
HAL Id: hal-01138749
https://inria.hal.science/hal-01138749

Submitted on 2 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compositional Verification of Asynchronous Concurrent
Systems using CADP (extended version)

Hubert Garavel, Frédéric Lang, Radu Mateescu

To cite this version:
Hubert Garavel, Frédéric Lang, Radu Mateescu. Compositional Verification of Asynchronous Con-
current Systems using CADP (extended version). [Research Report] RR-8708, INRIA Grenoble -
Rhône-Alpes. 2015. �hal-01138749�

https://inria.hal.science/hal-01138749
https://hal.archives-ouvertes.fr

appor t

de recherche

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
87

08
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Compositional Verification of Asynchronous
Concurrent Systems using CADP (extended version)

Hubert Garavel — Frédéric Lang — Radu Mateescu

N° 8708

April 2, 2015

Centre de recherche INRIA Grenoble – Rhône-Alpes
Inovallée, 655, avenue de l’Europe, Montbonnot, 38334 Saint Ismier Cedex (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Compositional Verification of Asynchronous Concurrent Systems
using CADP (extended version)

Hubert Garavel , Frédéric Lang , Radu Mateescu

Thème COM — Systèmes communicants
Projet CONVECS

Rapport de recherche n° 8708 — April 2, 2015 — 65 pages

Abstract: During the last decades, concurrency theory successfully developed salient concepts to formally
model and soundly reason about distributed and parallel systems. In practice, however, most attempts at
analyzing large systems face severe complexity issues, especially state explosion, which prevents to exhaus-
tively enumerate reachable state spaces. Compositionality is the most promising approach to fight state
explosion. In this report, we focus on finite-state verification techniques for asynchronous message-passing
systems, highlighting the existence of multiple, diverse compositional techniques such as: compositional
model generation, semi-composition and projection, automatic generation of projection interfaces, formula-
dependent model generation, and partial model checking. These approaches have been implemented in the
framework of the CADP (Construction and Analysis of Distributed Processes) software toolbox and applied
to large-scale, industrial systems. A key point is the ability to combine several compositional techniques, as
no single technique is sufficient to address all kinds of systems.

Key-words: Bisimulation, Concurrency theory, Formal method, Labeled Transition System, Model
checking, Model generation, Model minimization, Mu-calculus, Network of automata, Partial model checking,
Process algebra, Projection interface, Semi-composition, Temporal logic, Verification

Vérification compositionnelle de systèmes concurrents
asynchrones avec CADP

Résumé : Au cours des dernières décennies, la théorie de la concurrence a donné naissance à des concepts
importants pour modéliser et raisonner formellement sur les systèmes parallèles et distribués. En pratique
cependant, la plupart des tentatives d’analyser de gros systèmes se confronte à de sérieux problèmes de
complexité, en particulier l’explosion d’états, qui empĉhe d’énumérer de manière exhaustive les espaces
d’états atteignables. La compositionnalité est l’approche la plus prometteuse pour lutter contre l’explosion
d’états. Dans ce rapport, nous nous concentrons sur les techniques de vérification d’états finis pour les
systèmes asynchrones avec passage de messages, mettant en exergue l’existence de multiples et diverses tech-
niques compositionnelles telles que : génération compositionnelle de modèle, semi-composition et projection,
génération automatique d’interfaces de projection, génération de modèle dépendant de la formule, et model
checking partiel. Ces approches ont été implémentées dans le contexte de la bôıte à outils logiciels CADP
(Construction and Analysis of Distributed Processes) et appliquées à des systèmes industriels de grande
échelle. Un élément clé est la possibilité de combiner plusieurs techniques compositionnelles, une technique
unique étant insuffisante pour traiter tous les types de systèmes.

Mots-clés : Algèbre de processus, Bisimulation, Génération de modèle, Interface de projection, Lo-
gique temporelle, Méthode formelle, Minimisation de modèle, Model checking, Model checking partiel, Mu-
calcul, Réseau d’automates, Semi-composition, Système de transitions étiquetées, Théorie de la concurrence,
Vérification

Compositional Verification using CADP 3

1 Introduction

Concurrency theory, which can be traced back to the early seventies, has produced over the years a large
corpus of fundamental results for the modeling and analysis of distributed and parallel systems. Among
the major theoretical successes, one can mention: process calculi and process algebras [77, 1, 107, 26, 18,
108, 109, 19], which explore the consequences of introducing parallel composition operators as first-class
citizens in specification languages; structural operational semantics [118, 76, 1, 120, 119], which cleanly
formalize the semantics of process calculi in terms of lower-level models, such as labelled transition systems
[116]; bisimulations and related preorder/equivalence relations [107, 116, 108, 136, 135, 137], which enable a
precise and meaningful comparison of concurrent systems; and temporal logics and µ-calculus [121, 82, 97],
which provide declarative means to specify system properties.

Beyond these high-level concepts and formalisms, concurrency theory also led to concrete algorithmic
advances, such as finite- and infinite-state techniques for analyzing state spaces, efficient equivalence checking
algorithms for computing bisimulations [115, 73, 20], and powerful model checking algorithms for temporal
logics and µ-calculus [34, 12].

Such advances have been implemented in many academic and industrial tools, which have been applied to
a full range of problems, often with success. However, in most cases, the automated analysis of realistic, large-
scale systems faces difficult complexity issues, especially the state-explosion problem that occurs when the set
of reachable states of a system is too large to be analyzed, either in extension or in comprehension. Although
careful specification decisions may help contain this complexity to a certain extent [113, Chapter 6][71], in
general algorithmic approaches are needed to fight against such complexity while maintaining the goal of
exhaustive verification; examples of such approaches are based on partial order [114, 81, 66, 133, 67, 68, 117,
54] or symmetry [78, 36, 35, 2] reductions. Probably, the most general and most promising approaches are
compositional verification techniques, which rely on the “divide-and-conquer” paradigm to breakdown the
complexity of the systems under study.

The present report focuses on compositionality in the setting of finite-state verification techniques for
asynchronous, action-based systems. Concretely, this encompasses systems described using process calculi or
networks of communicating finite-state automata, with underlying semantic models such as LTSs (labelled
transition systems) as regards functional verification, as well as (extensions of) Markov chains as regards
quantitative performance evaluation. In this context, the term asynchronous refers to classes of systems,
the concurrent components of which may either synchronize or evolve independently, contrary to the so-
called synchronous systems [74], in which concurrent components evolve together at periodic instants, e.g.,
cadenced by some clock. The term action-based refers to system models in which the only observable events
are attached to transitions; such events are called actions (or transition labels) and may correspond, in
practice, to inputs received and outputs sent by the system, as well as internal transitions performed by the
system. Action-based models differ from so-called state-based models, in which only the internal contents of
system states (namely, variables and other information stored in memory) can be observed. Although action-
based and state-based can be seen as dual concepts from a mathematical point of view, they are practically
different for at least two reasons: (1) action-based approaches correspond to “black box” observation while
state-based approaches correspond to “white box” observation, and (2) compositional verification techniques
for both kinds of approaches are quite different algorithmically.

As a matter of fact, state-based approaches are currently predominant in the scientific publications and
university textbooks on model checking, whereas action-based approaches are less widespread and mostly
appear in academic software tools dedicated to concurrency theory and process calculi. The present report
follows this latter line, and addresses both equivalence checking and model checking, whereas state-based
approaches often deal exclusively with model checking issues. It gathers numerous scientific results produced
in the framework of the CADP verification toolbox [58] during the last 15–20 years, and presents a unifying
overview of these results by situating them in a global, coherent landscape.

This paper is organized as follows. Section 2 gives definitions that will be used throughout the paper.
Section 3 introduces property-independent compositional approaches; such approaches (among which com-
positional model generation, semi-composition, and behavioral interfaces) are closely related to equivalence
checking and preserve a given equivalence relation, as well as all temporal logic properties adequate with re-
spect to this equivalence relation. Section 4 presents property-dependent compositional approaches (among

RR n° 8708

4 H. Garavel, F. Lang, and R. Mateescu

which property-dependent reductions and partial model checking), which are specifically related to model
checking and preserve the truth value of a particular set of properties (temporal logic or µ-calculus formulas)
of interest. Section 5 discusses high-level strategies for effective compositional verification, among which
smart reduction techniques. Section 6 details how the aforementioned theoretical principles are implemented
within the CADP toolbox, with a particular emphasis on the SVL language that provides a powerful, user-
friendly means to specify compositional verification scenarios. Section 7 presents a concrete application in
which (most of) the compositional capabilities of CADP can be illustrated. Finally, Section 8 concludes
the paper and lists some open issues and directions for future work. The comparison to related work is not
gathered into one unique section, but done at appropriate places throughout the paper.

2 Definitions

2.1 Vector notations

Definition 1 (Vector) A vector ~v of size n is a total function on [1, n]. We use the following notations:� We write |~v| for the size of the vector ~v.� For i ∈ [1, |~v|], we write ~v[i] for ~v applied to i, denoting the element of ~v stored at index i.� We write (e1, . . . , en) for the vector ~v of size n such that (∀i ∈ [1, n]) ~v[i] = ei. In particular, () denotes
a vector of size 0.� We write en for the vector ~v of size n such that (∀i ∈ [1, n]) ~v[i] = e.� Given two vectors ~v1 and ~v2, we write ~v1 ++~v2 for the concatenation of ~v1 and ~v2, i.e., the vector
~v of size |~v1| + |~v2| such that for all i ∈ [1, |~v1|], ~v[i] = ~v1[i] and for all i ∈ [|~v1| + 1, |~v1| + |~v2|],
~v[i] = ~v2[i− |~v1|].� Given an element e and a vector ~v, we also write e ::~v for (e)++~v.

Definition 2 (Vector projection) Given I = {i1, . . . , im} ⊆ [1, n] with i1 < . . . < im (0 ≤ m ≤ n), we
write ~v|I for the projection of ~v on to I, defined as the vector of size m such that (∀j ∈ [1,m]) (~v|I)[j] = ~v[ij].
We write ~v|I for ~v|([1, n] \ I).

2.2 Labelled Transition Systems

We consider systems whose behavioural semantics can be represented using an LTS (Labelled Transition
System).

