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Abstract—A critical feature of IaaS cloud computing is the
ability to quickly disseminate the content of a shared dataset
at large scale. In this context, a common pattern is collective

on-demand read, i.e., accessing the same VM image or dataset
from a large number of VM instances concurrently. There are

various techniques that avoid I/O contention to the storage service
where the dataset is located without relying on pre-broadcast.
Most such techniques employ peer-to-peer collaborative behavior
where the VM instances exchange information about the content
that was accessed during runtime, such that it is possible to
fetch the missing data pieces directly from each other rather
than the storage system. However, such techniques are often
limited within a group that performs a collective read. In
light of high data redundancy on large IaaS data centers and
multiple users that simultaneously run VM instance groups
that perform collective reads, an important opportunity arises:
enabling unrelated VM instances belonging to different groups to
collaborate and exchange common data in order to further reduce
the I/O pressure on the storage system. This paper deals with the
challenges posed by such a solution, which prompt the need for
novel techniques to efficiently detect and leverage common data
pieces across groups. To this end, we introduce a low-overhead
fingerprint based approach that we evaluate and demonstrate to
be efficient in practice for a representative scenario on dozens of
nodes and a variety of group configurations.

Index Terms—content similarity; deduplication; cloud storage;
on-demand data access; collective I/O

I. INTRODUCTION

One of the main features that has contributed to the growing

popularity of Infrastructure-as-a-Service (IaaS) cloud com-

puting is the elastic on-demand provisioning of resources:

users can bring up a whole virtual cluster and reconfigure

it dynamically with a simple click of a button. However, as

the user interface grows simpler and the types of workloads

diversify,achieving efficient on-demand VM provisioning is a

non-trivial task.

A particularly difficult challenge in this context is the

collective on-demand read pattern, i.e., provisioning a large

number of inter-dependent VMs (e.g. part of the same virtual

cluster running a large scale distributed application) that

concurrently read (typically) a part of the content from the

same VM (virtual machine) disk image (e.g., boot and launch

applications) or from a large dataset (e.g., shared input data).

This pattern is often encountered in the context of large-

scale HPC (high performance computing) and data-intensive

applications. Obviously, there is a need to minimize the

provisioning time and guarantee scalability despite a growing

number of VMs, otherwise users do not perceive IaaS as truly

on-demand and lose interest, while at the same time cloud

providers lose potential profit by not efficiently leveraging

their computational resources.

Despite widespread need for scalable, high-performance

solutions that handle the collective on-demand read pattern,

IaaS cloud providers offer limited support in this regard.

Most often, in an attempt to avoid any bottlenecks due to

I/O contention to the storage service where the VM images

and datasets are stored, it is very common to broadcast the

full content to the local storage of the VM instances before

allowing any read. However, most of the time, this approach

is sub-optimal because of two reasons: (1) not all content

is actually read; and (2) reads need to wait for the whole

broadcast to finish. Thus, approaches that deliver content on-

the-fly as needed in order to eliminate these two disadvantages

saw increasing adoption, despite the added complexity of

having to deal with the I/O contention to the storage service.

One major direction that addresses the problem of I/O

contention for on-the-fly data delivery during collective reads

is the use of peer-to-peer collaborative techniques. In this

class of solutions, the VM instances are aware of each other’s

previously accessed data that is locally available and prefer

to exchange the needed data among themselves rather than

interact with the decoupled storage service, which risks the

creation of bottlenecks due to I/O contention. Although related

to pre-broadcast techniques (which are typically implemented

as BitTorrent-like protocols), the focus in this context falls on

how to detect and anticipate what content is actually needed

during the runtime of a VM instance, in order to be able to

prefetch it from the other VM instances as early as possible.

However, despite the success of such techniques to improve

the performance and scalability of collective reads, most of the

time they require foreknowledge about what VM instances are

related and what dataset or VM image they share and read in

a concurrent fashion. This is a significant limitation for large

IaaS cloud datacenters where a large number of users share

the infrastructure simultaneously, because there are multiple

opportunities for VM instances to collaborate and exchange

identical pieces of data even if they belong to different users



for which the relationship between the VM instances, their

access pattern and the data they are reading is unknown. This

aspect is particularly important in light of several studies that

confirm a large amount of redundancy among VM images,

with the data duplication degree reported up to 94% [1], [2],

[3].

In this paper, we focus precisely on this aspect. Our proposal

envisions to organize the VM instances in a large universal

group where they constantly exchange advertisements about

the pieces of data (chunks) they read on-the-fly. Thus, the op-

portunity to exchange chunks in order to avoid I/O bandwidth

contention goes beyond groups that form around individual

collective reads, effectively enabling such groups that exist

simultaneously to help each other out and further improve

the overall scalability and performance. The key novelty in

this context is how to efficiently detect and leverage such

inter-group content similarity, considering the extra difficulty

related to the lack of foreknowledge when operating such a

large universal group.

We summarize our contributions as follows:

• We introduce a series of general principles that form a

collective content exchange strategy optimized to handle

the case when multiple VM instance groups simultane-

ously perform collective reads on potentially different

datasets (Section III-A).

