent m to p. In other words, communication links cannot create
or alter messages. Links are not assumed to be FIFO. Concerning loss property and link synchrony, we
consider the following types of links as de�ned in [3]:

RR n° hal-01136595
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• lossy asynchronous: A link that satis�es the integrity property and there is no bound on mes-
sage delay. Note that, in this case, a message m sent over the link can be lost. However, if m is
not lost, it is eventually received at its destination.

• (T yped) f ai r lossy: Assuming that each message has a type, link is fair lossy if, for every type
in�nitely many messages are sent, then in�nitely many messages of each type are received (if
the receiver process is correct).

• }¡ t imel y : A link that satis�es the integrity property and the following }¡ t imel iness prop-
erty: there exists ± and a time t such that if q sends a messagem to p at time t 0 ¸ t and p is
correct, then p receives m from q by time t 0Å ±. The maximum message delay ± and the time t
after which it holds are not known. Note that messages sent before time t can be lost.

We then de�ne the following types of system:

• AS: denotes a lossy asynchronoussystem with lossy asynchronous links;

• F-AS: denotes a fair lossy asynchronous system with fair lossy links;

• W-ET: denotes a weak eventually timely system: a system where some links are }¡ t imel y while
the others are lossy asynchronous;

• S-ET: denotes a strong eventually timely system: a system where all links are }¡ t imel y ;

• S-ET-¦ : A system which is a S-ET system such that p in S, S Æ¦ , every pair of processes in S is
connected either by a pair of directed links (with opposite directions) or bidirectional links, and
all processes of ¦ executes the Impact FD algorithms.

• W-ET-¦ : A system which is a W-ET system such that p in S, SÆ¦ , every pair of processes in S is
connected either by a pair of directed links (with opposite directions) or bidirectional links, and
all processes of ¦ execute the Impact FD algorithms. Moreover, there exists a correct process
q1 in ¦ , such that, for all process q2 in ¦ , q1 6Æq2, q1 is connected to q2 by a }¡ t imel y link
(similarly to the de�nition of } ¡ sourceof [2]).

Note that a S-ET is also a W-ET and S-ET-¦ (resp. W-ET-¦ ) is also a S-ET (resp., W-ET). Our Impact
FD implementation can be applied to all of these systems.

Figure 1 shows three types of system. The �rst one (a) represents an ASsystem where all links are
lossy asynchronouswhile system (b) shows a W-ET where some links are }¡ t imel y and others are
lossy asynchronous. Finally, the last one (c) shows a W-ET-¦ where site q1 is a } ¡ source.

Our implementation (Algorithms 9 and 10) uses timers to detect failures of processes. Process q
periodically sends ( heartbeat ) messages to processp, that is responsible for monitoring process q. If
p does not receive such a message from q after the expiration of the timer, it removes q from its list of
trusted processes.

Chen's heartbeat estimation arrival : Algorithm 9 uses the algorithm proposed by Chen et al.[12],
denoted Chen's algorithm in this work, which computes the timeout value for waiting for a heartbeat
message from each monitored process.

Chen's algorithm uses arrival times sampled in the recent past to compute an estimation of the
arrival time of the next heartbeat. Then, timeout value is set according to this estimation and a safety
margin ( ¯ ). It is recomputed at each timer expiration.

The estimation algorithm is the following: process p takes into account the n most recent heartbeat
messages received from q, denoted by m1, m2, . . ., mn ; A1, A2, . . ., An are their actual reception times
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Figure 1: Scenarios of systems

according to p's local clock. When at least n messages have been received, the theoretical arrival time
EA(kÅ1) for a heartbeat from q is estimated by:

E A(kÅ1) Æ
1

n

kX

i Æk¡ n
(Ai ¡ ¢ i ¤ i ) Å (k Å 1)¢ i

where ¢ i is the interval between the sending of two q's heartbeats. The next timeout value which
will be set in p's timer and will expire at the next freshness point ¿(kÅ1), is then composed by EA(kÅ1)

and the constant safety margin ¯ :

¿(kÅ1) Æ¯ Å E A(kÅ1) (next f reshness point)

In Algorithm 9, Chen's algorithm is executed by the function T imeout (Algorithm 8) which calcu-
lates the arrival estimation of the next heartbeat for process q. Furthermore, if the link is }¡ t imel y , a
´ value is added to the timeout. The ´ has an initial zero value and is incremented whenever p falsely
suspects q (line 9 of Algorithm 9). Such an increment ensures that, if the link is }¡ t imel y and sta-
ble, i.e., the delay bound ± veri�es forever, the heartbeat arrival estimation time will be always equal or
greater than the actual arrival time for every heartbeat and, therefore, there will be no more estimation
mistakes and, therefore no more false suspicions.

Algorithm 8 Function Timeout

1: function TIMEOUT (q,´ ,model )
2: if model Æ ¤¡ ASthen . AS or F-AS system
3: ¿q Æ¯ Å E Aq

4: else
5: ¿q Æ¯ Å E Aq Å ´
6: end if
7: return ¿q

8: end function
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Algorithm 9 is executed by the monitor process p while algorithm ,10 by all processes of S.
The following local variables are used by the algorithm:

• trusted: set of processes considered not faulty py p;

• ´ [] : keeps the timeout increment of each process in S;

• t imer [] : is set to the timeout value at each timer expiration.

Algorithm 9 Timer-based Impact FD Algorithm for p
1: Begin

Input
2: S¤ , model , ´

Init
3: t r usted ÆS
4: 8 q 6Æp : reset t imer [q] ! T imeout (q,0,model ); ´ [q] Æ0

Task T1 - Upon reception of ALIVE from q
5: t r usted Ætr usted [ {q}
6: reset t imer [q] ! T imeout (q,´ [q], model )

Task T2 - When timer[q] expires
7: t r usted Ætr usted \ { q}
8: if model Æ ¤¡ ET then . W-ET or S-ET system
9: ´ [q] Æ´ [q] Å ´

10: end if
11: reset t imer [q] ! T imeout (q,´ [q], model )

Task T3
12: Upon invocation of Impact () do
13: return Tr ust _level(t r usted ,S¤ )
14: end
15: End

Algorithm 10 Timer-based Impact FD Algorithm for q in S
1: Begin

Input
2: p

Task T1 - Repeat forever every ¢ time unit
3: send(ALIV E) to p

4: End

In Algorithm 9, p receives as input the set S¤ , the increment time ´ for the timeout estimation
(used when occurs false suspicions in W-ET or S-ET systems), and the model of the system ( AS, F-AS,
W-ET or S-ET). Note that by receiving S¤ , the algorithm knows S, the impact factor of all processes of
S, the number of subgroups m, and how processes are grouped.
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At the initialization, t r usted is initialized with the set of processes. Then, for each process q in S
(q 6Æp), p initializes the timer that will control the arrival of heartbeat messages from q (line 4).

