S. Baker, D. Scharstein, S. Lewis, M. J. Roth, R. Black et al., A Database and Evaluation Methodology for Optical Flow, International Journal of Computer Vision, vol.27, issue.3, pp.1-31, 2011.
DOI : 10.1007/s11263-010-0390-2

C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkelstein, The Generalized PatchMatch Correspondence Algorithm, ECCV, pp.29-43, 2010.
DOI : 10.1007/978-3-642-15558-1_3

M. J. Black and P. Anandan, The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields, Computer Vision and Image Understanding, vol.63, issue.1, pp.75-104, 1996.
DOI : 10.1006/cviu.1996.0006

Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimization via graph cuts, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, issue.11, pp.1222-1239, 2001.
DOI : 10.1109/34.969114

T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, High Accuracy Optical Flow Estimation Based on a Theory for Warping, ECCV, pp.25-36, 2004.
DOI : 10.1007/978-3-540-24673-2_3

T. Brox and J. Malik, Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.3, pp.500-513, 2011.
DOI : 10.1109/TPAMI.2010.143

A. Bruhn and W. Weickert, A confidence measure for variational optic flow methods Geometric Properties for Incomplete Data, pp.283-298, 2006.

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, A Naturalistic Open Source Movie for Optical Flow Evaluation, ECCV, pp.611-625, 2012.
DOI : 10.1007/978-3-642-33783-3_44

A. Chambolle and T. Pock, A First-Order Primal-Dual Algorithm for Convex Problems with??Applications to Imaging, Journal of Mathematical Imaging and Vision, vol.60, issue.5, pp.120-145, 2011.
DOI : 10.1007/s10851-010-0251-1

URL : https://hal.archives-ouvertes.fr/hal-00490826

Z. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu, Large Displacement Optical Flow from Nearest Neighbor Fields, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.2443-2450, 2013.
DOI : 10.1109/CVPR.2013.316

D. Fortun, P. Bouthemy, and C. Kervrann, Aggregation of local parametric candidates with exemplar-based occlusion handling for optical flow, Computer Vision and Image Understanding, vol.145
DOI : 10.1016/j.cviu.2015.11.020

URL : https://hal.archives-ouvertes.fr/hal-01001758

D. Fortun, P. Bouthemy, and C. Kervrann, Optical flow modeling and computation: A survey, Computer Vision and Image Understanding, vol.134, 2015.
DOI : 10.1016/j.cviu.2015.02.008

URL : https://hal.archives-ouvertes.fr/hal-01104081

B. K. Horn and B. G. Schunck, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, pp.185-203, 1981.
DOI : 10.1016/0004-3702(81)90024-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Kondermann, M. Rudolf, and C. Garbe, A Statistical Confidence Measure for Optical Flows, ECCV, pp.290-301, 2008.
DOI : 10.1007/978-3-540-88690-7_22

J. Kybic and C. Nieuwenhuis, Bootstrap optical flow confidence and uncertainty measure, Computer Vision and Image Understanding, vol.115, issue.10, pp.1449-1462, 2011.
DOI : 10.1016/j.cviu.2011.06.008

URL : https://dspace.cvut.cz/bitstream/10467/60943/1/2011_Bootstrap-Optical-Flow-Confidence-n-Uncertainty-Measure_PREPRINT.pdf

M. Leordeanu, A. Zanfir, and C. Sminchisescu, Locally Affine Sparse-to-Dense Matching for Motion and Occlusion Estimation, 2013 IEEE International Conference on Computer Vision, pp.1221-1728, 2013.
DOI : 10.1109/ICCV.2013.216

B. D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, Int. Joint Conf. Art. Intel, pp.674-679, 1981.

E. Mémin and P. Pérez, Dense estimation and object-based segmentation of the optical flow with robust techniques, IEEE Transactions on Image Processing, vol.7, issue.5, pp.703-719, 1998.
DOI : 10.1109/83.668027

C. Mota, L. Stuke, and E. Barth, Analytic solutions for multiple motions, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), pp.917-920, 2001.
DOI : 10.1109/ICIP.2001.958644

M. Mozerov, Constrained Optical Flow Estimation as a Matching Problem, IEEE Transactions on Image Processing, vol.22, issue.5, pp.2044-2055, 2013.
DOI : 10.1109/TIP.2013.2244221

J. M. Odobez and P. Bouthemy, Robust Multiresolution Estimation of Parametric Motion Models, Journal of Visual Communication and Image Representation, vol.6, issue.4, pp.348-365, 1995.
DOI : 10.1006/jvci.1995.1029

K. Rose, Deterministic annealing for clustering, compression, classification, regression, and related optimization problems, Proceedings of the IEEE, pp.2210-2239, 1998.
DOI : 10.1109/5.726788

D. Sun, E. B. Sudderth, and M. J. Black, Layered image motion with explicit occlusions , temporal consistency, and depth ordering, NIPS, pp.2226-2234, 2010.

A. Wedel, D. Cremers, T. Pock, and H. Bischof, Structure- and motion-adaptive regularization for high accuracy optic flow, 2009 IEEE 12th International Conference on Computer Vision, pp.1663-1668, 2009.
DOI : 10.1109/ICCV.2009.5459375

P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, DeepFlow: Large Displacement Optical Flow with Deep Matching, 2013 IEEE International Conference on Computer Vision, pp.1385-1392, 2013.
DOI : 10.1109/ICCV.2013.175

URL : https://hal.archives-ouvertes.fr/hal-00873592

M. Werlberger, T. Pock, and H. Bischof, Motion estimation with non-local total variation regularization, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.2464-2471, 2010.
DOI : 10.1109/CVPR.2010.5539945

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Zimmer, A. Bruhn, and J. Weickert, Optic Flow in Harmony, International Journal of Computer Vision, vol.28, issue.4, pp.1-21, 2011.
DOI : 10.1007/s11263-011-0422-6