Definition 3 (LTS) Let A denote a finite set of elements called labels. An LTS is a tuple (Σ, A,−→, s0),
where:� Σ is a set of states,� A ⊆ A is a set of labels (or actions),� −→ ⊆ Σ ×A× Σ is the (labelled) transition relation,� and s0 ∈ Σ is the initial state.

We consider a particular label written τ and called the invisible label, which denotes internal actions. All
labels different from τ are called the visible labels.

For an LTS S = (Σ, A,−→, s0), we may write s
a

−→ s′ instead of (s, a, s′) ∈ −→. We write −→∗ for

the reflexive and transitive closure of −→. Given a regular expression r built upon labels, we write s
r

−→ s′

if there exist a1, . . . , am and s1, . . . , sm (m ≥ 0) such that s
a1−→ s1

a2−→ . . .
am−→ sm, the sequence a1 . . . am

belongs to the regular language denoted by r, and sm = s′.

INRIA

Compositional Verification using CADP 5

Definition 4 (LTS inclusion) Let Si = (Σi, Ai,−→i, s
0
i) for i ∈ {1, 2}. We say that S1 is included in S2,

written S1 ⊆ S2, if s01 = s02, Σ1 ⊆ Σ2, A1 ⊆ A2, and −→1⊆−→2.

Definition 5 (Equality modulo reachability) Let Si = (Σi, Ai,−→i, s
0
i) for i ∈ {1, 2}. The reachable

part of Si is the LTS (Σ′
i, S

′
i,−→

′
i, s

0
i), where:� −→′

i = {(s, a, s′) ∈−→i | s0i −→∗
i s}� A′

i = {a ∈ Ai | ∃(s, a, s′) ∈−→′
i}� Σ′

i = {s0i } ∪ {s′ ∈ Σi | ∃(s, a, s′) ∈−→′
i}

S1 is equal to S2 modulo reachability, written S1
r
= S2, if the reachable parts of S1 and S2 are equal.

2.3 Networks of LTSs

To deal with compositions of LTSs, we use a general model called network of LTSs (or network for short) [85],
which is inspired from the MEC [11] and FC2 [24] synchronization vectors.

Definition 6 (Network of LTSs) A network of LTSs, written N , is a pair (~S, V), where ~S is a vector of
LTSs (called component LTSs), and V is a set of synchronization rules. Each synchronization rule has the
form (~t, a), where a ∈ A is a label and ~t is a vector comprising labels and occurrences of a special symbol

• /∈ A, such that |~t| = |~S|. Each ~t is called a synchronization vector. The size of the network N is defined as

|~S|. Let ~S[i] = (Σi, Ai,−→i, s
0
i) (i ∈ [1, n]). To N one can associate a “compound” LTS lts (N) that is the

parallel composition of component LTSs. Each (~t, a) ∈ V defines transitions labelled by a, obtained either by
synchronization (if more than one index i is such that ~t[i] 6= •) or by interleaving (otherwise) of component
LTS transitions. Formally, lts (N) = (Σ, A,−→, ~s0), where:� Σ = Σ1 × . . .× Σn,� A = {a | ∃(~t, a) ∈ V },� ~s0 = (s01, . . . , s

0
n), and� −→ is the relation satisfying ~s

a
−→ ~s′ if and only if there exists (~t, a) ∈ V such that for all i ∈ [1, n]:

{

~s′[i] = ~s[i] if ~t[i] = •

~s[i]
~t[i]
−→i ~s

′[i] otherwise

We define acv(~t) = {i | i ∈ [1, n]∧~t[i] 6= •}, the set of active LTS indices of the synchronization vector ~t.

Example 1 Let a, b, c, and d be labels, and S1, S2, and S3 be the LTSs defined in Figure 1
(top), where the initial states are denoted by bold circles. Let N = ((S1, S2, S3), V) with V =
{((a, a, •), a), ((a, •, a), a), ((b, b, b), b), ((c, c, •), τ), ((•, •, d), d)}. The first two synchronization rules of N
express a nondeterministic synchronization on a between either S1 and S2, or S1 and S3. The third rule
expresses a multiway synchronization on b. The fourth rule yields an internal (τ) transition. The fifth rule
expresses full interleaving of transitions labelled by d. The compound LTS corresponding to N is depicted in
Figure 1 (bottom).

RR n° 8708

6 H. Garavel, F. Lang, and R. Mateescu

c

c

a b

0

21

3

a a

b

b

c

c

c

c

0

1

2

3

4

5

a a

b

0

1

2

3

4

5

b d

d

S1 S2 S3

0 1 3 6 8

2 4 119

7 10 12 13 14

a τ b τ

τ b τ a τ

ττ
a

5

d d

d d

a

lts (N)

Figure 1: Compound LTS corresponding to N defined in Example 1

B ::= S LTS
| B1 |[A]| B2

| B1 ||| B2

| B1 || B2 parallel compositions
| rename a1 → a′1, . . . , an → a′n in B0 rename
| hide A in B0 hide
| cut A in B0 cut

where A ⊆ A \ {τ}, {a1, . . . , an} ⊆ A \ {τ}, (∀i 6= j) ai 6= aj , {a′i, . . . , a
′
n} ⊆ A

Figure 2: Composition expressions

2.4 Composition expressions

Alternatively to networks, which compose LTSs in a flat manner, LTSs can be composed together using
higher-level algebraic operators, such as parallel composition, label hiding, label renaming, and transition
cutting, which we define below. Many operators available in the literature can be considered, e.g., from
µCRL [72], CCS [108], CSP [125], LOTOS [79], E-LOTOS [80], or LNT [28] without theoretical difficulty,
but for the sake of brevity, this paper considers only expressions comprising LTSs composed with LOTOS-like
parallel composition, hiding, renaming, and cutting operators.

Definition 7 (Composition expression) The syntax of composition expressions, written B,B0, B1, . . .,
is given in Figure 2. Each composition expression B has semantics in terms of an LTS written lts (B),
defined as follows. By convention, given a composition expression Bi, we write (Σi, Ai,−→i, s

0
i) for lts (Bi).

1. The composition expression “S” denotes the LTS S, whose semantics are defined by lts (S) = S.

2. The composition expression “B1 |[A]| B2” denotes the parallel composition of B1 and B2 with
synchronization on the labels belonging to A. Its semantics are defined by lts (B1 |[A]| B2) =
(Σ1×Σ2, A1∪A2,−→, (s01, s

0
2)), where −→ is the smallest relation satisfying the following SOS (Struc-

tural Operational Semantics) [1] rules:

s1
a

−→1 s
′
1 a /∈ A

(s1, s2)
a

−→ (s′1, s2)

s2
a

−→2 s
′
2 a /∈ A

(s1, s2)
a

−→ (s1, s′2)

s1
a

−→1 s
′
1 s2

a
−→2 s

′
2 a ∈ A

(s1, s2)
a

−→ (s′1, s
′
2)

INRIA

Compositional Verification using CADP 7

The notations “B1 ||| B2” and “B1 || B2” are respective shorthands for “B1 |[∅]| B2” and
“B1 |[A \ {τ}]| B2”.

3. The composition expression “rename a1 → a′1, . . . , an → a′n in B0” denotes B0 in which each visible
action ai (i ∈ [1, n]) is replaced by the corresponding a′i. For convenience, we may write θ instead of
a1 → a′1, . . . , an → a′n. To θ = a1 → a′1, . . . , an → a′n we associate a total function θ : A → A defined
as follows:

θ(a) =

{

a′ if (∃i ∈ [1, n]) a = ai ∧ a′ = a′i
a otherwise

The semantics of rename are defined by lts (rename θ in B0) = (Σ0, (A0 \ {a1, . . . , an}) ∪
{a′1, . . . , a

′
n},−→, s00), where θ = a1 → a′1, . . . , an → a′n and −→ is the smallest relation satisfying

the following SOS rule:

s
a

−→0 s
′

s
θ(a)
−→ s′

4. The composition expression “hide A in B0” denotes B0 where labels in A are renamed into the invisible
label τ , i.e., turned into an unobservable action. Its semantics are defined by lts (hide A in B0) =
(Σ0, (A0 \A) ∪ {τ},−→, s00), where −→ is the smallest relation satisfying the following SOS rules:

s
a

−→0 s
′ a ∈ A

s
τ

−→ s′

s
a

−→0 s
′ a /∈ A

s
a

−→ s′

If A = {a1, . . . , an}, then hide A in B is equivalent to rename a1 → τ, . . . , an → τ in B.

5. The composition expression “cut A in B0” denotes B0 where every transition labelled by an element
of A is deleted. Its semantics are defined by lts (cut A in B0) = (Σ0, A0 \A,−→, s00), where −→ is the
smallest relation satisfying the following SOS rule:

s
a

−→0 s
′ a /∈ A

s
a

−→ s′

It follows that
a

−→ ⊆
a

−→0.

Note that a composition expression is a syntactic algebraic expression structured as a tree, which we call
the component hierarchy. We could further enrich composition expressions with operators borrowed from
other process calculi than LOTOS.

There exists a mapping from composition expressions to networks: every composition expression B can
be translated into a network of LTSs, by flattening the component hierarchy. This network is written net (B)
and defined as the couple (ind (B), sync (B)), where ind (B) and sync (B) denote respectively the vector of

RR n° 8708

8 H. Garavel, F. Lang, and R. Mateescu

component LTSs and the synchronization rules corresponding to B. These functions are defined as follows:

ind (S) = (S)

ind (B1 |[A]| B2) = ind (B1)++ ind (B2)

ind (hide A in B0) = ind (B0)

ind (cut A in B0) = ind (B0)

ind (rename θ in B0) = ind (B0)

sync (S) = {((a), a) | a ∈ A} where S = (Σ, A,−→, s0)

sync (B1 |[A]| B2) =

{(~t1 ++ •|ind (B2)|, a) | (~t1, a) ∈ sync (B1) ∧ a /∈ A} ∪
{(•|ind (B1)| ++~t2, a) | (~t2, a) ∈ sync (B2) ∧ a /∈ A} ∪
{(~t1 ++~t2, a) | (~t1, a) ∈ sync (B1) ∧ (~t2, a) ∈ sync (B2) ∧ a ∈ A}

sync (rename θ in B0) =

{(~t0, θ(a)) | (~t0, a) ∈ sync (B0)}

sync (hide A in B0) =

{(~t0, τ) | (~t0, a) ∈ sync (B0) ∧ a ∈ A} ∪
{(~t0, a) | (~t0, a) ∈ sync (B0) ∧ a /∈ A}

sync (cut A in B0) =

{(~t0, a) | (~t0, a) ∈ sync (B0) ∧ a /∈ A}

Example 2 The network of Example 1 corresponds to the composition expression hide c in (S1 |[a, b, c]|
(S2 |[b]| S3)).