• We design a series of algorithms that materialize the

aforementioned principles. We introduce low-overhead

asynchronous techniques to identify and leverage on-the-

fly content similarity between groups of VM instances

that perform collective reads based on pre-calculated

fingerprints (Sections III-B).

• We propose a hypervisor-transparent implementation as

an independent FUSE module that implements our ap-

proach in userspace. Furthermore, we show how this

FUSE module can be integrated in a typical IaaS archi-

tecture (Sections III-D and III-C).

• We experimentally evaluate the benefits of our approach

on the Shamrock testbed by performing experiments on

dozens of nodes for a representative scenario and a variety

of group configurations (Section IV).

II. RELATED WORK

Content similarity detection is typically performed by means

of deduplication, which is broadly classified into static and

content-defined. Static approaches split the input data into

equally sized chunks, which are then compared among each

other (either byte-by-byte or, for increased performance, based

on their hash values) in order to identify and eliminate

duplicates. While simple and fast, static approaches suffer

from misalignment issues (i.e insertions or deletions lead to

the impossibility to detect duplicates). To deal with such

misalignment issues, content defined approaches [4] were

proposed. Essentially, they involve a sliding window over the

data and that hashes the window content at each step using

Rabin’s fingerprinting method [5]. Many storage systems have

adopted and refined deduplication techniques [6], [7], [8], [9].

Specifically in the context of IaaS clouds, deduplication

techniques have proven effective at reducing the amount of

space and network bandwidth necessary to store and trans-

fer VM images. Several studies report significant reductions

that can reach up to 94% [1], [2], [3]. This potential has

been exploited in dedicated VM image repositories such as

VMAR [10] and Squirrel [11] in order to store VM images

(either fully or partially) in a deduplicated fashion. Utilizing

content similarity in workloads from production storage sys-

tems is discussed in [12]. Several optimizations specifically

targeting the performance of reading deduplicated data during

on-demand accesses have also been recently proposed [13].

Furthermore, outside of storage, deduplication has demon-

strated important benefits in the area of live migration [14],

[15].

Techniques to fetch data from storage services to VM

instances are broadly classified into pre-broadcast and on-

demand. Pre-broadcast techniques use various scalable mech-

anisms (e.g., multi-cast [16], application level broadcast-

trees [17] to peer-to-peer protocols [18], [19], [20]) to deliver

a shared dataset from the storage service to multiple VM

instances in advance, such that it can be used later without

worrying about bottlenecks due to I/O bandwidth contention.

However, on the downside, the broadcast can take a long time

to finish and potentially delivers more content than is actually

needed during runtime. On-demand techniques on the other

hand eliminate both disadvantages at the cost of dealing with

the I/O bandwidth contention during runtime. This approach is

widely used in IaaS datacenters for virtual disk images using

copy-on-write: a locally stored QCOW2 image is instantiated

from a shared backing image that is located remotely on the

image store (e.g. NFS server). In an attempt to alleviate the

I/O contention, various solutions ranging from decentralizing

the storage (e.g. by using parallel file system [21], [22]) to

using dedicated repositories [23]) and specialized prefetching

techniques [24] have been proposed.

In a broader sense, collaborative caching has been explored

in the MPI-IO context [25]. Our own previous work [26]

explores how to improve collective reads to a shared virtual

disk image by means of pushing accessed chunks among the

members of the group, in an attempt to anticipate and avoid

direct access to the storage service.

This paper focuses on exploiting content similarity on-the-

fly in order to enable multiple VM instances, even if they be-

long to different dissemination groups, to collaborate, identify

and exchange identical chunks of data in order to minimize

the I/O pressure on the storage service under concurrency. To

our best knowledge, we are the first to focus on this aspect in

particular.

III. SYSTEM DESIGN

This section describes the design principles and algorithms

behind our approach (Sections III-A and III-B), how to apply

them in a cloud architecture (Section III-C) and finally how

to efficiently implement them in practice (Section III-D).



Note that in the description of our approach, we focus on

virtual disk images as the content accessed by collective reads.

However, our approach can be easily adapted to handle any

kind of generic unstructured dataset that can be represented as

a sequence of bytes.

A. Design Principles

1) Copy-on-Reference Local Mirroring: To facilitate on-

demand VM disk image access, we leverage copy-on-

reference, initially introduced for process migration in the

V-system [27]. To this end, our approach exposes a private

local view of the virtual disk image stored remotely on the

VM repository to the hypervisor. We call this local view

a mirror. From the perspective of the hypervisor, the local

mirror appears to have already fetched and created a copy

of all necessary content, however, the mirror gets populated

with content only as needed during runtime. It is logically

partitioned into fixed-sized chunks. Whenever the hypervisor

needs to read a region of the image, all chunks covered by the

region that are not already locally available are fetched from

a remote source and copied locally (i.e., “mirrored”). Once all

content is available locally, the read can proceed.

