Improved error bounds for floating-point products and Horner’s scheme

Abstract : Let $u$ denote the relative rounding error of some floating-point format. Recently it has been shown that for a number of standard Wilkinson-type bounds the typical factors $\gamma_k:=k u / (1-k u)$ can be improved into $k u$, and that the bounds are valid without restriction on $k$. Problems include summation, dot products and thus matrix multiplication, residual bounds for $LU$- and Cholesky-decomposition, and triangular system solving by substitution. In this note we show a similar result for the product $\prod_{i=0}^k x_i$ of real and/or floating-point numbers $x_i$, for computation in any order, and for any base $\beta \ge 2$. The derived error bounds are valid under a mandatory restriction of $k$. Moreover, we prove a similar bound for Horner's polynomial evaluation scheme.
Type de document :
Article dans une revue
BIT Numerical Mathematics, Springer Verlag, 2016, 56 (1), pp.293 - 307. 〈10.1007/s10543-015-0555-z〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01137652
Contributeur : Claude-Pierre Jeannerod <>
Soumis le : mardi 31 mars 2015 - 10:26:44
Dernière modification le : vendredi 20 avril 2018 - 15:44:26
Document(s) archivé(s) le : mercredi 1 juillet 2015 - 11:42:59

Fichier

products.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Siegfried M. Rump, Florian Bünger, Claude-Pierre Jeannerod. Improved error bounds for floating-point products and Horner’s scheme. BIT Numerical Mathematics, Springer Verlag, 2016, 56 (1), pp.293 - 307. 〈10.1007/s10543-015-0555-z〉. 〈hal-01137652〉

Partager

Métriques

Consultations de la notice

536

Téléchargements de fichiers

174