Networks are more general than composition expressions, as illustrated by the following example.

Example 3 Networks enable m-among-n synchronization [61], where any m LTSs among the n LTSs of
the composition synchronize on a given label. For instance, 2-among-3 synchronization on a between LTSs
S1, S2, and S3 can be achieved using the network ((S1, S2, S3), {((a, a, •), a), ((a, •, a), a), ((•, a, a), a)}). This
type of synchronization cannot be described using classical process algebraic operators [61].

2.5 LTS Equivalences

Equivalence relations on LTSs characterize semantic equivalences between systems. Several relations are
available in the literature, differing mainly in their treatment of invisible labels. We focus here on a few
of them, namely strong bisimulation, branching bisimulation and its divergence-sensitive variant, and τ∗.a
equivalence.

Definition 8 (Strong bisimulation [116]) A strong bisimulation is a symmetric relation R ⊆ Σ×Σ such

that if (s1, s2) ∈ R then: for all s1
a

−→ s′1, there exists s′2 such that s2
a

−→ s′2 and (s′1, s
′
2) ∈ R.

Two states s1 and s2 are strongly bisimilar if there exists a strong bisimulation R such that (s1, s2) ∈ R.
Two LTSs are strongly bisimilar if their initial states are strongly bisimilar.

Definition 9 (Branching bisimulation [136, 137]) A branching bisimulation is a symmetric relation

R ⊆ Σ × Σ such that if (s1, s2) ∈ R then: for all s1
a

−→ s′1, either a = τ and (s′1, s2) ∈ R, or there exists a

sequence s2
τ∗

−→ s′2
a

−→ s′′2 such that (s1, s
′
2) ∈ R and (s′1, s

′′
2) ∈ R.

Two states s1 and s2 are branching bisimilar if there exists a branching bisimulation R such that (s1, s2) ∈
R. Two LTSs are branching bisimilar if their initial states are branching bisimilar.

Branching bisimulation does not distinguish between inaction and a cycle of internal actions. Divergence-
sensitive branching bisimulation is introduced to take into account cycles of internal actions.

INRIA

Compositional Verification using CADP 9

Definition 10 (Divergence-sensitive branching bisimulation [136, 137]) A divergence-sensitive
branching bisimulation (or divbranching bisimulation for short) is a branching bisimulation R such that if

(s01, s
0
2) ∈ R and there is an infinite sequence s01

τ
−→ s11

τ
−→ s21

τ
−→ . . . with (si

1, s
0
2) ∈ R for all i ≥ 0, then

there is an infinite sequence s02
τ

−→ s12
τ

−→ s22
τ

−→ . . . such that (si
1, s

j
2) ∈ R for all i, j ≥ 0.

Two states s1 and s2 are divbranching bisimilar if there exists a divbranching bisimulation R such that
(s1, s2) ∈ R. Two LTSs are divbranching bisimilar if their initial states are divbranching bisimilar.

Definition 11 (τ∗.a equivalence [51]) A τ∗.a equivalence is a symmetric relation R ⊆ Σ × Σ such that

if (s1, s2) ∈ R then: for each sequence s1
τ∗.a
−→ s′1 where a is a visible label, there exists a sequence s2

τ∗.a
−→ s′2

such that (s′1, s
′
2) ∈ R.

Two states s1 and s2 are τ∗.a equivalent if there exists a τ∗.a equivalence R such that (s1, s2) ∈ R. Two
LTSs are τ∗.a equivalent if their initial states are τ∗.a equivalent.

Other equivalence relations are defined in the literature and possibly used in our framework of composition
expressions and networks, such as observation equivalence [108], safety equivalence [23], trace equivalence
(also known as language equivalence), and weak trace equivalence [26]. For the sake of conciseness, we do
not give their definitions in this paper.

Equivalence relations and their associated preorders can be used to compare the behaviour of two systems.
Equivalence relations can also be used to compute a “canonical form” for each LTS, by identifying and
merging equivalent states and by replacing equivalent transition sequences by a single, representative one.
Such an operation is often called LTS minimization, or reduction if applied partially. In the case of strong
and branching bisimulations, the resulting LTS is indeed the smallest (in both the number of states and
the number of transitions) of its equivalence class. In the case of τ∗.a equivalence, the representative of
every sequence of transitions matching τ∗.a is a single transition labelled by a, i.e., the τ -transitions are
eliminated. This yields an LTS that is not necessarily minimal in the number of transitions, but always
minimal in the number of states (and obviously in the number of τ -transitions). Note that there exist other
equivalence relations whose canonical forms may be dramatically larger (in the number of states) than the
smallest elements of their equivalence classes. This is the case of trace and weak trace equivalences, whose
canonical forms require determinization. This illustrates an advantage of bisimulations and equivalence
relations preserving the branching structure of LTSs over relations dealing with traces.

Definition 12 Given an LTS equivalence relation R and an LTS S, we write reduceR (S) for the LTS
corresponding to S minimized modulo R. Given a network N (respectively a composition expression B)
and an LTS equivalence relation R, we write reduceR (N) (respectively reduceR (B)) as a shorthand for
reduceR (lts (N)) (respectively reduceR (lts (B))).

2.6 Congruence results

Definition 13 (Congruence for networks) An LTS equivalence relation R is a congruence for networks

if and only if for all networks N = (~S, V), for all i ∈ [1, n] where n is the size of N , and for all Si equivalent

to ~S[i] modulo R, then lts (~S, V) is equivalent modulo R to lts (~S′, V) where ~S′ is the same as ~S in which ~S[i]
has been replaced by S′

i.

Proposition 1 Strong bisimulation and trace equivalence are congruences for networks [85].

Proposition 2 Branching bisimulation, divergence-sensitive branching bisimulation, observation equiva-
lence, safety equivalence, and weak trace equivalence [26], are congruences for networks provided that the
synchronization rules satisfy the following constraints [85] regarding the internal transitions of component
LTSs, for all i ∈ [1, n]:� Internal transitions should not be synchronized:

(~t, a) ∈ V ∧ ~t[i] = τ =⇒ acv(~t) = {i}

RR n° 8708

10 H. Garavel, F. Lang, and R. Mateescu� Internal transitions should not be renamed:

(~t, a) ∈ V ∧ ~t[i] = τ =⇒ a = τ� Internal transitions should not be cut:

τ
−→i 6= ∅ =⇒ (∃(~t, τ) ∈ V) ~t[i] = τ

In the sequel, we consider only networks satisfying the constraints defined in Proposition 2. Note that
these constraints are natural, and that they are satisfied by the networks obtained from composition expres-
sions by translation.

Note also that τ∗.a equivalence is neither a congruence for networks nor for composition expressions.
However, it can be used compositionally as a pre-reduction for weaker congruence relations, such as safety
and weak trace equivalences.

3 Property-independent compositional approaches

3.1 Basic compositional LTS generation

In its simplest forms [49, 95, 126, 140, 128, 129, 134, 125], compositional verification (also called incremental
reduction [126], incremental reachability analysis [128, 129], compositional state space generation [134], or
inductive compression [125]) consists in replacing each component LTS by an abstraction, simpler than the
original component but still preserving the properties to be verified on the whole system.

The approach for compositionality presented in this section deals with the construction of a minimal
(or, at least, reduced) LTS modulo a given equivalence relation such as strong, branching, or observa-
tional equivalence, starting from a composition expression or a network. The chosen abstraction is thus
LTS minimization modulo an appropriate equivalence relation: instead of lts ((S1, . . . , Sn), V), we compute
lts ((reduceR (S1), . . . , reduceR (Sn)), V). For weak equivalence relations, such as branching bisimulation, this
may yield substantial reductions of the initial LTS, and consequently facilitate its subsequent analysis.

This abstraction is sound as long as the equivalence relation R is a congruence for the composition
expression. Minimization can also be applied at any intermediate level in the composition, thus opening the
way for various compositional minimization strategies. This will be detailed in Section 5.

Although basic compositional LTS generation has been applied successfully to some complex systems
(e.g., [50, 29] in the case of the LOTOS language [79]), it may be counter-productive in some other cases:
generating the LTS of each component separately may lead to state explosion, whereas the generation of the
whole system at once might succeed if components constrain each other when composed in parallel. Indeed,
there may be many states of a component that, although useful in a general environment, are useless (i.e.,
never explored) in a particular environment.

3.2 Interfaces and projections

Enhanced compositional verification approaches [69, 31, 139, 32, 33, 70, 83, 30, 63] have been proposed to
generate the LTS of a component by taking into account interface constraints (also known as environment
constraints or context constraints). These constraints express the behavioural restrictions imposed on the
considered component by synchronization with its neighbour components. Taking into account the environ-
ment of a component permits local elimination of states and transitions unreachable in the LTS of the whole
system.

In general, interface constraints are expressed in the form of an LTS called interface. There are two
approaches to restrict the behaviour of a component w.r.t. an interface. In the first one [30, 31, 32, 33, 63],
the component is composed in parallel with the interface, which must have been transformed beforehand
so that the composition does not affect the global behaviour of the system (a property known as context
transparency).

In the second approach, the component is constrained using a specific semi-composition operator [69, 70,
83], which cuts the component states and transitions that cannot be reached when considering the traces of

INRIA

Compositional Verification using CADP 11

the interface as the only possible interactions between the component and its environment. We consider the
second approach. The semi-composition operator is defined as follows.