2) Collaborative Chunk Advertisement and Exchange: One

of the major issues that plain copy-on-reference approaches

face when dealing with collective reads is the I/O contention

to the image store. This happens regardless of whether the

store is centralized or decentralized, because the VM instances

mostly follow the same I/O access pattern and thus access the

same chunk simultaneously. Thus, it is important to develop

techniques that reduce the I/O pressure on the image store in

order to improve the performance and scalability of copy-on-

reference. In this context, a natural idea is to let the mirrors

collaborate and inform each other about what chunks they

already posses, such that it is possible to directly fetch the

chunks from other remote mirrors rather than the image store

itself. To this end, we propose a peer-to-peer collaborative

scheme where the mirrors advertise chunks to each other

prefetch any missing chunk soon as an advertisement about

it has been received, in anticipation of future read requests

that will access that chunk. How to select what peer to talk

to and when to decide if prefetching actually helps or just

wastes network bandwidth (because no read request actually

needs the chunks) is outside the scope of this work. We discuss

some initial ideas related to the latter aspect in our previous

work [26], where we propose a different prefetching mecha-

nism based on pushes. With respect to the peers involved in

the exchange, we opted for a circular double-linked list: we fix

a predefined ordering of all mirrors in a ring and create links

to the previous and next node in the ring. Thus, each peer

has three potential sources from where it can fetch chunks:

its neighbors in the ring and the original source of the VM

image. To avoid I/O contention to the peer that advertised the

chunk, we use a load-balancing strategy: if multiple neighbors

advertised the same chunk, the one that has the least number

of pending requests that need to be served is selected.

3) Fingerprint-Based Content-Aware Advertisements:

When the VM instances need to access the same virtual disk

concurrently, the process of advertising chunks to other peers

is straightforward: it is enough to include information about

the chunk offset in order to uniquely identify a chunk. Under

such circumstances, this approach is optimal, because only a

minimal information about the chunk needs to be included

in the advertisement, which means advertisements spread fast

and thus improve the chance that a chunk can be obtained

from another peer rather than the original source. Thus, a

naı̈ve solution to deal with multiple concurrent groups of VM

instances (where each group competes for a different virtual

disk image) is to establish a peer-to-peer collaborative chunk

advertisement and exchange scheme within each group. Again,

such an approach would be optimal if the original virtual

disk images are completely disjoint. However, as discussed

in Section II, in practice there is a large degree of redundancy

with respect to the content of virtual disk images, which means

many chunks are identical despite belonging to different im-

ages and being located at different offsets. As a consequence,

it is important to be able to extend the chunk advertisements

and exchanges beyond the scope of a single group, especially

since the potential to alleviate the I/O pressure on the image

store grows with an increasing group size. Thus, a much better

idea is to form a single group with all VM instances where they

advertise and exchange chunks regardless of what virtual disk

image they need to access. However, the problem of how to

identify identical chunks is not as simple as exchanging chunk

offsets anymore, because content-identical chunks might have

different offsets in different images. Using a naı̈ve solution

that advertises full chunks is not feasible, as this would

lead to an explosion of network traffic. To deal with this

situation, we propose to use much smaller fingerprints that

represent the content of the chunk and can be used for a

quick comparison. Such an approach is often implemented

using strong hash functions (e.g., SHA-1), for which it can

be shown that the chance of collisions (i.e., obtaining the

same fingerprint for two different chunks) is negligible in

practice [9]. While the size of a fingerprint is significantly

larger than the size of an offset (e.g., 8 bytes for a 64 bit value

vs. 20 bytes for SHA-1), this increase in advertisement size

does not significantly delay the propagation of advertisements

(as discussed in Section IV-E).

4) Storage-Agnostic Chunk Pre-Hashing and Optimized

Lookup: One of the major advantages of using a fingerprint-

based advertisement scheme is the fact that duplicated content

can be detected and exchanged on-the-fly. This aspect holds

regardless of whether the image store has de-duplication

support or not. If the image store does not support de-

duplication (which is a common occurrence in production),

then the benefits of our approach are obvious. However, even if

the image store supports de-duplication and holds only unique

chunks (as implemented by some related work discussed in

Section II), this brings little benefit in our context, because

the VM instances still need to access the same chunk multiple

times if they are not aware of each other’s content. On the other



hand, in order to be effective, the fingerprint advertisement

scheme needs to incur minimal overhead compared with a

scheme that directly advertises offsets. To this end, we avoid

the calculation of fingerprints during runtime in favor of

a scheme that performs a pre-calculation: whenever a new

virtual disk image is added to the image store, the fingerprints

corresponding to each offset are calculated and stored in a

separate map file. Thus, whenever a VM instance needs to

mirror content locally, it first opens the map file and preloads

all fingerprints in an optimized look-up table. Note that it

is possible for the same chunk to appear multiple times in

the same disk image. However, the data structures that enable

efficient bi-directional lookup are optimized for bijections. To

deal with this situation, we introduce a second uni-directional

look-up table that associates each chunk offset to a unique

parent offset that acts as a representative for the chunk content.

Thus, whenever a read request is issued, the actual offsets are

first converted into parent offsets, which in turn are associated

to unique fingerprints whenever an interaction with other peers

is needed.

