Chiaroscuro: Transparency and Privacy for Massive Personal Time-Series Clustering

Tristan Allard 1 Georges Hébrail 2 Florent Masseglia 3 Esther Pacitti 3
3 ZENITH - Scientific Data Management
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : The advent of on-body/at-home sensors connected to personal devices leads to the generation of fine grain highly sensitive personal data at an unprecendent rate. However, despite the promises of large scale analytics there are obvious privacy concerns that prevent individuals to share their personnal data. In this paper, we propose Chiaroscuro, a complete solution for clustering personal data with strong privacy guarantees. The execution sequence produced by Chiaroscuro is massively distributed on personal devices, coping with arbitrary connections and disconnections. Chiaroscuro builds on our novel data structure, called Diptych, which allows the participating devices to collaborate privately by combining encryption with differential privacy. Our solution yields a high clustering quality while minimizing the impact of the differentially private perturbation. Chiaroscuro is both correct and secure. Finally, we provide an experimental validation of our approach on both real and synthetic sets of time-series.
Type de document :
Communication dans un congrès
ACM SIGMOD. SIGMOD: Conference on Management of Data, May 2015, Melbourne, Australia. SIGMOD '15- Proceedings of the 2015 ACM SIGMOD 34th International Conference on Management of Data, 2015, 〈http://www.sigmod2015.org/〉. 〈10.1145/2723372.2749453〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01136686
Contributeur : Tristan Allard <>
Soumis le : mardi 28 avril 2015 - 16:14:29
Dernière modification le : lundi 9 octobre 2017 - 15:32:24
Document(s) archivé(s) le : lundi 14 septembre 2015 - 14:31:41

Fichier

chiaroscuro-sigmod-main-hal.pd...
Accord explicite pour ce dépôt

Identifiants

Citation

Tristan Allard, Georges Hébrail, Florent Masseglia, Esther Pacitti. Chiaroscuro: Transparency and Privacy for Massive Personal Time-Series Clustering. ACM SIGMOD. SIGMOD: Conference on Management of Data, May 2015, Melbourne, Australia. SIGMOD '15- Proceedings of the 2015 ACM SIGMOD 34th International Conference on Management of Data, 2015, 〈http://www.sigmod2015.org/〉. 〈10.1145/2723372.2749453〉. 〈hal-01136686〉

Partager

Métriques

Consultations de
la notice

956

Téléchargements du document

701