Definition 14 (Semi-composition) Let Si = (Σi, Ai,−→i, s
0
i) (i = 1, 2) be two LTSs, A be a set of visible

labels, and (Σ||, A||,−→||, s0||) = lts (S1 |[A]| S2). The semi-composition of S1 and S2, written “S1 −|[A]| S2”,

is the LTS (Σ, A1,−→, s01), where −→ = −→1 ∩ {(s1, a, s′1) | (s01, s
0
2) −→∗

|| (s1, s2)
a

−→|| (s′1, s
′
2)} and

Σ = {s | (∃a, s′) s
a

−→ s′ ∨ s′
a

−→ s}. A is called the synchronization set and the pair (A,S2) is called the
interface1. We say that a label a ∈ A1 is controlled by the interface (A,S2) if a ∈ A. We write S1 −|| S2 for
S1 −|[A \ {τ}]| S2.

Example 4 The following holds:

q0 q1 q2 q3

a a a

c c c

d d

−|[a, c, d]|

d

a

c a

c
τp0

p1

p2

p3 =

a a

q0 q1 q2

d

c c

S1 S2 S3

Transitions q2
d

−→ q2, q2
a

−→ q3, and q3
c

−→ q2 do not belong to S3 because they are not reachable in
S1 |[a, c, d]| S2. Therefore, state q3 is unreachable in S3.

The following properties ensure the applicability of semi-composition.

Proposition 3 Semi-composition cannot increase the size of the LTS to which it is applied:
(∀A,S1, S2) lts (S1 −|[A]| S2) ⊆ S1.

Proposition 4 (∀A,S1, S2) lts (S1 −|[A]| S2) = S1 if the visible traces of “hide A \ A in S1” are included
in the visible traces of “hide A \A in S2”.

Proposition 5 (Laws of semi-composition [83])

S1 |[A]| S2
r
= (S1 −|[A]| S2) |[A]| S2 (1)

(S1 |[A]| S3) |[A′]| S2
r
= ((S1 −|[A′ ∩ (A ∪ (A1 \A3))]| S2) |[A]| S3) |[A′]| S2 (2)
where A1 is the set of labels of S1, and

A3 is the set of labels of S3

(hide A in S1) |[A′]| S2
r
= (hide A in (S1 −|[A′ \A]| S2)) |[A′]| S2 (3)

Proposition 5 defines how semi-composition can be used to reduce S1 given an LTS S2 in its environment,
by removing the unreachable states and transitions, without losing any temporal property of the system. Note
that, unlike the approach of Cheung & Kramer, which requires that the interface be context transparent
— and thus be transformed into a deterministic LTS using a well-known but expensive algorithm — no
restriction is made here on the shape of S2.

Proposition 6 S1 −|[A]| S2 = S1 −|[A]| S′
2 if “hide A \ A in S2” and “hide A \ A in S′

2” have the same
visible traces.

This proposition implies that the uncontrolled labels can be hidden in the interface and that the resulting
interface can then be minimized modulo any relation preserving visible traces (e.g., safety equivalence [23]),
which permits reduction of the number of states to explore while calculating semi-composition. Safety
minimization is less expensive than determinization and, unlike determinization which can induce a dramatic
growth of the LTS, yields an LTS that never contains more states than the input. Minimization of the
interface is not mandatory but helps reduce the cost of semi-composition.

1This definition of semi-composition is simpler but equivalent to that given in [83].

RR n° 8708

12 H. Garavel, F. Lang, and R. Mateescu

3.3 Automatic generation of interfaces

Interfaces can be either written by the user (and possibly checked automatically [83]) or generated automati-
cally. Although automated generation has the neat advantage to relieve users from the burden of calculating
appropriate constraints, existing automated interface generation techniques often undergo two main limi-
tations: first, these techniques are specific to a given parallel composition operator and thus not directly
applicable in the framework of concurrent languages featuring different and/or more general parallel compo-
sition operators; second, as already observed in [31], they may fail to capture effective interface constraints
due to deficiencies in their analysis of synchronizations between components.

In this section, we propose to generate interfaces automatically from networks of LTSs, following the ap-
proach proposed in [86]. The network of LTS intermediate representation permits the derivation of effective
interface constraints imposed on a given component by a subset of its neighbours automatically, indepen-
dently of the component hierarchy and of the nature of the parallel composition operators. This permits
combination of constraints induced by distant components, and improvement of the accuracy of interfaces
by exploiting more precisely the synchronizations between components. For this reason, we qualify as refined
the interfaces generated using this technique.

A method was previously proposed in [83] to compute automatically an exact interface in the framework of
composition expressions built upon parallel composition and label hiding. In this method, defined inductively
based on the semi-composition laws described in Proposition 5, two component LTSs S1 and S2 are selected
and a synchronization set A is computed such that S1 can be replaced by S1 −|[A]| S2 without changing the
compound LTS. The interface (A,S2) built using this method generally does not give the best account of
environment constraints.

Here, we propose to generate automatically interfaces that give a better account of environment con-
straints, using refined interface generation [86]. This method uses the information available in the interme-
diate network model to compute an interface capturing the constraints imposed on a given component P
in a concurrent system by one or several neighbour components. This interface can then be semi-composed
with P on-the-fly, so as to restrict P ’s behaviour.

Definition 15 (Refined interface generation) Given a network N = (~S, V) of size n, an index k ∈

[1, n], and a nonempty set of indices I ⊆ [1, n] \ {k}, the refined interface of ~S[k] capturing constraints

induced by {~S[i] | i ∈ I}, written refint (N, k, I), is the couple (A, SI), where:

SI = lts (~S|I, VI)

VI = {(~t|I,~t[k]) | (∃a) (~t, a) ∈ V ∧ ~t[k] 6= •} ∪ {(~t|I, τ) | (∃a) (~t, a) ∈ V ∧ ~t[k] = •}

The refint operation may create synchronization rules of the form (•n, a), which induce a self-looping
transition labelled by a in each state of the interface. Some of these synchronization rules can be eliminated
as follows:� Every synchronization rule of the form (•n, τ) can merely be removed, as τ loops do not affect the

visible traces of the interface.� Every synchronization rule of the form (•n, a) where a 6= τ can be removed and then a removed from
the synchronization set if the set of synchronization rules does not contain another rule with the same
label a as right-hand side. Indeed, for all ~S, S′, A, and V in which a does not occur as a right-hand
side, S′ −|[A]| lts (~S, V ∪ (•n, a)) = S′ −|[A \ {a}]| lts (~S, V).

The refined interface thus consists of a product of the LTSs ~S[i] (i ∈ I), synchronized by synchronization
rules derived systematically from the synchronization rules of N , each rule (~t, a) being transformed into a

rule (~t|I,~t[k]) if ~t[k] 6= •, or (~t|I, τ) otherwise. Therefore, whenever a transition ~q
a

−→ ~q′ can be fired in

lts (N) using a synchronization rule (~t, a) with ~t[k] 6= •, then the participating transition ~q[k]
~t[k]
−→ ~q′[k] of

~S[k] is also a transition of ~S[k] −|[A]| SI . Conversely, transitions of ~S[k] that cannot participate in any

mandatory synchronization with SI are eliminated by the semi-composition ~S[k] −|[A]| SI .

INRIA

Compositional Verification using CADP 13

Example 5 Consider the network N displayed at the left below, with arbitrary LTSs S1, . . . , S4. The refined
interface of S1 capturing constraints induced by S3 and S4, written refint (N, 1, {3, 4}), has the LTS corre-
sponding to the network displayed at the right below. Note the projection on S3 and S4, and observe that the
right-hand sides of synchronization rules in the result are the elements of column S1, where • is renamed
into τ .

refint

















(S1, S2, S3, S4),






((a1, a2, a3, a4), a),
((•, b2, b3, •), b),
((c1, c2, •, •), c)















, 1, {3, 4}









= lts









(S3, S4),






((a3, a4), a1),
((b3, •), τ),
((•, •), c1)















Proposition 7 Let N be a network of LTSs of size n, k ∈ [1, n], I ⊆ [1, n]\{k}, and (A,SI) = refint (N, k, I).

If ~S′ is the vector of LTSs of size n defined by (∀i ∈ [1, n] \ {k}) ~S′[i] = ~S[i] and ~S′[k] = ~S[k] −|[A]| SI , then

lts (~S, V)
r
= lts (~S′, V).

The following examples show that refined interfaces may constrain components better than the interfaces
generated by the method proposed in [83].

Example 6 Let B = S1 |[a, b, d]| (S2 |[c, d]| S3) with S1, S2, and S3 defined as follows:

a

b

d

p0 p1

d

b

c

q0 q1

c c c

d d

r0 r1 r2 r3

a a a

S1 S2 S3

According to the semi-composition laws of Proposition 5, S3 can be replaced in B either by S3 −|[a, d]| S1,
or by S3 −|[c, d]| S2, but both expressions result in S3 itself. Yet, one can see that actions a and c are
executed with some alternation in B, due to the mandatory synchronization on b between S1 and S2. As
a consequence, state r3 is not reachable in B. To capture such a constraint, it should be possible to build
an interface that takes simultaneously into account the constraints induced by both S1 and S2, even though
there is no sub-expression of B containing S1 and S2 only (parallel composition is not associative). This is
not possible using the method described in [83]2, but this can be done using refined interface generation. To
this aim, the expression B = S1 |[a, b, d]| (S2 |[c, d]| S3) is translated into the network N displayed below and
then S3 may be restricted using the refined interface lts (N ′) = refint (N, 3, {1, 2}) that takes simultaneously
both S1 and S2 into account, where N ′ and lts (N ′) are displayed below. S3 −|| lts (N ′), also displayed below,

is strictly included in S3 as the unreachable state r3 and transitions r2
a

−→ r3, r3
c

−→ r2, and r2
d

−→ r2 are
deleted.

N =













(S1, S2, S3),














((a, •, a), a),
((b, b, •), b),
((•, c, c), c),
((d, d, d), d)



























N ′ =













(S1, S2),














((a, •), a),
((b, b), τ),
((•, c), c),
((d, d), d)



























p0
q0

p1
q0

p0
q1

p1
q1

d

τ

a

a c

c

a a

d

c c
r0 r2r1

lts (N ′) S3 −|| lts (N ′)

2This limitation holds similarly for the approach described in [31].