B. Algorithms

In this section, we show how to implement the design

principles discussed in the previous section using a series of

algorithmic descriptions. To simplify the understanding, we

assume a scenario where each mirror handles a single image.

However, the algorithms can be easily extended in practice to

implement a mirror that can share common chunks between

multiple VM instances that are co-located on the same node.

The local mirror corresponding to the virtual disk image

(denoted Mirror) is split into fixed sized chunks. Each

chunk of the Mirror can be in one of the four possible

states (denoted State): REMOTE (the chunk was not yet

locally mirrored), WAIT (the peer has asked another for the

chunk and is waiting for the reply), LOCAL (the chunk was

successfully prefetched and mirrored locally, but was not yet

read) and READ (the chunk was needed by a read operation).

The READ operation is detailed in Algorithm 1. In a

nutshell, it ensures that all chunks that cover the range

offset, size from Mirror are locally available, after which it

redirects the read request to the local mirror. More specifically,

first the parent offset p of a chunk is calculated. This infor-

mation is maintained in the ParentOffset uni-directional

data structure. Once p is known, any reference to the original

chunk is equivalent to a reference to the chunk corresponding

to p. Thus, if p is in the process of being prefetched, then it

waits for the prefetching to finish. If the prefetching was not

successful (i.e., it timed out), then it reverts to the image store.

Reverting to the image store is not immediate: the read request

for the chunk is accumulated in the Original set and handled

only after all chunks were processed, which avoids waiting for

repository unnecessarily. If a chunk is not locally available or

in the process of being prefetched (REMOTE state), then

READ attempts to fetch it from another peer that advertises it

(all advertisements for a chunk are accumulated in the Source

set). If such a peer (denoted Peer) exists, then READ picks

Algorithm 1 Read the range (offset, size) into buffer from

disk image

1: function READ(buffer, offset, size)

2: Original ← ∅
3: for all chunk ∈ Image such that chunk ∩

(offset, size) 6= ∅ do in parallel

4: p← ParentOffset[chunk]
5: if State[p] = WAIT then

6: wait until State[p] = LOCAL

7: if timeout then

8: Original← Original ∪ {p}
9: end if

10: State[p]← READ

11: else if State[p] = REMOTE then

12: if Source[p] 6= ∅ then

13: select least loaded Peer ∈ Source[p]
14: fetch chunk p from Peer and mirror it

15: advertise Fingerprint[p] to neighbors

16: else

17: Original← Original ∪ {p}
18: end if

19: State[p]← READ

20: else if State[p] = LOCAL then

21: State[p]← READ

22: end if

23: end for

24: for all p ∈ Original do in parallel

25: fetch chunk p from repository and mirror it locally

26: advertise Fingerprint[p] to neighbors

27: end for

28: return read (offset, size) into buffer from Mirror

29: end function

the one that is the least loaded (i.e., it has a minimal number

of pending requests it needs to answer to), fetches the chunk

from it and finally advertises the chunk to the neighbors. The

advertisement is based on the fingerprint of the chunk p, which

is pre-loaded in the bi-directional look-up table Fingerprint.

If no neighboring peer holds the chunk, then it reverts to the

image store (i.e. the chunk is added to Original). In either

case, the state of the chunk becomes READ. Once all chunks

are processed, the ones scheduled to be read from the image

store (Original set) are finally fetched, mirrored locally and

advertised to the neighbors. At this point, all chunks needed

by the read operation are locally available and the Mirror

can be used to fill the buffer where the result is stored.

The collaborative chunk advertisement and

exchange scheme is performed asynchronously by

BACKGROUND EXCHANGE, detailed in Algorithm 2.

In a nutshell, it listens for advertisements about new chunks

from all its neighbors and whenever it receives one, first it

performs a reverse look-up in the Fingerprint map to obtain

the parent offset p for the chunk fingerprint referred to by

msg. Then, it adds the originating Peer to the corresponding



Algorithm 2 Collaborative chunk advertisement and exchange

with other peers

1: procedure BACKGROUND EXCHANGE

2: while true do

3: msg ← listen for any message from any peer

4: hash← extract chunk fingerprint from msg

5: p← find parent p for hash in Fingerprint

6: if msg = fetch reply and State[p] = WAIT then

7: mirror chunk p locally

8: State[p]← LOCAL

9: advertise Fingerprint[p] to neighbors

10: end if

11: if msg = fetch request then

12: send chunk to requester

13: end if

14: if msg = advertisement from Peer then

15: Source[p]← Source[p] ∪ {Peer}
16: if State[p] = REMOTE then

17: State[p] = WAIT

18: ask Peer to send chunk p

19: end if

20: end if

21: end while

22: end procedure

Source[p] set. If the payload received from any peer is

a request for a chunk, it will send the chunk as a reply

if the chunk is actually mirrored locally, otherwise it will

instruct the requester to look for an alternative. Whenever

a chunk is received as a reply, the Mirror will be updated

with its content and the state will be updated to LOCAL.

Furthermore, the chunk is advertised asynchronously to all

neighbors.