Upon reception of an ALIVE message from q (Task T1), q is added to the tr usted set (line 5) and
the timeout related to q is recomputed (line 6).

In task T2, q is considered faulty by p and, therefore, removed from trusted (line 7). Furthermore,
if the system is W-ET or S-ET, the timeout must be adjusted with a higher value (line 9). The timeout
related to q is then recomputed ((line 11).

Task T3 handles the invocation of the Impact() function, which computes the trust_level of each
subset and returns the trust level related to the current trusted processes which are trusted by p.

In Algorithm 10, every monitored process q of Ssends periodically, every ¢ units of time, an ALIVE
message to its input observer p in order to inform the latter that it is alive (Task T1).

Note that if p 2 S, like in S-ET-¦ or W-ET-¦ , all processes of ¦ execute the two algorithms behaving,
thus, as both a monitor and a monitored process. In this case, the primitive send in line 3 of Algorithm
10 is replaced by the primitive broadcast, i.e., every processes periodically sends a heartbeat to all
processes ofS.

6.1 Sketch of Proof

In this section, we prove the correctness of some properties of Algorithm 9 and 10.

Theorem 6. If p is correct, Algorithms 9 and 10 satisfy the impact completeness property for p in relation
to S.

Proof. Let's consider that at t , Sf Æf aul t y (FS) (i.e., all failures of processes in S took place) and that
all the ALIV E messages (heartbeats) sent by these faulty processes before they crashed were delivered
to p. Thus, after t , p will receive no more ALIV E messages from processes ofSf . Then, 8 q 2 Sf , in
the next expiration of the timer[q] after t , q will be removed from tr usted (line 7). Moreover, since
p will receive no more ALIV E messages from q, line 5 will never be executed for q anymore and,
therefore, q will nevermore be included in t r usted . Therefore, 9t 0È t ,8 t 00̧ t 0,8 q 2 f aul t y (FS) : q Ý
tr usted p (t 00).

Lemma 10. If S is aW-ET or S-ETsystem, p is correct, and q2 cor rect(FS) is linked to p by a }¡ t imel y,
there is a time t after which q is always trusted by p.

Proof. Let's denote Tq the stabilization time of the link q from p, i.e., 8 t ¸ Tq , if q sends a messagem
to p, then q receives m by time t Å ±. Then, when q sends a message top at t ¸ Tq , and p receives the
message att1 È t , two cases may happen:

• the next timer of q expires after t1 (Task T1). In this case, q will be added to tr usted (line 5) and
the timer of q restarted;

• the current timer of q expires before t1: p removes q from tr usted (line 7). Then, the timeout
value of q is incremented (line 9) and the timer is restarted.

Since q keeps on sending ALIV E messages top and t imer [q] increases at every expiration of q's
timer, there exists a time t2 È Tq such that t imer [q] ¸ ± and then Task 2 will nevermore be executed by
p for q and, 8 t3 ¸ t2, upon every q's message reception by p, task T1 will be executed for q. Therefore,
q will remain forever in t r usted .

Theorem 7. If S is a S-ET system and p is correct, then, for Algorithms 9 and 10, there is a time after
which S is either always tr usted or always untr usted for p.
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Proof. Since in S-ET, all links are }¡ t imel y , from Theorem 6 and Lemma 10, Algorithms 9 and 10
ensure both the Impact completenessS

p and the Eventual impact weak accur acy S
p properties. Thus,

9t ,8 t 0¸ t ,8 q 2 cor rect(FS), q 2 tr usted and, 8 q 2 f aul t y (FS), q Ý tr usted . Hence, 8 t 0¸ t , t r usted
never changes as well as the trust level value rendered by the FD. Consequently, if at t , the trust level
output ¸ threshold S¤

p (resp., trust level output < threshold S¤

p ), S is t r usted (resp., untr usted ) for
p at t , and it will remain forever t r usted (resp., untr usted ) for p.

Theorem 8. In W-ET-¦ systems, Algorithms 9 and 10 implement a FD of class } IS.

Proof. If the system is W-ET-¦ , SÆ¦ , all processes of ¦ execute Algorithms 9 and 10 and 9p 2 cor rect(F)
such that 8 q 2 ¦ ,q 6Æp, p is linked to q by a }¡ t imel y link. Thus, 8 q 2 cor rect(F), Lemma 10 holds
for q and Eventual impact weak accur acy q

¦ is satis�ed. From Theorem 6, 8 q 2 cor rect(F), Impact
completenness¦

q is also satis�ed. Therefore, the algorithms implement a FD of class } IS.

Theorem 9. In S-ET-¦ systems, Algorithms 9 and 10 implement a FD of class } IP.

Proof. If the system is S-ET-¦ , SÆ¦ and all processes of ¦ execute Algorithm 9 and 10. Hence, since
the system is a S-ET, from Theorem 6 and Lemma 10, 8 p 2 cor rect(F), both Impact completenessp

¦

and Eventual impact weak accur acy p
¦ are satis�ed respectively. Therefore, the theorem holds.

Theorem 10. If PR(IT )S
p (resp., PR(} IT )S

p ) holds, the system S is always (resp., eventually always)
trusted by p.

Proof. if PR(IT )S
p (resp., PR(} IT )S

p ) holds, 8 t ¸ 0 (resp., 9t1,8 t ¸ t1), t r usted 2 PSand, therefore, S
is trusted by p.