RR n° 8708

14 H. Garavel, F. Lang, and R. Mateescu

Example 7 Let B = S1 |[a, b]| (S2 |[a]| S3) with S1, S2, and S3 defined as follows:

b

a

p0 p1 q0

b

q1

b
q2

a

a, b

a

b

d

r0 r1

S1 S2 S3

According to the semi-composition laws of Proposition 5, S2 can be replaced by S2 −|[a]| S1, but this expression
yields S2 itself. Yet, it is clear from S1 and the synchronizations in B that state q2 of S2 is unreachable in B,
as two successive b actions cannot be fired without an a in between. A better interface should permit to take
into account the environment constraints due to synchronizations on b, even though every b of S1 does not
necessarily synchronize with a b of S2. Such an interface can be obtained using refined interface generation.
To this aim, the expression B = S1 |[a, b]| (S2 |[a]| S3) is translated into the network N displayed below and
then S2 may be restricted using the refined interface lts (N ′) = refint (N, 2, {1}) that takes S1 into account,
where N ′ and lts (N ′) are displayed below. In practice, lts (N ′) can be minimized modulo safety equivalence,
yielding an LTS with 2 states and 3 transitions. S2 −|| lts (N ′) is isomorphic to S1.

N =













(S1, S2, S3),














((a, a, a), a),
((b, b, •), b),
((b, •, b), b),
((•, •, d), d)



























N ′ =













(S1),














((a), a),
((b), b),
((b), τ),
((•), τ)



























τ

b

a

p0 p1

τ

τ

lts (N ′)

This example shows that by taking a better account of the synchronization structure of the system, the refint

operation permits refinement of the interface with respect to that obtained using equation (2), turning the
set of visible traces of the interface from a∗ with b uncontrolled using the method of [83] to a∗ + b + (ba+)∗

using refined interface generation. The latter set of traces does not contain any trace with two consecutive

b’s, thus disabling the transition q1
b

−→ q2 in S2 and making state q2 and transitions q2
a

−→ q2, q2
b

−→ q2
also unreachable.

Algorithmically, refined interface generation has the same complexity as the synchronization product
of the LTSs taken into account in the environment. In practice, the cost of computing the interface can
be reduced by minimizing the component LTSs participating in the interface modulo safety equivalence.
This is correct, because safety equivalence is a congruence for networks. In addition, well-known partial
order reductions preserving visible traces can be used to further reduce interfaces on-the-fly during their
construction.

So far, refined interface generation required that each component of the concurrent system under verifica-
tion (usually written in a high-level language) was replaced by its LTS. This apparently contradicts the claim
that refined interfaces can be used to restrict processes on the fly. However, one can see in Definition 15 that
the states and transitions of the component to be restricted (~S[k]) are not needed for interface generation.

In practice, only the visible labels of ~S[k] are needed to compute the synchronization rules of the network

from higher-level operators. To do so, ~S[k] can be replaced by an abstraction consisting of an arbitrary (and
much smaller) LTS containing the same set of labels. In fact, the method remains correct if the abstraction

contains a superset of ~S[k]’s labels, although the reduction obtained on ~S[k] by semi-composition generally

increases while the set of labels of the abstraction gets closer to the exact set of labels of ~S[k]. In princi-
ple, the abstraction can be generated automatically by examining the gates (or channels) occurring in the
high-level specification and the types of their data, and to enumerate data of this type appropriately.

4 Property-dependent compositional approaches

There are two ways of expressing and checking properties on a given concurrent system: one (equivalence
checking) is based on behavioural relations and the other (model checking) is based on properties expressed,
e.g., as formulas of some temporal logic.

INRIA

Compositional Verification using CADP 15

The approach for compositionality presented in the previous section was based on equivalences, and
independent from any particular set of properties, in the sense that it preserves all properties compatible
with this equivalence. In this section, we consider alternative property-based approaches, which exploit
compositionality while preserving a given set of temporal logic formulas to be verified. We develop this idea
along two complementary ways:� The first way aims at checking a set of temporal formulas on a (monolithic) LTS after reducing it as

much as possible w.r.t. each formula. This is done by identifying the maximal set of actions that do
not influence the truth value of a formula, hiding these actions in the LTS, and minimizing the LTS
modulo an equivalence relation preserving the formula. The minimization can be carried out using
the compositional equivalence-based approach of Section 3, which therefore becomes specialized for a
given formula.� The second way aims at checking one temporal formula on the parallel composition of several LTSs by
taking them into account individually following the partial model checking method [8]. This is done
by combining the formula with one of the LTSs and then checking the resulting formula recursively
on the parallel composition of the remaining LTSs, until all of them have been taken into account. At
intermediate stages, simplifications must be applied to the formula to keep it as small as possible.

These two ways of verification can be combined naturally by applying maximal hiding before starting
partial model checking, and thus cumulating their benefits. One of our achievements is the reformulation
of partial model checking in terms of graph manipulations, which paves the way towards the connection
between compositional model checking and compositional state space construction.

We first revisit briefly the definitions of the temporal logics considered and the associated on-the-fly
model checking methods. Then, we present the property-preserving reductions based on maximal hiding,
and the partial model checking approach on networks of LTSs.

4.1 Temporal logics

Temporal logics [121, 122] were introduced more than three decades ago as a means for reasoning about the
behaviour of concurrent systems. These formalisms consist of a small set of temporal operators expressing
the logical precedence of states or events over time. Since the early proposals, a plethora of temporal logics
emerged in the literature (see [48, 110, 25] for surveys), having different interpretation models, expressiveness,
conciseness, and complexity of model checking. Regarding the interpretation models, two orthogonal criteria
are most often used for classifying temporal logics: state-based (resp. action-based) logics specify properties
of states (resp. actions, or events) of the system under study, and linear-time (resp. branching-time) logics
are interpreted over execution sequences (resp. trees) of the system. Traditionally, state-based logics are
interpreted on Kripke structures (KSs), in which states are labelled with atomic propositions, and action-
based logics are interpreted on LTSs. The table below shows the most representative temporal logics in each
of the four classes induced by the two criteria.

Linear Branching
State LTL [122] CTL [44]
Action ALTL [64] ACTL [111]

Besides these “pure” temporal logics, many other temporal logics combining linear-time and branching-
time operators have been proposed, e.g., CTL∗ [45] and ACTL∗ [112] in the state- and action-based setting,
respectively. Variants of these logics combining state- and action-based properties were also defined, having
as interpretation models Kripke transition systems (KTSs) [110], i.e., state spaces containing relevant infor-
mation on both states and transitions. A class of very expressive temporal logics are those comprising fixed
point operators, such as the modal µ-calculus (Lµ) [82], which subsumes virtually all other temporal logic
operators, and therefore can be seen as an assembly language for reasoning on LTSs.

Finally, to increase their expressiveness and facilitate their usage for value-passing systems, tempo-
ral logics were extended with various constructs: regular expressions over sequences (e.g., ELTL [138],
RCTL [16], PDL-∆ [127]), automata (e.g., BRTL [75], ECTL∗ [131]), or data manipulation (e.g., extended

RR n° 8708

16 H. Garavel, F. Lang, and R. Mateescu

µ-calculi [42, 124], FORSPEC [9]). Also, extensions with both regular expressions and data handling are
proposed in the state-based, linear-time setting (e.g., EAGLE [14]) and the action-based, branching-time
setting (e.g., MCL [105]).

Given that we work in the compositionality framework underpinned by process algebras, we focus on
action-based, branching-time temporal logics, which are suitable for LTSs and adequate w.r.t. bisimulation
relations. More precisely, we use the dataless fragment of MCL (Model Checking Language) [105], defined
in Figure 3. Action formulas (denoted by α) are built over the set of actions by using Boolean connectors
in a way similar to ACTL [112], which is a slight extension w.r.t. the original definition of Lµ [82]. Derived
action operators can be defined as usual: true = ¬false, α1 ∧ α2 = ¬(¬α1 ∨ ¬α2), etc. Regular formulas
(denoted by β) are built from action formulas by using the testing (?), concatenation (.), choice (|), and
transitive reflexive closure (∗) operators. Derived regular operators can be defined as usual: ε = false∗ is
the empty sequence operator, β+ = β.β∗ is the transitive closure operator, etc. State formulas (denoted
by ϕ) are built from Boolean connectors, the possibility modality (〈 〉) and the infinite looping operator
(〈 〉@) containing regular formulas as in PDL [53] and PDL-∆ [127], and the minimal fixed point operator
(µ) defined over propositional variables X belonging to a set X . Derived state operators can be defined as
usual: true = ¬false, ϕ1∧ϕ2 = ¬(¬ϕ1∨¬ϕ2), [β]ϕ = ¬ 〈β〉 ¬ϕ is the necessity modality, and [β] ⊣ = ¬ 〈β〉@
is the saturation operator. νX.ϕ = ¬µX.¬ϕ[¬X/X] is the maximal fixed point operator (ϕ[¬X/X] stands
for ϕ in which all free occurrences of X , i.e., not bound by a fixed point operator, have been negated). State
formulas are assumed to be syntactically monotonic [82], i.e., each free occurrence of a propositional variable
X inside a formula µX.ϕ or νX.ϕ must be preceded by an even number of negations.