Note that the local mirror also supports write operations:

once a chunk is overwritten, it is invalidated and cannot be

used in the collaborative chunk exchange any longer (i.e., it is

not advertised anymore to other peers and any remote peer

trying to fetch it will fail). However, this mode limits the

potential to exchange chunks under write-intensive scenarios,

which is why the mirror is typically used as read-only backing

file for higher level copy-on-write layers (e.g., QCOW2).

C. Architecture

We depict a simplified IaaS cloud architecture that integrates

our approach in Figure 1. For better clarity, the building blocks

that correspond to our own approach are emphasized with a

darker background.

The VM image store is the storage service responsible

to hold the VM disk images that are accessed concurrently

during collective reads. The only requirement for the image

store is to be able to support random-access remote reads,

which gives our approach high versatility to adapt to a wide

range of options: centralized approaches (e.g., NFS server),

parallel filesystems or other dedicated services that specifically

target VM storage and management [23], [28]. In particular,

solutions that de-duplicate VM image content [10] are well

complemented by our approach, as discussed in Section III-A.

The cloud user has direct access to the VM image repository

and is allowed to upload and download VM images from

it. Furthermore, the cloud user also interacts with the cloud

middleware through a control API that enables launching

and terminating multi-deployments. In its turn, the cloud

middleware will interact with the hypervisors deployed on the

compute node to instantiate the VM instances that are part of

the multi-deployment.

Each hypervisor interacts with the local mirror of the VM

disk image as if it were a full local copy of the VM disk image

template. To facilitate this behavior, the mirroring module acts

as a proxy that traps all reads of the hypervisor and takes the

appropriate action: it populates the local mirror on-demand

only in a copy-on-reference fashion while using the peer-to-

peer chunk advertisement and exchange protocol described

in Section III-A to pre-populate regions that are likely to be

accessed in the future based on the collective access pattern.

D. Implementation

We implemented the mirroring module as file system in

userspace on top of FUSE (File system in USerspacE). This

has two advantages in our context: (1) it is transparent to the

hypervisor (and thus portable); (2) it enables easy interface

to the image store (regardless of the access interface) as well

as easy prototyping of the collaborative chunk advertisement

and exchange protocol, because all communication between

the peers happens in userspace.

The collaborative chunk advertisement and exchange strat-

egy runs in its own thread, which synchronizes with the

main FUSE thread through the data structures presented in

Section III-B. We rely on the Boost C++ collection of libraries

for the implementation of high performance bi-directional

maps and look-up tables used for the translation between

parent offsets and fingerprints. The fingerprints themselves

can be calculated using any strong hash function, however,

for the purpose of this work we opted for SHA-1. Note that

the mirroring module only uses the fingerprints and never

calculates them (which is the responsibility of additional

external tools or the image store itself if it has de-duplication

support). We implemented our own external tool that pre-

hashes a virtual disk image using a configurable chunk size

based on the SHA-1 implementation provided by OpenSSL.

The communication between the mirroring modules is

implemented on top of Boost ASIO, a high performance

asynchronous event-driven library which is part of the standard

Boost package. Since the chunk exchange and prefetching

scheme is not a pre-condition for correctness (i.e. it is always

possible to fall back to the original source in order to fetch the

missing chunks), we have opted for a lightweight solution that

performs gossiping through UDP communication channels.

This has the potential to significantly reduce networking

overhead at the cost of unreliable communication. Given the

sensitivity of our approach to the timely dissemination of ad-

vertisements, especially when considering the extra overhead
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Fig. 1. Cloud architecture that integrates our approach (dark background)

of sending SHA-1 fingerprints, the choice of using UDP has

much more benefits compared to the drawbacks of unreliability

(which is quite low within a datacenter).

IV. EVALUATION

This section evaluates the benefits of our approach exper-

imentally based on a real-life scenario often encountered in

practice.

A. Experimental Setup

Our experiments were performed on the Shamrock testbed

of the Exascale Systems group of IBM Research Ireland. For

the purpose of this work, we used a reservation of 32 nodes

interconnected with Gigabit Ethernet, each of which features

an Intel Xeon X5670 CPU (12 cores), HDD local storage of

1 TB and 128 GB of RAM.

We simulate a cloud environment using QEMU/KVM as the

hypervisor. On each node, we deploy a VM that is allocated

two cores and 8 GB of RAM. The guest operating system is a

recent Debian Sid, whose backing image is stored on a NFS

server that is accessible through the Gigabit Ethernet link. The

format of the image is RAW and its total size is 4 GB. Each

VM instance is booted from a locally-derived QCOW2 image.

Furthermore, the network interface of each VM uses the virtio

driver and is bridged on the host with the physical interface

in order to enable point-to-point communication between any

pair of VMs. The I/O caching mode of QEMU/KVM is the

default (i.e. cache=writeback).

B. Workload

As a motivating scenario for our evaluation we choose a

setting where users need to instantiate a large number of VMs

and configure them on-the-fly using a shared repository. Often,

such a repository includes software packages and configuration

files. In order to save space, software packages are often com-

pressed. Thus, a common operation is to read the compressed

stream of bytes from the repository and unpack its content

into the local storage of the VM instance.