7 Performance Evaluation

In this section, we �rstly describe the environment in which the experiments were conducted and the
QoS metrics used for evaluating the results. Then, we discuss some of the results in different systems
and con�gurations of node sets with regard to both the impact factor and the threshold.

Our goal is to evaluate the QoS of the Impact FD: how fast it detects failures and how well it avoids
false suspicions. With this purpose, we exploit a set of metrics that have been proposed by [12] and we
compare the results of Impact FD with an approach that monitors processes individually using Chen's
FD [12]. We conducted a set of experiments, considering two different systems: 1) AS: a system where
all links are lossy asynchronous; (b) W-ET: a system where some links are }¡ t imel y and the others
are lossy asynchronous.

7.1 Environment

Our experiments are based on real trace �les, collected from ten nodes of PlanetLab [33], as summa-
rized in Table 3. The PlanetLab experiment started on July 16, 2014 at 15:06 UTC, and ended exactly a
week later. Each site sent heartbeat messages to other sites at a rate of one heartbeat every 100 ms (the
sending interval). We should point out that these traces of PlanetLab contain a large amount of data
concerning the sending and reception of heartbeats, including unstable periods of links and message

Inria



The Impact Failure Detector 25

loss which induce false suspicions. Thus, such traces can characterize any distributed system that
uses FDs based on heartbeat. Furthermore, since our experiments were conducted using the Planet-
Lab traces, all of them reproduce exactly the same scenarios of sending and reception of heartbeats
by the processes.

Table 3: Sites of Experiments
ID Site Local

0 planetlab1.jhu.edu USA East Coast
1 ple4.ipv6.lip6.fr France
2 planetlab2.csuohio.edu USA, Ohio
3 75-130-96-12.static.oxfr.ma.charter.com USA, Massachusetts
4 planetlab1.cnis.nyit.edu USA, New York
5 saturn.planetlab.carleton.ca Canada, Ontario
6 PlanetLab-03.cs.princeton.edu USA, New Jersey
7 prata.mimuw.edu.pl Poland
8 planetlab3.upc.es Spain
9 pl1.eng.monash.edu.au Australia

For the evaluation of Impact FD, we de�ned SÆ{1,2,3,4,5,6,7,8,9} and site0 as the monitor node
(p ÝS).

Table 4 gives some information about the heartbeat messages received by site 0 (the monitor
node). We observe that the mean inter-arrival times of received heartbeats is very close to 100 ms.
However, for some sites, the standard deviation is very high, like for site 5 which the standard deviation
was 310.958 ms with a minimum inter-arrival time of 0.006 ms, and a maximum of 657,900.226 ms.
Such deviation probably indicates that, for a certain time interval during execution, the site stopped
sending heartbeats and started again afterwards. Note also that site 2 stopped sending messages after
approximately 48 hours and, therefore, there are just 1,759,990 received messages.

The implementation of the Impact FD used in our evaluation experiments is based on Algorithms 9
and 10, presented in Section 6. For the estimation of the timeout value of Chen's estimation algorithm,
the authors suggest that the safety margin ¯ should range from 0 to 2500 ms. For all experiments, we
set the window size to 100 samples, which means that the FD only relies on the last 100 heartbeat
message samples for computing the estimation of the next heartbeat arrival time.

7.1.1 Evaluation of sites' stability

We evaluated the stability of sites, considering that the traces could correspond to either an ASsystem
or W-ET system. For the �rst case, the value ASwas assigned to the model parameter of Algorithm
9 while for the second case, the same parameter was set to W-ET. Each of the sites of S is considered
individually and not as a whole system. The impact value of sites and the threshold values are not
concerned for the experiments.

The ¯ value of Chen's algorithm was set to 400ms. We chose such a value because it is an acceptable
safety margin for detection time and is not too aggressive; otherwise the failure detector would be
prone to too many mistakes. The stability of sites and the corresponding links to the monitor were
evaluated during the whole trace period for the AS system and during just the �rst 24 hours of the
trace period for the W-ET system.

ASsystem:
Figure 2 shows the cumulative number of mistakes, i.e., false suspicions, made by the monitor site

0 for each site of S. We can observe that site or link periods of instability entail late arrivals or loss
of heartbeats and, therefore, mistakes by the monitor site. For example, site 9 had a large number of
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Table 4: Sites and heartbeat sampling
Site Messages Min (ms) Max (ms) Mean (ms) Stand. Dev.(ms)

1 5,424,326 0.025 26,494.168 100.058 19.525
2 1,759,989 0.031 509.093 100.415 9.275
3 5,426,843 0.027 1,227.349 100.012 1.709
4 5,414,122 0.003 1,193.276 100.247 18.595
5 5,413,542 0.006 657,900.226 100.258 310.958
6 5,426,700 0.003 3,787.643 100.015 2.557
7 5,424,117 0.006 59,603.188 100.062 31.229
8 5,424,560 0.027 11,443.359 100.054 100.714
9 5,422,043 0.004 30,600.076 100.100 18.798

cumulative mistakes at hour 48. After that, there is a stable period with regard to this site. On the
other hand, around this time, site 2 stopped sending messages since it crashed and, consequently, the
monitor node made no more mistakes about it after this time. Finally, we can say that, considering
the whole period, sites 3 and 6 (resp., 8 and 9) are, in average, the most stable (resp., unstable) sites.

Figure 2: ASSystem: Cumulative number of mistakes of each site

W-ET system: In Algorithm 8 (Task T2), when the system is W-ET, Chen's heartbeat arrival estimation
value is incremented by ´ , whenever a false suspicion occurs. However, in order to prevent this es-
timation from increasing too fast when there is a period of high instability, which could increase the
detection time considerably, we considered that the value of the timer (line 9) will be incremented by
´ at every ¹ heartbeat arrivals, provided that during the period of these ¹ heartbeat arrivals, one or
more false suspicions took place. For the experiment, we considered ¹ equals to 10 and ´ Æ1ms .