Action formulas:
α ::= b

| false

| ¬α1

| α1 ∨ α2

[[b]]
A

= {b}
[[false]]

A
= ∅

[[¬α1]]A = A \ [[α1]]A
[[α1 ∨ α2]]A = [[α1]]A ∪ [[α2]]A

Regular formulas:

β ::= α
| ϕ?
| β1.β2

| β1|β2

| β∗

1

||α||
A

= {(s, s′) ∈ Σ × Σ | (∃b ∈ A) s
b

−→ s′ ∧ b ∈ [[α]]
A
}

||ϕ?||
A

= {(s, s) ∈ Σ × Σ | s ∈ [[ϕ]]
M
}

||β1.β2||A = ||β1||A ◦ ||β2||A
||β1|β2||A = ||β1||A ∪ ||β2||A

||β∗

1 ||A = ||β1||
∗

A

State formulas:

ϕ ::= false

| ¬ϕ1

| ϕ1 ∨ ϕ2

| 〈β〉ϕ1

| 〈β〉@
| X
| µX.ϕ1

[[false]]
M

ρ = ∅
[[¬ϕ1]]M ρ = Σ \ [[ϕ1]]M ρ

[[ϕ1 ∨ ϕ2]]M ρ = [[ϕ1]]M ρ ∪ [[ϕ2]]M ρ
[[〈β〉ϕ1]]M ρ = {s ∈ Σ | (∃s′ ∈ Σ) (s, s′) ∈ ||β||

A
∧ s′ ∈ [[ϕ1]]M ρ}

[[〈β〉@]]
M

= {s ∈ Σ | (∀k ≥ 0) (∃s′ ∈ Σ) (s, s′) ∈ ||β||k
A
}

[[X]]
M

ρ = ρ(X)
[[µX.ϕ1]]M ρ =

T

{U ⊆ Σ | [[ϕ1]]M (ρ ⊘ [U/X]) ⊆ U}

Figure 3: Syntax and semantics of dataless MCL

The interpretation [[α]]A of an action formula on the set of actions of an LTS M = (Σ, A, T, s0) denotes
the subset of actions satisfying α. An action b satisfies a formula α (also denoted by b |=A α) if and only

if b ∈ [[α]]A. A transition s1
b

−→ s2 such that b |=A α is called an α-transition. The interpretation ||β||A of
a regular formula on an LTS denotes a relation between the states that are source and target of transition
sequences whose concatenated actions form a word belonging to the regular language defined by β. The
testing operator specifies state formulas that must hold in the intermediate states of a transition sequence.
A propositional context ρ : X → 2Σ is a partial function mapping propositional variables to subsets of
states. The notation ρ ⊘ [U/X] stands for a propositional context identical to ρ except for variable X ,
which is mapped to the state subset U . The interpretation [[ϕ]]M ρ of a state formula on an LTS M and

INRIA

Compositional Verification using CADP 17

a propositional context ρ (which assigns a set of states to each propositional variable occurring free in ϕ)
denotes the subset of states satisfying ϕ in that context. The Boolean connectors are interpreted as usual
in terms of set operations. The possibility modality 〈β〉ϕ1 (resp. the necessity modality [β]ϕ1) denotes the
states for which some (resp. all) of their outgoing transition sequences satisfying β lead to states satisfying
ϕ1. The infinite looping operator 〈β〉@ (resp. the saturation operator [β] ⊣) denotes the states having some
(resp. no) outgoing transition sequence consisting of an infinite concatenation of sub-sequences satisfying β.
The minimal fixed point operator µX.ϕ1 (resp. the maximal fixed point operator νX.ϕ1) denotes the least
(resp. greatest) solution of the equation X = ϕ1 interpreted over the complete lattice (2Σ, ∅,Σ,∩,∪,⊆). A
state s satisfies a closed formula ϕ, denoted by s |=M ϕ, if and only if s ∈ [[ϕ]]M (the propositional context ρ
can be omitted since ϕ does not contain free variables). An LTS M = (Σ, A, T, s0) satisfies a closed formula
ϕ, denoted by M |= ϕ, if and only if s0 |=M ϕ.

Regular operators can be eliminated by translating possibility modalities and infinite looping operators
into plain Lµ by applying the identities below [46] (dual identities hold for necessity modalities and saturation
operators):

〈ϕ′?〉ϕ = ϕ′ ∧ ϕ 〈β1.β2〉ϕ = 〈β1〉 〈β2〉ϕ
〈β1|β2〉ϕ = 〈β1〉ϕ ∨ 〈β2〉ϕ 〈β∗〉ϕ = µX.(ϕ ∨ 〈β〉X)

〈β〉@ = νX. 〈β〉X

Although regular formulas do not increase expressiveness, they make possible a much more concise and
intuitive description of properties than their fixed point counterparts. For example, the fair reachability [123]
(i.e., by skipping cycles) of a reception rcv after each emission snd possibly followed by a finite number of
transmission errors err, can be specified in MCL as follows:

[true∗.snd .((¬rcv)∗.err)∗] 〈true∗.rcv〉 true

whereas in plain Lµ a more verbose formula is needed:

νX.([snd] νY.(µZ.(〈rcv〉 true ∨ 〈true〉Z) ∧ νW.([err]Y ∧ [¬rcv]W)) ∧ [true]X)

To obtain efficient model checking algorithms, i.e., linear in the size of the LTS (number of states and
transitions) and the size of the formula (number of operators) we consider only alternation-free [46] fixed
point formulas, i.e., without mutually recursive minimal and maximal fixed point operators. Note that
infinite looping operators whose regular formulas contain star operators yield after translation fixed point
formulas of alternation depth 2, such as 〈a∗.b〉@ = νX.µY.(〈b〉X ∨ 〈a〉Y), which contains two mutually
recursive variables X and Y of different fixed point sign. Although the Lµ2 fragment of alternation depth 2
has in general a model checking complexity quadratic in the size of the LTS [46], the particular formulas
obtained from infinite looping operators can be checked with a linear complexity, as shown in the next
subsection.

4.2 Model checking

Given an LTS M = (Σ, A, T, s0) and a closed state formula ϕ, the model checking problem consists in
determining if M |= ϕ, which amounts to verify if the initial state s0 satisfies ϕ, i.e., s0 ∈ [[ϕ]]. In the
explicit-state setting, there are basically two approaches to solve this problem: the global (or enumerative)
approach evaluates the interpretation of ϕ on M , i.e., the subset of states satisfying ϕ, and checks if s0
belongs to it, whereas the local (or on-the-fly) approach evaluates the truth value of ϕ on s0 based on the
truth values of its subformulas on the descendant states of s0. The global approach requires the entire
construction of the LTS before carrying out verification, whereas the local approach explores it in a demand-
driven way during verification. In practice, local model checking is suitable for the early phases of the design
process, when errors are likely to occur more frequently and are detected quickly by exploring relatively
small parts of the LTS; at later phases, when the model becomes stable and no errors are detected anymore,
global model checking is more appropriate for verifying invariant properties since the underlying algorithms
are slightly more efficient.

The alternation-free µ-calculus fragment (consisting of formulas without mutually recursive variables
of different fixed point signs) is equipped with global [38] and local [3] model checking algorithms having a

RR n° 8708

18 H. Garavel, F. Lang, and R. Mateescu

linear complexity O(|ϕ| ·(|Σ|+ |T |)). For checking MCL formulas, we adopt the on-the-fly approach proposed
in [3], based on Boolean Equation Systems (BESs), and we generalize it to deal efficiently with formulas of
particular shapes frequently encountered in practice [102]. A BES is a tuple B = (X,M1, ...,Mn), where

X ∈ X is a Boolean variable and Mi are equation blocks (i ∈ [1, n]). Each block Mi = {Xj
σi= opjXj}j∈[1,mi]

is a set of minimal (resp. maximal) fixed point equations of sign σi = µ (resp. σi = ν). The right-hand
side of each equation j is a pure disjunctive or conjunctive formula obtained by applying a Boolean operator
opj ∈ {∨,∧} to a set of variables Xj ⊆ X . The Boolean constants F and T abbreviate the empty disjunction
∨∅ and the empty conjunction ∧∅.

The main variable X must be defined in block M1. A variable Xj depends upon a variable Xl if Xl ∈ Xj .
A block Mi depends upon a block Mk if some variable of Mi depends upon a variable defined in Mk. A
block is closed if it does not depend upon any other blocks. A BES is alternation-free if there are no cyclic
dependencies between its blocks; in this case, the blocks are assumed to be sorted topologically such that a
block Mi only depends upon blocks Mk with k > i.

The semantics of a formula opi{X1, ..., Xk} w.r.t. Bool = {F,T} and a context δ : X → Bool, which
must initialize all variables X1, ..., Xk, is the boolean value defined as follows:

[[opi{X1, ..., Xk}]] δ = δ(X1) opi ... opi δ(Xk)

The semantics of an equation block Mi = {Xj
σi= opjXj}j∈[1,mi] w.r.t. a context δ is the σi-fixed point

of a vectorial functional Φiδ : Boolmi → Boolmi :

[[

{Xj
σi= opjXj}j∈[1,mi]

]]

δ = σiΦiδ

where
Φiδ(b1, ..., bmi

) = (
[[

opjXj

]]

(δ ⊘ [b1/X1, ..., bmi
/Xmi

]))j∈[1,mi]

The notation δ⊘ [b1/X1, ..., bn/Xn] stands for a context identical to δ except for variables X1, ..., Xn, which
are assigned values b1, ..., bn, respectively.

The semantics of an alternation-free BES is the value of its main variable X given by the solution of M1,
i.e., δ1(X), where the contexts δi are calculated as follows:

δn = [[Mn]] []
δi = ([[Mi]] δi+1) ⊘ δi+1 for i ∈ [1, n− 1]

Note that the context for interpreting Mn is empty (since Mn is closed) and a block Mi is interpreted in the
context of all blocks Mk with k > i.

A block Mi is acyclic if there are no cyclic dependencies between the variables defined in Mi. A variable
Xj is called disjunctive (resp. conjunctive) if opj = ∨ (resp. opj = ∧). A block Mi is disjunctive (resp.
conjunctive) if each of its variables either is disjunctive (resp. conjunctive), or it depends upon at most one
variable defined in Mi, all its other dependencies being constants or variables defined in other blocks.

The on-the-fly resolution of an alternation-free BES B = (X,M1, ...,Mn) consists in computing the
value of X by exploring the right-hand sides of the equations in a demand-driven way, without explicitly
constructing the blocks. To each block Mi is associated a resolution routine Ri responsible for computing
the values of the variables defined in Mi. When a variable Xj defined in Mi is computed by a call Ri(Xj),
the values of other variables Xl defined in other blocks Mk may be needed; these values are computed by
calls Rk(Xl) of the routine associated to Mk. This process always terminates because there are no cyclic
dependencies between blocks (the call stack of resolution routines has a size bounded by the depth of the
dependency graph between blocks). Since a variable Xj defined in Mi may be required several times during
the resolution process, the computation results must be kept persistent between subsequent calls of Ri in
order to obtain a linear-time overall resolution. Compared to other on-the-fly resolution algorithms like
LMC [43], which consists of a single monolithic routine handling the whole BES, the above scheme yields
simpler resolution algorithms (dedicated to blocks of equations having the same fixed point sign), and is
easier to optimize (by designing more efficient algorithms for blocks with particular structure) [102].

