D. Angeli, Some remarks on density functions for dual Lyapunov methods, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), pp.5080-5082, 2003.
DOI : 10.1109/CDC.2003.1272440

D. Angeli, An Almost Global Notion of Input-to-State Stability, IEEE Transactions on Automatic Control, vol.49, issue.6, pp.866-874, 2004.
DOI : 10.1109/TAC.2004.829594

D. Angeli and L. Praly, Stability Robustness in the Presence of Exponentially Unstable Isolated Equilibria, IEEE Transactions on Automatic Control, vol.56, issue.7, pp.1582-1592, 2012.
DOI : 10.1109/TAC.2010.2091170

URL : https://hal.archives-ouvertes.fr/hal-00554432

M. Arcak and A. Teel, Input-to-state stability for a class of Lurie systems, Automatica, vol.38, issue.11, pp.1945-1949, 2002.
DOI : 10.1016/S0005-1098(02)00100-0

N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems, p.59, 1970.
DOI : 10.1007/978-3-642-62006-5

M. Chaves, T. Eissing, and F. Allgower, Bistable Biological Systems: A Characterization Through Local Compact Input-to-State Stability, IEEE Transactions on Automatic Control, vol.53, issue.Special Issue, pp.87-100, 2008.
DOI : 10.1109/TAC.2007.911328

D. Efimov, Global Lyapunov Analysis of Multistable Nonlinear Systems, SIAM Journal on Control and Optimization, vol.50, issue.5, pp.3132-3154, 2012.
DOI : 10.1137/090767509

URL : https://hal.archives-ouvertes.fr/hal-00745623

D. Efimov and A. L. Fradkov, Oscillatority of Nonlinear Systems with Static Feedback, SIAM Journal on Control and Optimization, vol.48, issue.2, pp.618-640, 2009.
DOI : 10.1137/070706963

J. Guckenheimer and P. Holmes, Structurally stable heteroclinic cycles, Mathematical Proceedings of the Cambridge Philosophical Society, vol.103, issue.01, pp.189-192, 1988.
DOI : 10.1126/science.208.4440.173

Y. Lin, E. D. Sontag, and Y. Wang, A Smooth Converse Lyapunov Theorem for Robust Stability, SIAM Journal on Control and Optimization, vol.34, issue.1, pp.124-160, 1996.
DOI : 10.1137/S0363012993259981

L. Markus, Global structure of ordinary differential equations in the plane, Transactions of the American Mathematical Society, vol.76, issue.1, pp.127-148, 1954.
DOI : 10.1090/S0002-9947-1954-0060657-0

Z. Nitecki and M. Shub, Filtrations, Decompositions, and Explosions, American Journal of Mathematics, vol.97, issue.4, pp.1029-1047, 1975.
DOI : 10.2307/2373686

A. Rantzer, A dual to Lyapunov's stability theorem, Systems & Control Letters, vol.42, issue.3, pp.161-168, 2001.
DOI : 10.1016/S0167-6911(00)00087-6

A. Rantzer, An converse theorem for density functions, Proceedings of the 41st IEEE Conference on Decision and Control, 2002., pp.1890-1891, 2002.
DOI : 10.1109/CDC.2002.1184801

E. D. Sontag and Y. Wang, On characterizations of the input-to-state stability property, Systems & Control Letters, vol.24, issue.5, pp.351-359, 1995.
DOI : 10.1016/0167-6911(94)00050-6

E. D. Sontag and Y. Wang, New characterizations of input-to-state stability, IEEE Transactions on Automatic Control, vol.41, issue.9, pp.1283-1294, 1996.
DOI : 10.1109/9.536498

E. D. Sontag, Input to State Stability: Basic Concepts and Results, Nonlinear and Optimal Control Theory, pp.163-220, 2007.
DOI : 10.1007/978-3-540-77653-6_3

J. F. Vasconcelos, A. Rantzer, C. Silvestre, and P. J. Oliveira, Combination of Lyapunov and Density Functions for Stability of Rotational Motion, IEEE Transactions on Automatic Control, vol.56, issue.11, pp.2599-2607, 2011.
DOI : 10.1109/TAC.2011.2123290

F. W. Wilson, Smoothing derivatives of functions and applications, Transactions of the American Mathematical Society, vol.139, pp.413-428, 1969.
DOI : 10.1090/S0002-9947-1969-0251747-9