Note that when the heartbeat arrival estimation reaches a value which is greater than the transmis-
sion delay limit for links with }¡ t imel y behavior, the monitor site does not make anymore mistakes
for the related sites. Moreover, for unstable sites, as the heartbeat arrival estimation value will also
be incremented by ´ in case of false suspicions, such an increment will be responsible for decreasing
the number of mistakes for these sites when compared to an ASsystem. However, in this case, at the
expense of higher false suspicion detection time.
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Figure 3 shows the cumulative number of mistakes that the monitor process made for each site in
the �rst 24 hours of the traces. We can observe that there are links which behave }¡ t imel y while the
others are lossy asynchronous. The failure detector did not make mistakes related to site 4. For sites 2
and 3, it did only 1 and 2 mistakes, respectively, while for site 6, it did 99 mistakes during the �rst hour,
and then no more mistakes. Although some sites have had some periods of stability (1, 5, 8 and 9), site
0 made mistakes related to them until almost the end of these execution. On the other hand, it did no
mistakes for site 7 after hour 9. In summary, we can consider that site 0, the monitor site, is connected
by }¡ t imel y links to sites 2, 3, 4 and 6, and by lossy asynchronouslinks to 1, 5, 7, 8, and 9.

Figure 3: W-ET System: Cumulative number of mistakes of each site

7.1.2 Evaluation of heartbeat arrival times

The goal of this section is to show the behavior of the arrival times when the timer expires and the fail-
ure detector does not receive the heartbeat message. For the �rst 24 hours, we evaluated the behavior
of the three arrival times in si te 0 related to heartbeat messages of si te 1 with two different values to
¯ (100 and 400 ms). We chosesi te 1 because it has many periods of instability. We consider that si te 1
and si te 0 are either connected by lossy asynchronousor }¡ t imel y .

We evaluated three arrival times: 1) arrival of the heartbeat; 2) the estimated arrival time con-
sidering that the link is lossy asynchronous; 3) the estimated arrival time considering that the link is
}¡ t imel y . In order to compute the latter, we set ´ Æ1ms and the number of heartbeats before incre-
menting the heartbeat arrival estimation value, in case of false suspicions, to 100 ( ¹ Æ100). Figures
4 and 5 show the time difference between the arrival time of the previous heartbeat and the above
three arrival ones (in ms): 1) milliseconds difference between the arrival time of the last heartbeat and
the previous one; 2) milliseconds difference between the estimated arrival time ( ¿q Æ¯ Å E Aq ) and
the arrival time of the previous heartbeat, considering the link lossy asynchronous (estimation LA); 3)
milliseconds between the estimated arrival time ( ¿q Æ¯ ÅE Aq Å´ ) and the arrival time of the previous
heartbeat, considering the link }¡ t imel y (estimation ET).

Figures 4 and 5 show the behavior of times when the timeout expires for ¯ Æ100ms and ¯ Æ400ms
respectively till hour 24. Aiming at not overloading the �gures, the points correspond only to the times
where mistakes took place. Figure 5 has fewer points than Figure 4 because the number of mistakes
drops considerably due to a higher ¯ value.
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Figure 4 summarizes the time differences for ¯ Æ100ms. The monitor si te 0 made 807 (resp.,
592) mistakes when the link is lossy asynchronous(resp. }¡ t imel y ). Note that at several points, the
estimated arrival time for the ET estimation is higher than the arrival time of the heartbeat while,
in the LA estimation, the difference between them is very small (1 or 2 ms), specially from time 6 to
21. Thus, both lines in the �gure overlap but the estimation arrival time is often below the arrival
one which explains the high number of mistakes. At times 1, 4, 6, 21, and 23, which correspond to
periods of instability, the arrival time of the heartbeat is much higher than the estimation one for the
LA estimation.

Figure 4: Behavior of times when timeout expires - ¯ Æ100ms, ¹ Æ100

Contrarily to Figure 4, the number of mistakes drops to 168 and 166 mistakes, for ET and LA es-
timations respectively as shown in Figure 5. Therefore, since they are almost equal, the estimated
arrival times for the lossy asynchronousand }¡ t imel y are also quite close. Similarly to Figure 4, the
mistakes are concentrated in periods of great instability (1, 4, 6, 21, and 23).

7.2 QoS Metrics

Firstly, let's remember that the goal of the Impact FD is to inform if a system is “trusted” or “untrusted”.
This information can be deduced by comparing the output t r ust _level of the Impact FD with the
threshold . Thus, we say that the output of the Impact FD of p is correct if either, for each subset of
S¤ (1 · i · m), t r ust _leveli ÈÆthreshold i and S is actually trusted, or 9 i such that t r ust _leveli Ç
threshold i and S is actually untrusted. Otherwise, the FD made a mistake.

For evaluating the Impact FD, we used three of the QoS metrics proposed in [12]: detection time ,
average mistake rate, and query accuracy probability . Considering that p monitors S, the QoS of the
Impact FD at p must take into account the transitions between “trusted” to “ untrusted” states of S.

• Detection Time (TD ): In [12], the TD is de�ned as the time elapsed from the moment process q
crashes until the FD at p starts suspecting q permanently.

In the case of the Impact FD, the detection time ( TD ) of p in relation to S is the time elapsed
till the monitor process reports a suspicion that leads to a status transition in S from trusted to
untrusted . To this end, for each freshness point of a process q in S, it is necessary to check which
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Figure 5: Behavior of times when timeout expires - ¯ Æ400ms, ¹ Æ100

process failures would lead to a state transition of S from trusted to untrusted and then compute
the detection time TD for each of these processes. The latter is the time elapsed between the
current freshness ( ¿i Å1) and the last heartbeat arrival ( Ai ) with respect to the previous freshness
point, i.e., ¿i Å1 ¡ Ai , from each of these processes. If there is more than one process q 2 S which
could lead to the transition, i.e., Sf Æq 2 tr usted i j(t r ust _leveli ¡ Impact (q)) Ç threshold i ,
the TD in relation to S is the greatest of them: TD Æmax (¿i Å1 ¡ Ai ), 8 q 2 Sf .