The on-the-fly model checking procedure for MCL formulas is described in detail in [104, 105]. We
briefly illustrate it here for the dataless MCL fragment using the example on Figure 4. The LTS shown on

INRIA

Compositional Verification using CADP 19

Figure 4(a) models the behaviour of a two-place buffer made by connecting two one-place cells in sequence.
States are represented by numbers, the initial state being 0. The buffer accepts as input an infinite stream
containing two kinds of messages, denoted by 0 or 1 (actions put0 and put1) and delivers it as output (actions
get0 and get1) in the same order. The move of a message from the first to the second cell of the buffer is
modeled by a τ -transition.

On this LTS, we want to check that after every message 0 accepted by the buffer, it is possible that the
buffer cyclically accepts a message 1 and delivers it. This property is expressed by the MCL formula on top
of Figure 4(b), which contains a PDL box modality followed by an infinite looping operator of alternation
depth 2. The subsequent lines in Figure 4(b) illustrate the various translation steps that bring this formula
into an equational form suitable for evaluation using BESs: (i) the formula is first translated into PDL with
recursion [104], which consists of two blocks of fixed point equations defining propositional variables using
PDL formulas; (ii) the PDL modalities in the equations are split to eliminate concatenation operators in
the regular formulas, and the equation block corresponding to the infinite looping operator is transformed
specifically by adding an extra equation and flipping its fixed point sign; (iii) the star operators in the regular
formulas are replaced by fixed point equations, yielding a specification in HML with recursion [92], which
contains only single-step modal formulas; (iv) the interpretation of this specification on the LTS is encoded
as a BES made of two corresponding equation blocks M1 and M2 defining Boolean variables of the form Xs

(resp. Ys, Zs, Ws), which are true if and only if the state s satisfies the propositional variable X (resp. Y ,
Z, W). In this way, the local model checking of the formula on the initial state of the LTS amounts to solve
the variable X0 of block M1.

This evaluation is carried out by using local resolution algorithms that explore the Boolean graph [3]
associated to the BES in a forward way, as shown by the excerpt on Figure 4(c). Since the block M1 is
conjunctive and M2 is disjunctive, they are solved in a memory-efficient manner by the algorithms proposed
in [102] and [105], respectively. These algorithms, based on a depth-first search of the Boolean graph, store
only Boolean variables and not dependencies between them, and hence, only the states and not the transitions
of the LTS. When exploring the Boolean graph of M2, each cycle containing a variable Ys is interpreted as a
constant true, since it corresponds to a sequence satisfying the infinite looping operator in the initial formula.
This is done in linear-time by computing the strongly connected components in the Boolean graph of M2 and
keeping track of those containing variables Ys, which are similar to the marked states in Büchi automata.
The thick arrows in Figure 4(c) define the diagnostic of the BES resolution, which is a minimal Boolean
subgraph (w.r.t. graph inclusion) containing the variable of interest and whose variables have the same
solution as those of the BES [101]. On this example, the LTS satisfies the MCL formula, and the positive
diagnostic (witness), illustrated partially on Figure 4(c), contains an execution sequence leading to every
put0-transition in the LTS, followed by a cycle passing through put1- and get1-transitions.

4.3 Property-dependent reductions

A property-based specification of a system consists usually of several properties expressed as temporal logic
formulas, each one describing a certain aspect of the system. This kind of specification has naturally two
benefits [96]: it is abstract, in the sense that it may characterize a family of systems sharing the same
observable behaviour (e.g., the abstract properties of mutual exclusion and inevitable progress towards the
critical section must be satisfied by all mutual exclusion protocols, regardless their implementation details);
and it is modular, meaning that one can add, eliminate, or replace a property in the specification without
changing the other properties and their interpretation on the system under study.

In practice, since the model checking complexity grows with the size of the formula (number of operators),
to increase efficiency it is desirable to verify formulas as small as possible. In our framework, a given dataless
MCL formula ϕ should be first decomposed into a set of smaller “temporal” formulas (i.e., dominated by a
modal or fixed point operator), each one being checked separately on the system. A simple way to achieve
this is by transforming the formula in conjunctive normal form (CNF), by considering as literals the maximal
temporal subformulas of ϕ; then, for each conjunct, each of its disjuncts is verified in turn (by stopping the
process when some disjunct is satisfied by the system), the whole process terminating when all conjuncts
have been checked to hold on the system, or some conjunct not satisfied by the system is encountered.
This decomposition and evaluation process can be easily automated. However, in practice a property-based

RR n° 8708

20 H. Garavel, F. Lang, and R. Mateescu

0

1

2

3

48

7

5

6

put
1

get
0

put
0

get
1

get
0

τ τ

get
1

put
1

put
1

put
0

get
0

get
1

put
0

(a)
MCL formula:
[true∗.put0] 〈true∗.put1.true∗.get1〉@

Translation to PDL with recursion:
{

X =ν [true∗.put0]Y
}

{

Y =ν 〈true∗.put1.true∗.get1〉Y
}

Conversion of infinite looping block:
{

X =ν [true∗] [put0]Y
}

{

Y =µ Z
Z =µ 〈true∗〉 〈put1〉 〈true∗〉 〈get1〉Y

}

Translation to HML with recursion:
{

X =ν [put0]Y ∧ [true]X
}







Y =µ Z
Z =µ 〈put1〉W ∨ 〈true〉Z
W =µ 〈get1〉 Y ∨ 〈true〉W







Model checking encoding as BES:
{

Xs =ν ∧
s
put0
−→s′

Ys′ ∧ ∧s−→s′′Xs′′

}

s∈S










Ys =µ Zs

Zs =µ ∨
s
put1−→s′

Ws′ ∨ ∨s−→s′′Zs′′

Ws =µ ∨
s
get1−→s′

Ys′ ∨ ∨s−→s′′Ws′′











s∈S

Y3

Z3

Z2

W4

W1

Z0

W8

Z4

Z8 Z6

. . .

. . .get
0

put
0

put
1

put
0

put
1

put
1

get
0

get
0

τ

τ

M2

put
1

get
1

M1

X0

X3 X4.

put
1

put
0

put
0

Y0

(b) (c)

Figure 4: Example of on-the-fly model checking using BESs. (a) LTS of a two-place buffer accepting and
delivering messages of two kinds, denoted by 0 and 1. (b) MCL formula and the translation of its evaluation
on the LTS in terms of a BES resolution. (c) Local resolution of the resulting BES by forward exploration
of its Boolean graph (excerpt).

INRIA

Compositional Verification using CADP 21

specification is often a list of temporal formulas that are supposed to hold on the system (which corresponds
to a CNF formula with monome conjuncts), and this is the case we focus on here, by considering the
verification of a single temporal formula.

Given an LTS and a temporal formula, the performance of verification can be improved by reducing the
LTS before checking the formula, modulo a relation that must preserve the truth value of the formula. The
standard approach is to reduce the LTS modulo an equivalence relation adequate w.r.t. the temporal logic
to which belongs the formula. Of course, to improve the overall performance of the verification process (LTS
generation, reduction, and model checking), the computational complexity of the LTS reduction should be
smaller than that of checking the formula on the initial LTS; this can be achieved by using the compositional
LTS construction and minimization described in Section 3. This approach relies on existing adequacy results
between behavioural equivalences and temporal logics (see, e.g., [48] for a survey of adequacy in the action-
based setting). In our framework, a useful result is the adequacy of ACTL-X (Action-based CTL without
the next state operator) [112] w.r.t. divergence-sensitive branching bisimulation. This result also holds for
µACTL-X [47], which extends ACTL-X with fixed point operators.

Nevertheless, the reduction of the LTS modulo an equivalence relation preserves all temporal formulas
adequate w.r.t. that relation, whereas in practice one is interested in preserving only the properties forming
the specification of the system. A better solution would be to specialize the reduction for each temporal
formula considered: given that each formula references specific aspects of the system, the other aspects
(referenced by the other properties in the specification) could be abstracted away when checking that formula,
thus yielding more potential for reduction. An early attempt for property-dependent reduction in the action-
based setting was made with the selective µ-calculus [13], which synthesizes an equivalence relation preserving
a given formula. However, this attempt has two practical limitations: it imposes a particular formulation
of properties (using special modalities indexed by action sets), and the synthesized equivalence relations
are variants of the τ∗.a equivalence (which is not a congruence w.r.t. parallel composition and hence not
appropriate for compositional reasoning, and it preserves only safety and weak liveness properties).

Another, more recent, attempt for property-dependent reduction [106] takes a modal µ-calculus formula
and synthesizes the maximal set of actions which can be hidden (i.e., renamed into τ) in the LTS without
disturbing the interpretation of the formula. This approach keeps in the LTS only the relevant information
determining the truth value of the formula, therefore yielding a high potential for reduction. After applying
this maximal hiding, the LTS can be reduced modulo an adequate equivalence relation before checking the
formula.

Definition 16 (Hiding set) Let α be an action formula interpreted over a set of actions A. The hiding
set of α w.r.t. A is defined as follows:

hA(α) =

{

[[α]]A if τ |=A α
A \ [[α]]A if τ 6|=A α

The hiding set of a state formula ϕ w.r.t. A, denoted by hA(ϕ), is defined as the intersection of hA(α) for
all action subformulas α of ϕ.

Definition 17 (Hiding) Let A be a set of actions and H ⊆ A. The hiding of an action b ∈ A w.r.t. H is
defined as follows:

hideH(b) =

{

b if b 6∈ H
τ if b ∈ H

The hiding of an LTS M w.r.t. H is defined as follows:

hideH(M) = lts (hide H in M)

The following lemma [106] states that, given an action formula α, the fact of hiding an action w.r.t. the
hiding set of α does not disturb the interpretation of α on that action.