The repository is abstracted as a read-only virtual disk that

is formatted using the ext4 file system to hold a series of

compressed software packages. This virtual disk is mounted

after boot and used to install all necessary components. Since

the content of the repository is delivered on-the-fly only when

needed (i.e. the virtual disk corresponding to the repository is

not pre-copied), users typically consolidate all their software

packages in a single large repository from which each VM

instance can cherry-pick the needed components. Users prefer

this approach to other on-demand solutions (e.g. setting up an

extra VM instance as a FTP server), both because it is easier

to setup (i.e., no extra overhead to configure a FTP server)

and because it is more cost-effective (i.e., no extra dedicated

VM needs to act as the repository).

TABLE I
VIRTUAL DISK REPOSITORY COMPOSITION

Package Size Repo-1 Repo-2

hadoop-2.5.1.tar.gz 142 MB X

jdk-8u25-linux-x64.tar.gz 154 MB X

Netw DB2 Info Ctr V10.5.tar.gz 767 MB X X

TXSERIES V8.1 EIMAGE.tar 387 MB X

WebSphere-C1FZ6ML.tar.gz 782 MB X

However, due to the popularity of some software packages,

the repositories compiled by the users often overlap to a large

degree. To capture this aspect in our evaluation, we compiled

two repositories as RAW virtual disks of 2 GB that include the

content summarized in Table I. This content is representative

of two users that run business analytics workloads at large

scale using either Hadoop and DB2 or WebSphere and DB2.

For the rest of this paper, we refer to the two repositories as

Repo-1 and Repo-2.

For the purpose of this work, both Repo-1 and Repo-2

are stored on the same NFS server where the OS image

of the VM instances is stored. The experiments consist in

booting a number of VM instances (up to 32, each on a

dedicated physical node), a part of which mounts Repo-

1, while the rest mounts Repo-2. This corresponds to two

different users, each with its own repository, that need to

simultaneously instantiate a set of VM instances. To emphasize

the importance of detecting and leveraging content duplication

during on-the-fly concurrent dissemination of data, we assume

all VM instances run the same workload: unzip the common

Netw DB2 Info Ctr V10.5.tar.gz package, which is part of a

DB2 on-the-fly installation.

Note that the nature of the data accessed by the workload

(gzip archive) does not exhibit any internal redundancy. This

is ideal in our context, because the lack of intra-repository



duplication excludes from the measurements any benefits that

could result from fetching unique chunks only once within the

same group. Thus, the benefits observed in the experiments

are exclusively the result of the ability to exchange the

chunks between the groups. However, when intra-duplication

is present, we anticipate even greater benefits for our approach.

C. Methodology

We compare three approaches throughout our evaluation:

a) Direct on-demand access: In this setting, the reposi-

tory image residing on the NFS server is directly attached as a

read-only snapshot to its corresponding VM instances. In this

setting, the VM instances operate in complete isolation and

read in parallel all necessary content directly from the NFS

server, which greatly simplifies the setup, but creates a high

degree of I/O contention. Such an approach is widely used

in production and relevant as a baseline for comparison. We

denote this approach nfs−direct.

b) Collaborative on-demand offset-identical chunk ex-

change: In this setting, the repository image residing on the

NFS server is mirrored on-demand on the local storage of

the node that hosts the VM instance. The mirror is aware of

the other concurrently running VM instances that share the

same repository image and advertises the accessed chunks

to them. At the same time, it reacts to the advertisements

received from other VM instances by prefetching any missing

chunks from them in order to avoid accessing the NFS server

if those missing chunks are needed in the future. Since the

chunks refer to the same repository image, any exchange

between the VM instances involves only a minimal amount of

information about the chunk: it’s offset. However, there are no

exchanges between VM instances that do not share the same

repository image. This approach aims to implement a solution

that performs optimally in the case when all VM instances

are aware of the information they are sharing. We denote this

approach as collab−simple.

c) Collaborative on-demand content-aware chunk ex-

change: Similar to the previous setting, the repository image

residing on the NFS server is mirrored on-demand on the local

storage of the node that hosts the VM instance. However,

the mirror implements our approach and is aware of any

other VM instances, exchanging advertisements with them

regardless whether they share the same repository image or

not. In this case, the advertisements are larger compared to

the previous case, because they include the SHA-1 fingerprint

of the chunk as payload rather than the offset (20 bytes vs. 8

bytes). Furthermore, there is extra overhead needed to translate

from the fingerprint to the chunk offset and back. However,

other than these differences, every other aspect is identical to

the previous setting. We denote this approach collab−dedup.

For both collab−simple and collab−dedup, the chunk size

is fixed at 32 KB, which results in a total of 65536 chunks for

both Repo-1 and Repo-2, out of which 24559 are accessed

by the workload. In the case of collab−dedup, all chunks

belonging to Repo-1 and Repo-2 and pre-hashed using SHA-

1 and indexed in a corresponding fingerprint file before the

experiment begins.