Figure 6 shows an example where S¤ has just one subset with three processes whose impact
factor is 1. The threshold S de�nes that at least two processes must be correct. Note that at
¿i Å3, process p did not receive the heartbeat message from q1 and, therefore, p removes it from
its trusted set ( t r usted p Æ{{

­
q2,1

®
,
­
q3,1

®
}}). However, S remains trusted for p because the

trust level satis�es the threshold. At freshness point ¿i Å5, FD veri�es if the failure of any of the
processes of t r usted p (q2 and q3) can lead to S transition ( t r ust _level1 Ç threshold 1). For
this purpose, p computes the TD for each of the two processes. The TD in relation to S is the
greatest among TD of q2 and TD of q3. Since p did not receive heartbeat from q3, S becomes
untrusted .

• Average Mistake Rate(¸ R): represents the number of mistakes that the FD makes per unit of
time, i.e., the rate at each the FD makes mistakes.

• Query Accuracy Probability (PA): the probability that the FD output is correct at a random time.

7.3 Asynchronous System (AS)

For this evaluation we consider an AS, i.e., links are lossy asynchronous. Table 5 shows �ve con�gu-
rations with regard to impact factor values that have been considered for S¤ in the experiments. The
sum of the impact factor of the processes is 90 for all con�gurations.
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Figure 6: Transitions between “trusted” and “untrusted” states

Table 5: Set Con�gurations ( S¤ )
Con�g Impact Factor of each site

S¤ 0 {{
­
q1,7

®
,
­
q2,3

®
,
­
q3,20

®
,
­
q4,20

®
,
­
q5,3

®
,
­
q6,20

®
,
­
q7,3

®
,
­
q8,7

®
,
­
q9,7

®
}}

S¤ 1 {{
­
q1,7

®
,
­
q2,20

®
,
­
q3,20

®
,
­
q4,3

®
,
­
q5,3

®
,
­
q6,20

®
,
­
q7,3

®
,
­
q8,7

®
,
­
q9,7

®
}}

S¤ 2 {{
­
q1,20

®
,
­
q2,7

®
,
­
q3,3

®
,
­
q4,3

®
,
­
q5,7

®
,
­
q6,3

®
,
­
q7,7

®
,
­
q8,20

®
,
­
q9,20

®
}}

S¤ 3 {{
­
q1,7

®
,
­
q2,3

®
,
­
q3,20

®
,
­
q4,3

®
,
­
q5,3

®
,
­
q6,20

®
,
­
q7,7

®
,
­
q8,20

®
,
­
q9,7

®
}}

S¤ 4 {{
­
q1,10

®
,
­
q2,10

®
,
­
q3,10

®
,
­
q4,10

®
,
­
q5,10

®
,
­
q6,10

®
,
­
q7,10

®
,
­
q8,10

®
,
­
q9,10

®
}}

7.3.1 Experiment 1 - Query Accuracy Probability

The aim of this experiment is to evaluate the Query Accuracy Probability ( PA) with different threshold
values (64, 70, 74, 80, and 83) and different impact factor con�gurations (Table 5). The safety margin
was set to 400ms (¯ =400ms).

Figure 7 shows that in most cases the PA decreases when the threshold increases. It should be
remembered that the threshold is a limit value de�ned by the user and if the FD trust level output
value is equal to, or greater than, the threshold, the con�dence in the set of processes is ensured.
Hence, the results con�rm that when the threshold is lower, the Query Accuracy Probability is higher.
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On the one hand, except for threshold 83, “S¤ 0” con�guration has the highest PA for most of the
thresholds due to the assignment of high (resp., low) impact factors for the most stable (resp., unstable)
sites. On the other hand, “S¤ 2” and “S¤ 4” have the lowest PA since unstable sites have high impact
factor values assignment. For instance, in “S¤ 2” the high impact factor value of unstable sites 8 and 9
with standard deviation of 100 and 18 ms respectively degrades the PA of this set.

“S¤ 4” shows a sharp decline of the PA curve when the threshold = 83. This behavior can be ex-
plained since, in this set con�guration, all sites have the same impact factor (10) which implies that
every false suspicion renders the trust_level smaller than the threshold (83), increasing the mistake
duration. Therefore, the Query Accuracy Probability decreases.

Notice that site 2 failed after approximately 48 hours. Thus, after its crash, the FD output, which
indicates trust_level smaller than the threshold , is not a mistake, i.e. it is not a false suspicion. Hence,
in “S¤ 1”, where the impact factor of site 2 is 20 (high), the PA is constant for a threshold greater than
70: after the crash of site 2, the FD output is always smaller than the threshold and false suspicions
related to other sites do not alter it. The average mistake duration in the experiment is thus smaller
after the crash, which improves the PA.

Finally, we have compared the PA of the Impact FD and a FD approach that monitors processes
individually by applying Chen's algorithm with WS=100and ¯ =400ms. For the latter, the metric is the

average of the PA value of all sites of S: PA Æ
P n

xÆ1 PAx

n , for n Æ9 and x equals to the index of each site

in S. Thus, the obtained mean PA (PA) is equal to 0,979788. This result shows that, regardless of the
set (S¤ ) con�guration, the Impact FD has a higher PA than Chen's FD since the former has enough
�exibility to tolerate failures, i.e., the mistake duration only starts to be computed when the trust_level
provided by Impact FD is smaller than the threshold , in contrast with individual monitoring, such as
that by Chen FD, where every false suspicion increases the mistake duration.

The results of this experiment highlight the fact that the assignment of heterogeneous impact fac-
tors to nodes can degrade the performance of the failure detector, especially when unstable sites have
a high impact factor.

Figure 7: ASSystem: PA vs. threshold with different set con�gurations ( S¤ )
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7.3.2 Experiment 2 - Query Accuracy Probability X Detection time

In the second experiment, we evaluated the average Query Accuracy Probability ( PA) regarding the
average detection time ( TD ) for different threshold values (64, 70, 80, and 83). In order to obtain dif-
ferent values for the detection time, we varied the safety margin (Chen's estimation) with intervals of
100 ms, starting at 100 ms. For this experiment, we chose the “S¤ 0” con�guration since it presented
the best PA in Experiment 1. We also evaluated the PA and TD for Chen's algorithm, which outputs
the set of suspected nodes. For the latter, the TD is computed as the average of the individual TD of all

sites of S: T D Æ
P n

xÆ1 T D x

n , for n Æ9 and x equals to the index of each site in S.

Figure 8 shows that for a high threshold and detection time close to 200 ms, the PA of the Impact
FD is quite small, independently of the threshold, because the safety margin (used to compute the
expected arrival times) is, in this case, equals to 100 ms, which increases both the number of false
suspicions and mistake duration. However, when TD is greater than 230 ms, the PA of Impact FD is
considerably higher than that of Chen. After a detection time of approximately 400 ms, the PA of Im-
pact FD becomes constant regardless of the detection time and threshold, and gets close to 1. Such
a behavior can be explained since the higher the safety margin, the smaller the number of false sus-
picions, and the shorter the mistake duration which con�rms that when the timeout is short, failures
are detected faster but the probability of having false detections increases [35].

Figure 8: ASSystem: PA vs. TD with different thresholds

7.3.3 Experiment 3 - Average mistake rate

In this experiment, we evaluated the average detection time ( TD ) vs. the mistake rate ( ¸ R) (mistakes
per second). For Chen's algorithm, the ¸ R is computed as the average of the individual ¸ R of all sites

of S: ¸ R Æ
P n

xÆ1 ¸ R

n , for n Æ9 and x equals to the index of each site in S. We considered the “S¤ 0”
con�guration and the mistake rate is expressed in a logarithmic scale.

We can observe in Figure 9 that the mistake rate of the Impact FD is high when the detection
time is low (i.e., smaller than 400 ms) and the threshold is high (i.e., from 23 to 25). Such a result is
in accordance with Experiment 2: whenever the safety margin is small and threshold tolerates fewer
failures, the Impact FD makes mistakes more frequently. In other words, the mistake rate decreases
when the threshold is low or the time detection increases.
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Figure 9: ASSystem: ¸ R vs. TD with different thresholds

7.3.4 Experiment 4 - Cumulative number of mistakes

Figure 10 shows the cumulative number of mistakes for “S¤ 0” during the whole trace period, consid-
ering ¯ =400ms and threshold value equals either to 80 or 83.

We can observe in the �gure that the cumulative number of mistakes is greater when the threshold
value is equal to 83 (2754 mistakes) when compared to the threshold value equals to 80 (179 mis-
takes). The former makes few mistakes until approximately the hour 48 (when the site 2 crashed).
After that, the number of cumulative mistakes signi�cantly increases because, since the threshold is
high (83) and the failure of site 2 was detected, false suspicions of any other site induce a trust_level
value smaller than 83 in most cases. For instance, site 8 is highly unstable and has impact factor value
of 7. Whenever there is a false suspicion about it, after the crash of site 2, the trust_level value is 80.
On the other hand, for the threshold 80, there are fewer instability periods since the crash of site 2
does not have much impact in the con�dence of the system. At hour 48, there is an increase in the
cumulative number of mistakes due to the unstable period of site 9, as shown in Figure 2. From hour
50 to 100, the FD makes fewer mistakes. Such a behavior can be explained since, as observed in the
same �gure, all sites, with exception of site 8, also have this same period of stability. After hour 108,
there is a greater number of mistakes which is related to the instability of sites 1, 7, and 8 (see Figure
2).

7.3.5 Experiment 5 - Query Accuracy Probability vs. Time

In this experiment, we divided the execution trace duration by �xed intervals of time and computed
the average Query Accuracy Probability ( PA) for each of them. We chose the “S¤ 0” con�guration,
¯ =400ms, and the threshold values of 80 and 83. Similarly to the cumulative number of mistakes (Ex-
periment 4), we observe in Figure 11 that instability periods have an impact in the PA. For instance,
for the threshold = 80, from hour 108, the cumulative number of mistakes increases very fast. Con-
sequently, the PA decreases. The period of instability of site 9 is the responsible for the important
reduction of the PA at hour 60 (i.e., from hour 48 to 60) when threshold = 83. A new degradation of the
PA happens at hour 120 (i.e., from hour 108 to 120), due to unstable periods of the sites 1, 7, and 8.
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Figure 10: ASSystem: Cumulative number of mistakes for “S¤ 0” con�guration

Figure 11: ASSystem: PA vs. Time

7.4 Weak }¡ t imel y System (W-ET)

In this section, we consider the W-ET system described in Section 7.1.1: site 0, the monitor site, is
connected by }¡ t imel y links to sites 2, 3, 4 and 6 and by lossy asynchronouslinks to 1, 5, 7, 8, and 9.

We de�ned the set S¤ with three subsets and all sites have the same impact factor (1) :

S¤ Æ{{
­
q1,1

®
,
­
q3,1

®
,
­
q4,1

®
}, {

­
q2,1

®
,
­
q5,1

®
,
­
q6,1

®
}, {

­
q7,1

®
,
­
q8,1

®
,
­
q9,1

®
}}

The threshold S was de�ned as follows:

threshold S Æ{2,2,2}

The threshold S de�nes that the subsets S1, S2 and S3 must have at least two correct processes.
As this experiment assigns W-ET to model parameter, it uses the ´ value and the heartbeat arrival
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Table 6: W-ET vs AS- ¯ Æ50ms,´ Æ500m¹

¹ Mistakes
Mistake

rate PA

Avg Mistake
Duration (ms)

Time last
mistake (min)

HB
Number TD (ms)

1 152 0.0017 0.99992 43.36 64 (1h) 349341 312.9
10 324 0.0037 0.99983 43.69 64 (1h) 349341 263.0
100 383 0.0044 0.99979 45.18 64 (1h) 349341 256.6

AS 4689 0.0542 0.99849 27.70 1438 (24h) 7749909 300.0

estimation value is incremented by ´ at every ¹ heartbeat arrivals, if false suspicions occurred during
this period.

The experiments were carried out just for the �rst 24 hours of the traces, because after this time
the failure detector does not make more mistakes for the set S¤ .

7.4.1 Experiment 6 - Eventually Timely Links vs Asynchronous Links

In this experiment, we compare the results obtained taking into account the above S¤ con�guration
and both systems W-ET and AS. The evaluation metrics are shown in Table 6. We set the value of safety
margin ¯ to 50ms and ´ to 50m¹ . This safety margin value is quite aggressive, which, consequently,
leads the failure detector prone to make mistakes. For the W-ET system, we also varied ¹ : 1, 10, and
100.