These approaches are compared based on the following

metrics:

Completion time: This is the total time required to run

the workload. We report average values per VM instance, as

well as extremes (i.e. time for all VM instances to complete),

both of which are directly relevant for the user, because in

many cases it is necessary to wait for all VM instances to

finish the initialization step before they can be used. A low

value indicates better overall performance.

Source and amount of network traffic: This is the average

received network traffic generated by on-demand reads of

the package during the workload. It is broken down by

source, indicating the amount read from the NFS server, the

amount pre-fetched from other VM instances in anticipation

of read requests and the amount fetched on-demand from

other VM instances as a direct consequence of read requests.

This information is important from the IaaS cloud provider

perspective, because it shows how much the I/O pressure on

the NFS server can be reduced thanks to collaborative chunk

exchanges.

D. Scalability and performance

Our first series of experiments aims to study the weak

scalability of all three approaches under a variable distribution

of the VMs that access either Repo-1 or Repo-2. To this end,

we fix three representative configurations: (1) all VMs access

only Repo-1; (2) 25% of the VMs access Repo-1, while the

rest access Repo-2; and (3) half of the VMs access Repo-1,

while the other half access Repo-2. For each configuration,

we gradually increase the number of concurrent VMs that run

the workload described in Section IV-B. To emphasize the I/O

pressure on the NFS server due to contention, we start all VM

instances simultaneously.

The average completion time for all three configurations

is depicted in Figure 2(a), Figure 2(b) and Figure 2(c) re-

spectively. As expected, with an increasing number of VMs,

the average completion time is increasing, because more VMs

compete for the same chunks. In the case of nfs−direct,

the only source to fetch the chunks from is the NFS-server.

Thus, all VM instances compete for the I/O bandwidth of the

NFS server, regardless of the distribution between Repo-1 and

Repo-2. This is directly observable in the shape of the curves

corresponding to nfs−direct in all three figures: there is an

almost perfect overlap between them. At the extreme of 32 VM

instances, the average completion time for nfs−direct is around

189s in all three cases, which amounts to a low throughput of

around 4 MB/s.

In the case of collab−simple and collab−dedup, the slope

of the curves is more gentle, showing a major improvement in

scalability. This is especially visible for the case when all VM

instances access Repo-1 (Figure 2(a)): the average completion

time remains almost constant for both approaches with only

little difference between them (15.85s for collab−simple and

16.66s for collab−dedup). Compared with nfs−direct at the

extreme of 32 VM instances, the average completion time
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(a) Weak scalability when all VMs access Repo-1
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(b) Weak scalability when 25% of VMs access Repo-1 and 75% of VMs
access Repo-2
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(c) Weak scalability when 50% of VMs access Repo-1 and 50% of VMs
access Repo-2
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(d) Performance of 32 VMs when gradually increasing the number of VMs
that access Repo-1

Fig. 2. Study of scalability and performance for a set of concurrent VMs of which each is mounting one of two different virtual disk repositories but access
identical overlapping content (unzip a compressed software package present in both repositories). The size of the compressed software package is 762 MB.

was reduced by more than 91% in both cases. Interesting to

note is also the low overhead of our approach compared with

collab−simple: exchanging more information about each chunk

(fingerprint vs. offset) and translating offsets to fingerprints in

both directions has a minimal performance impact (up to 4%)

even when only a single group of VM instances that share the

same repository is present (which favors the collab−simple

approach).

However, when the VM instances access both Repo-1 and

Repo-2, a large gap between collab−simple and collab−dedup

starts to become visible: at the extreme of 32 VM instances,

collab−dedup is on the average 2.05x faster than in the case

when 50% of the VMs access Repo-1 (Figure 2(c)). These re-

sults are easy to understand: in the case of collab−simple each

of the VM groups corresponding to Repo-1 and Repo-2 act

in isolation and advertise the chunks only among themselves.

Thus, each chunk is fetched at least twice from the NFS server

by at least one of the members of each group. In the case of

collab−dedup, all VMs act as a single group and advertise the

same content-identical chunks among themselves, effectively

halving the I/O pressure on the NFS server. When 25% of

the VMs access Repo-1 (Figure 2(b)), collab−dedup is 1.88x

faster than collab−simple. This can be explained by the fact

that collab−simple can propagate the chunks much better in

the significantly larger group corresponding to Repo-2.

To verify this effect for symmetry, we ran two extra ex-

periments: (1) 25% of the VMs access Repo-2 and the rest

Repo-1; and (2) all VMs access Repo-2. Armed with these

two new experiments, we depict in Figure 2(d) a comparison

between collab−dedup and collab−simple for a fixed number

of 32 VM instances with a gradual increase in the number of

VMs accessing Repo-1 from 0 to 32. As expected, the maximal

difference is when the two VM groups are equally sized, with

little difference observable when all VMs belong to the same

group.

Furthermore, as explained in Section IV-C, besides the aver-



TABLE II
ZOOM ON COMPLETION TIMES FOR 32 VM INSTANCES

Approach # of Repo-1 Min Avg. Max

nfs−direct 8 131.0s 188.75s 221.0s
16 129.0s 188.41s 221.0s
32 112.0s 189.03s 221.0s

collab−simple 8 32.0s 33.18s 34.0s
16 35.0s 35.47s 36.0s
32 14.05s 15.85s 16.05s

collab−dedup 8 17.0s 17.03s 18.03s
16 16.0s 17.07s 18.08s
32 16.0s 16.66s 17.01s

age completion time per instance, an important aspect to study

is also the extremes of the completion time (i.e. corresponding

to the fastest and the slowest instance). To this end, we zoom

on the completion times for the maximal deployment of 32

VM instances in Table II. As can be observed, in the case

of collab−simple and collab−dedup, there is little variation

between the average and the minimum or maximum: no more

than 6% is observable. However, the same does not hold for

nfs−direct: the slowest VM instance has a completion time

that is almost twice as high as the fastest. This effect can be

traced back to the high degree of contention, which causes read

requests not to be served in a fair fashion, resulting in uneven

delays. Thus, it can be noted that the collaborative chunk

exchange strategy not only leads to a dramatic improvement

in the scalability and performance, but also in terms of I/O

fairness.

E. Network traffic

In this section we study the network traffic generated during

the experiments presented in the previous section. We focus on

the average amount of content received from remote sources

in the case of 32 concurrent VM instances, broken down

by source and type. More specifically, we are interested in

understanding how much of the content is fetched from the

NFS server and how much of the content is fetched from the

other peers (in the case of collab−simple and collab−dedup).

Furthermore, for the content fetched from the other peers (i.e.

chunks of 32 KB), we make a distinction between the chunks

that were advertised and pre-fetched before they were needed

(peers−prefetch) and those chunks that were advertised but

were fetched as a consequence of a read request (peers−get).

The results are depicted in Figure 3. All three approaches

fetch the same total amount of information, with nfs−direct

exclusively accessing the NFS server. However, in the case of

collab−simple and collab−dedup, the majority of the chunks

are obtained by a VM instance from other peers rather

than the NFS server. This explains why a reduction of 91%

in average completion time in the case when all VM in-

stances access Repo-1 is possible for both collab−simple and

collab−dedup when compared with nfs−direct. Particularly

interesting to note is the difference between collab−simple

and collab−dedup: despite both accessing only Repo-1,

collab−simple manages to prefetch a slightly larger amount

of chunks than collab−dedup, because it receives the adver-
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Fig. 3. Network traffic broken down by source and type for 32 VM instances
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tisements faster, which enables it to avoid waiting during

read calls. However, even if collab−dedup needs to wait for

more chunks to be fetched during read calls, the delay is

minimal, because it still receives advertisements in time to

be able to fetch the missing content from other peers, which

limits the performance overhead to less than 4% (as shown in

the previous section). This effect is directly observable when

comparing the amount of chunks fetched from the NFS server:

it remains the same in both cases.

However, when moving to the case in which the number

of VM instances that access Repo-1 is 50% and 25%, the

interactions with the NFS server double for collab−simple

when compared to collab−dedup. This confirms the speed-up

of up to 2x for collab−dedup over collab−simple discussed in

the previous section. Interesting to note in these two cases is

the fact that collab−simple manages to prefetch an even higher

amount of chunks than in the previous case, with only a small

amount of chunks fetched on-demand from other peers. This

is explained by the fact that the increasing I/O pressure on the

NFS server introduces more latencies that can be exploited to

finish more prefetch operations. However, this achievement is

overshadowed by the need to access twice as many chunks

from the NFS server. By contrast, collab−dedup maintains

a constant proportion of accesses to the NFS server, which

remains the same across all three cases.

V. CONCLUSIONS

In this paper we have proposed a novel approach to deal

with unrelated groups of VM instances that perform collective

on-demand read access patterns simultaneously. Our proposal

is based on the idea of detecting and exchanging identical

content on-the-fly both inside and outside of the groups, which

reduces the overall I/O pressure on the cloud storage system

to a higher degree than what techniques designed to deal with

individual groups can achieve.



To demonstrate the benefits of our approach, we ran exten-

sive experiments using a representative scenario for variable

group compositions and multiple concurrency configurations.

Our key findings are as follows: we observed a speedup of

completion time up to 11x compared with a naı̈ve solution

that directly reads from the cloud storage for each VM in-

stance individually. Also, we observed a speed-up of 1.88x-2x

compared with collaborative schemes optimized for individual

groups. The maximum speedup is reached when the groups are

of equal size. Even when there is a single group, our approach

exhibits a low performance overhead (4%) compared with an

approach that is specifically optimized for a single group.

Furthermore, we show excellent scalability both in terms of

performance and consumption of the I/O bandwidth of the

cloud storage (negligible growth when increasing the number

of VM instances).

In future work we plan to explore several promising av-

enues. First, we did not explore what happens when the groups

are not operating simultaneously and/or access common con-

tent at different times. How to leverage and anticipate such

de-synchronizations can provide further potential for improve-

ment. Second, our approach treats all chunks individually, both

in terms of advertisements and exchanges. Thus, it would

be interesting to understand and exploit correlations between

chunks (e.g., what clusters of chunks go together and could

be advertised and prefetched as a group).
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