The �rst three rows of the table show the results for the W-ET system and the last row for the AS
system. We can observe that the number of mistakes increases for different values of ¹ in the W-ET,
but it is much smaller when compared to the AS(4689 mistakes). As a consequence, in the AS, the
mi stake r ate is higher and PA is lower. In contrast, the average mistake duration in the AS(27.70
ms) is smaller than in the W-ET (around 43 ms). Such a difference occurs because the ASsystem has
a lower timeout which induces false suspicions more often. Nevertheless, a heartbeat message may
arrive immediately after the expiration of the timeout, generating a short mistake time. On the other
hand, in the W-ET, the timeout value increases when there are false suspicions in periods of greater
instability where messages take longer to arrive. For the W-ET system, we can observe that the time
of the last mistake was at 64 minutes (heartbeat number 349,341) whereas in the ASthere are mistake
occurrence until the last hour (24h, heartbeat number 7749909). This happens because in the W-
ET the heartbeat arrival estimation value is incremented by ´ when p falsely suspecting the process
within a period of ¹ heartbeats, which allows p to eventually get every heartbeat message from a site
before the timeout expires. It is worth remarking that the number of mistakes reduces drastically, but
the TD does not increase in the same rate.

Table 7 summarizes the results of the experiments considering ¯ Æ100ms and ´ Æ500m¹ . When
comparing the two tables, we observe that with a less aggressive safety margin ¯ , the number of mis-
takes reduces, especially in the AS system (231). Accordingly, the mi stake r ate decreases and PA

increases in both systems. The last mistake is around 64 minutes in the W-ET while ASmade mistakes
until hour 24. The TD of the ASreduces because it has a higher safety margin and makes fewer mis-
takes. For instance, with ¯ Æ50ms, two processes, whose maximum TD is 300ms, that has the timeout
expired, leads the set S¤ to a state untrusted . However, with ¯ Æ100 only one of them is suspected
which does not lead a transition of state from trusted to untrusted .

We also conducted the same experiment with ¯ Æ100ms and ´ Æ1ms for the W-ET system (Ta-
ble 8). We can note that the number of mistakes is reduced. On the other hand, with few mistakes,
especially with ¹ Æ1, both the average mistake duration and TD increase. Based on these results, we
can conclude that setting ¹ with a value greater than 1 is more suitable for this scenario, achieving,
therefore, a better trade-off between detection time and accuracy of the Impact FD.
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Table 7: W-ET vs AS- ¯ Æ100ms,´ Æ500m¹

¹ Mistakes
Mistake

rate PA

Avg Mistake
Duration (ms)

Time last
mistake (min)

HB
Number TD (ms)

1 84 0.00097 0.99995 48.35 64 (1h) 349341 339.4
10 121 0.00140 0.99993 48.28 64 (1h) 349341 264.0
100 135 0.00156 0.99993 44.53 64 (1h) 349341 262.5

AS 231 0.00267 0.99989 37,56 1431 (24h) 7708057 240.0

Table 8: W-ET vs AS- ¯ Æ100ms,´ Æ1ms

¹ Mistakes
Mistake

rate PA

Avg Mistake
Duration (ms)

Time last
mistake (min)

HB
Number TD (ms)

1 6 0.000069 0.999990 140.00 64 (1h) 349339 910.0
10 45 0.000520 0.999972 53.07 64 (1h) 349341 460.0
100 98 0.001133 0.999945 47.99 64 (1h) 349341 291.0

AS 231 0.002672 0.999899 37.56 1431 (24h) 7708057 240.0

8 Related Work

We can divide related studies of the literature into three groups: (1) unreliable failure detectors, (2)
heartbeat arrival estimation strategies, and (3) reducibility of failure detectors.

Unreliable failure detectors: Most of the unreliable failure detectors in the literature are based on
a binary model and provide as output a set of process identi�ers, which usually informs the set of
processes currently suspected of having failed ([11] [6]). However, in some detectors, such as class §
(resp., ­ ) (see Section 3.1) [17], the output is the set of processes (resp., one process) which are (resp.,
is) not suspected of being faulty, i.e., t r usted .

The Á Accrual failure detector [23] proposes an approach where the output is a suspicion level
on a continuous scale, rather than providing information of a binary nature (trusted or suspected).
The suspicion level captures the degree of con�dence with which a given process is believed to have
crashed. If the process actually crashes, the value is guaranteed to accrue over time and tends toward
in�nity. The aim of Accrual failure detectors is to decouple monitoring from interpretation.

Starting from the premise that applications should have information about failures to take speci�c
and suitable recovery actions, the work in [30] proposes a service to report faults to applications. The
latter also encapsulates uncertainty which allows applications to proceed safely in the presence of
doubt. The service provides status reports related to fault detection with an abstraction that describes
the degree of uncertainty.

Considering that each node has a probability of being byzantine, a voting node redundancy ap-
proach is presented in [9] in order to improve reliability of distributed systems. Based on such proba-
bility values, the authors estimate the minimum number of machines that the system should have in
order to provide a degree of reliability which is equal to or greater than a threshold value.

In [36], the authors propose the use of a reputation mechanism to implement a failure detector for
large and dynamic networks. The reputation mechanism allows node cooperation through the shar-
ing of views about other nodes. The proposed approach exploits information about the behavior of
nodes to increase its quality in terms of detection. When classifying the behavior of the nodes, the FD
includes a reputation service where the nodes periodically exchange heartbeat messages.

Heartbeat arrival estimation strategies: In the timer-based FD algorithms presented in section 6, we
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used the heartbeat arrival estimation proposed by Chen et. al. [12]. With the same aim of Chen's al-
gorithm, i.e., minimize false suspicions and failure detection time, several other estimation approach
have been proposed in the literature. They dynamically predict new heartbeat arrivals based on ob-
served communication delays of the past heartbeat history.

In [6], Bertier et. al introduced a failure detector that was mainly intended for LAN environments.
Their heartbeat arrival estimation approach combines of Chen's estimation with a dynamic estima-
tion based on Jacobson's estimation [25]. The latter is used in the protocol TCP to estimate the delay
after which a node retransmits its last message. Basically, the estimation of the next heartbeat arrival
is calculated by adding Chen's estimation to a safety margin given by Jacobson's algorithm. Their ap-
proach provides a shorter detection time, but generates more false suspicions than Chen's estimation,
according to the authors' measurements on a LAN.

The Á Accrual failure detector is based [23] on inter-arrival estimation time, assuming that the
latter follow a normal distribution. The Accrual FD dynamically adapts current network conditions
based on the suspicion level. Similarly to the above FD [6] and [12], the estimation protocol sam-
ples the arrival time of heartbeats and maintains a sliding window of the most recent samples. The
distribution of past samples is then used as an approximation for the probabilistic distribution of fu-
ture heartbeat messages. With this information, it is possible to compute a value ' with a scale that
changes dynamically to match recent network conditions

In [35], the authors extended the Accrual FD by exploiting histogram density estimation. Taking
into account a sampled inter-arrival time and the time of the last received heartbeat, the algorithm
estimates the probability that no further heartbeat messages arrive from a given process, i.e., it has
failed.

In [14] is presented the failure detector ANNFD, based on Arti�cial Neural Networks. The detector
uses as input parameters variables collected by the Simple Network Management Protocol (SMNP)
that characterize the network traf�c at each time instant. After training the neural network, it must
compute the message arrival time estimation E AkÅ1, which is utilized to de�ne the freshness point.

The mechanism proposed in [15] follows an approach based on the feedback control theory which
is able to dynamically con�gure the monitoring period and detection timeout following the observe
changes in the computing environment and according to user-de�ned QoS constraints.

Reducibility of failure detectors: As we have discussed in Section 3.2, failure detectors can be com-
pared with each other through the notions of reducibility and equivalence. In [10], Chandra and Toueg
de�ned several failure detector classes which are suf�cient to solve Consensus and showed that some
pairs are equivalent while others are distinct. The authors proved that the weakest failure detector
needed to solve Consensus is } W . Furthermore, they introduced the ­ class as an intermediate step
in their proof, and showed that } W and ­ are equivalent. Thus, any failure detector of one of these
classes can be transformed into a failure detector of the other class.

In [13], Chu presents two transformations from } W to ­ . The �rst one requires each message to
carry an array of counters, some of them growing inde�nitely. In the second one, each message keeps
a sequence number plus a set of processes identities. Since the sequence number stops increasing,
this transformation is quiescent, i.e., the processes eventually stop sending message in any run.

The authors in [32] present a communication ef�cient transformation from } W to ­ for asyn-
chronous message-passing systems equipped with a reliable broadcast communication primitive.
The transformation is also quiescent and, contrarily to [13], requires each message to carry only one
process identity.

The most important results presented in those works is the fact that the classes ­ and } W are
equivalent, provided that the membership of the system is known [26].
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9 Conclusion and Future Work

This technical report introduced the Impact failure detector that provides an output that expresses the
trust of the FD with regard to the system (or set of processes) as a whole. It is con�gured by the impact
factor and the threshold which enable the user to de�ne the importance (e.g., degree of reliability)
of each node and an acceptable margin of failures respectively. It is thus suitable for environments
where there is node redundancy or nodes with different capabilities. Both the impact factor and the
threshold render the estimation of the con�dence in the system (or a set of processes S) more �exible.
In some scenarios, the failure of low impact or redundant nodes does not jeopardize the con�dence
in S, while the crash of a high impact factor one may seriously affect it. Either a softer or a stricter
monitoring is, therefore, possible.

We have de�ned two properties, PR(IT )S
p and PR(} IT )S

p , which denote the capacity of the Impact
FD of accepting different set of trusted processes that lead to the con�dence in S. Then, we presented
a timer-based implementation of the Impact FD, which can be applied to systems whose links are lossy
asynchronous or those whose all (or some) are }¡ t imel y . Performance evaluation results, based on
real PlanetLab traces, showed that the assignment of a high (resp. low) impact factor to more stable
(resp. unstable) nodes increases the Query Accuracy Probability of the failure detector. Furthermore,
we observed that the Impact FD might weaken the rate of false suspicions when compared with the
traditional Chen's unreliable failure detector. Additionally, in the experiments carried out considering
a W-ET system, it was observed that the number of mistakes reduce drastically when compared with
the AS system, however the detection time does not increase in the same rate. Therefore, such results
con�rm the degree of �exible applicability of the Impact FD, that both failures and false suspicions
are more tolerated than in traditional FDs, and that the former presents better Qos than the latter if
the application is interested in the degree of con�dence in the system (trust level) as a whole.

The technical report also shows that the Impact FD of class I ­ (resp., I §) is equivalent to ­ (resp.,
§) FD. Both are two important weakest FD classes to circumvent the impossibility of consensus in
asynchronous distributed systems in presence of failures. In addition, it shows that, if there exist a
majority of correct processes, § is reducible to } IPU and } IW U FD is equivalent to Omega FD ( ­ ),
provided that membership is known.

In the near future, we intend to generalize the trust level calculation as well as its comparison with
the threshold. To this end, the Tr ust _level(t r usted ,S¤ ) function can perform an operation over the
impact factor of the trusted processes other than the sum (e.g., multiplication, average, etc.) and the
threshold will not necessary be a lower bound (e.g., upper bound, equality, etc.). For instance, suppose
that the impact factor of a node corresponds to the probability that it behaves maliciously. The trust
level, in this case, would express the probability that all nodes of the system behave maliciously. Thus,
the tr ust _level sum operation would be replaced by multiplication operation and should be smaller
than a reliability threshold value.

Another research direction is to render the impact factor dynamic, i.e., the impact factor of a node
can vary during execution, depending on the current degree of reliability of the node or its current
reputation, its past history of stable/unstable periods, etc. Finally, we also aim at extending perfor-
mance experiments to other networks such as MANET or LAN, comparing the performance of Impact
FD with other well-known failure detectors.
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