Lemma 1 Let α be an action formula interpreted over a set of actions A. A subset H ⊆ A does not disturb
the interpretation of α on the actions of A after hiding them w.r.t. H if the following property holds:

∀b ∈ A.(b |=A α⇔ hideH(b) |=A α)

Then: a subset H ⊆ A satisfies this property if and only if H ⊆ hA(α).

RR n° 8708

22 H. Garavel, F. Lang, and R. Mateescu

Lemma 1 ensures that, for an action formula α, its hiding set hA(α) is the maximal set of actions that
can be hidden in the LTS without disturbing the interpretation of α. To make possible LTS reductions prior
to (or simultaneously with) the verification of a state formula ϕ, it is desirable to hide as many actions as
possible in the LTS, i.e., all actions in hA(ϕ). The following proposition [106], which makes use of Lemma 1,
guarantees that this hiding preserves the interpretation of ϕ.

Proposition 8 (Maximal Hiding) Let M = (Σ, A,−→, s0) be an LTS, ϕ be a state formula of Lµ, and
H ⊆ hA(ϕ). Then:

[[ϕ]]M ρ = [[ϕ]]hideH (M) ρ

for any propositional context ρ.

For instance, consider the MCL formula below, expressing the inevitable execution of a recv action after
every send action:

ϕ = [true∗.send]µX.(〈true〉 true ∧ [¬recv]X)

When checking ϕ on an LTS, one can hide all actions in hA(ϕ) = hA(send) ∩ hA(¬recv) = (A \ [[send]]A) ∩
[[¬recv]]A = (A \ {send})∩ (A \ {recv}) = A \ {send , recv}, i.e., all actions other than send and recv, without
changing the interpretation of the formula.

For a given formula ϕ, after hiding all actions in hA(ϕ), one can improve the performance of verification
by reducing the LTS modulo an equivalence relation that preserves the interpretation of ϕ. Two such
relations are considered in [106]: strong bisimulation, which preserves all Lµ formulas, and divergence-
sensitive branching bisimulation (divbranching for short), which is adequate w.r.t. µACTL-X [47] and also
with the Ldsbr

µ fragment of µ-calculus proposed in [106]. Strong bisimulation minimization, although it
has a lower potential for reduction compared to weak equivalences (since strong bisimulation does not give
a special treatment to τ -transitions), can nevertheless improve the performance of verification when the
LTS obtained after hiding contains a high percentage of τ -transitions (execution time divided by 4 and
memory consumption divided by 2 [106]). Regarding divbranching bisimulation, the performances can be
improved significantly either by minimization (time divided by 20 and memory divided by 5), or by on-the-fly
τ -confluence reduction (time divided by 10) [106].

More generally, maximal hiding for a given formula can be applied in conjunction with the compositional
LTS construction and minimization approach described in Section 3. This specialization is likely to yield
better results (especially w.r.t. the peak memory consumption of the whole verification process) than the
compositional reduction modulo an equivalence relation, as shown in Section 7.

4.4 Partial model checking

Partial model checking is a dual approach to compositional model generation, where one needs to check
a formula on a network of automata. Partial model checking was first proposed by Andersen [8, 4, 5] for
concurrent components running asynchronously and composed using CCS parallel composition and restric-
tion operators. For a modal µ-calculus formula ϕ and a composition expression S1 || . . . || Sn, Andersen
uses an operation ϕ//S1 called quotienting of the formula ϕ w.r.t. the component S1, so that S1 || . . . || Sn

satisfies ϕ if and only if the smaller composition S2 || . . . || Sn satisfies ϕ//S1. In addition, simplifications
can (and must) be applied to ϕ//S1 to reduce its size. Partial model checking is the incremental application
of quotienting and simplifications, so that state explosion is avoided if the size of intermediate formulas can
be kept sufficiently small.

Partial model checking has been adapted and used successfully in various contexts, such as state-based
models [7, 6], synchronous state/event systems [22], and timed systems [17, 27, 90, 91, 93]. It has also been
specialised for security properties [99]. More recently, it has been generalised to the full CCS process algebra,
with an application to the verification of parameterized systems [15]. These various developments of partial
model checking, although successful, were relatively scarce, which may be explained by the complexity of
the method: obtaining a fully operational partial model checker requires a significant implementation effort
and extensive experiments for fine-tuning and optimization.

In this section, we focus on partial model checking of the modal µ-calculus applied to (untimed) concurrent
asynchronous components [87, 88]. By considering only binary associative parallel composition operators

INRIA

Compositional Verification using CADP 23

(such as CCS and CSP parallel compositions), previous works [4, 5, 15] are not directly applicable to more
general operators, such asm-among-n synchronization and parallel composition by synchronization interfaces
(where all components containing a given action in their synchronization interface must synchronize on that
action) [61], present in the E-LOTOS standard and variants [28, 80]. Our first contribution in this section is
thus a generalisation of partial model checking to networks of LTSs, which subsumes all the above-mentioned
parallel composition operators. Regarding the communication of data values, our approach is applicable to
classical (i.e., with static communication) value-passing process algebras equipped with early operational
semantics. This framework encompasses a significant fragment of the π-calculus (containing channel mobility
and bounded process creation), which can be translated into classical value-passing process algebras [103].

In realistic cases, partial model checking handles huge formulas and components, thus requiring efficient
implementations. Our second contribution is a reformulation of quotienting as a synchronous product (which
can itself be represented in the network model) between a graph representing the formula (called a formula
graph) and the behaviour graph of a component, thus enabling efficient implementation using existing tools
dedicated to graph manipulations. Our third contribution is the reformulation of formula simplifications as
a combination of graph reductions (including minimisations modulo equivalence relations and bisimulations)
and partial evaluation of the formula graph using a BES (Boolean Equation System) [3].

In this section, we consider plain Lµ formulas in disjunctive form, i.e., expressed using negation ¬,
variables, and the disjunctive operators false, 〈 〉, ∨, and µ. We also suppose that the formulas are well-
formed block-labelled, as defined below.

Definition 18 (Block-labelled formula) A block-labelled µ-calculus formula ϕ is a formula in which
each propositional variable X is labelled by a natural number k, called its block number.

Given a block-labelled µ-calculus formula ϕ, we write fv (ϕ) for the set of variables free in ϕ, and bv (ϕ)
for the set of variables bound in ϕ. We call a closed formula any formula ϕ such that fv (ϕ) = ∅. We assume
that all bound variables have distinct names, and for Xk ∈ bv (ϕ), we write ϕ[Xk] for the (unique) sub-
formula of ϕ of the form µXk.ϕ0. Given ϕ1 and ϕ2, we write ϕ1[ϕ2/X

k] for substituting all free occurrences
of Xk in ϕ1 by ϕ2 (while implicitly applying α-conversion3 to maintain the unicity of bound variables).

Intuitively, a block-labelling is well-formed if the µ-calculus formula can be converted into an equivalent
set of µ-calculus equations partitioned into blocks, so that all variables having the same block number are
defined in the same block and if k < k′ then the equations within block number k occur before the equations
within block number k′. The well-formedness conditions are the following:

1. All occurrences of a given variable are labelled by the same block number.

2. All variables sharing the same block number have the same fixed point sign4.

3. For all Xk ∈ bv (ϕ) and Y k′

∈ fv(ϕ[Xk]) it holds that k′ ≤ k.

By convention, we assume without loss of generality that the even block numbers are associated to variables
of sign µ and odd block numbers are associated to variables of sign ν.

Initially, every unlabelled formula ϕ can be turned into the well-formed block-labelled formula
bl (ϕ, true, 0, []), where bl (ψ, b, k, γ) is defined as follows, b denoting a boolean that is true only if ψ is in
the context of an even number of negations, k the current block number, and γ a mapping from variables to
block numbers:

bl (false, b, k, γ) = false

bl (X, b, k, γ) = Xγ (X)

bl (¬ϕ0, b, k, γ) = ¬bl (ϕ0,¬b, k, γ)
bl (ϕ1 ∨ ϕ2, b, k, γ) = bl (ϕ1, b, k, γ) ∨ bl (ϕ2, b, k, γ)

bl (〈a〉ϕ0, b, k, γ) = 〈a〉 bl (ϕ0, b, k, γ)

bl (µX.ϕ0, b, k, γ) =

{

µXk.bl (ϕ0, true, k, γ ⊘ [X 7→ k]) if b = true

µXk+1.bl (ϕ0, true, k + 1, γ ⊘ [X 7→ k + 1]) otherwise

3α-conversion is a well-known equivalence relation between terms that differ only in variable names, originally defined in the
framework of the λ-calculus and applied implicitly during substitution to avoid variable capture.

4Considering a formula ϕ in disjunctive form, the sign of variable Xk is µ if ϕ[Xk] occurs in ϕ in the context of an even
number of negations, and ν otherwise.

RR n° 8708

24 H. Garavel, F. Lang, and R. Mateescu

We write blocks(ϕ) for the set of block numbers occurring in ϕ. A block-labelled formula ϕ is alternation-
free if k′ = k for all Xk ∈ bv(ϕ) and Y k′

∈ fv(ϕ[Xk]).

To check a closed formula ϕ on a network N = (~S, V), one can choose a component LTS ~S[i], compute

the quotient of the formula ϕ with respect to ~S[i], and check the resulting quotient formula on the smaller
(at least in the number of component LTSs, but also hopefully in the compound LTS size) network N|{i}.

Definition 19 (Quotient formula) N = (~S, V) being a network of size n, we assume a function α (~t, a)
that assigns a unique unused label to each (~t, a) ∈ V . Given ϕ a closed formula and i ∈ [1, n], the quotient
formula is written ϕ//∅i s

0
i and defined as follows:

false //B
i s = false

Xk //B
i s = ϕ[Xk] //B

i s

(¬ϕ0) //
B
i s = ¬(ϕ0 //

B
i s)

(ϕ1 ∨ ϕ2) //
B
i s = (ϕ1 //

B
i s) ∨ (ϕ2 //

B
i s)

(µXk.ϕ0) //
B
i s =

{

Xk
s if Xk

s ∈ B

µXk
s .(ϕ0 //

B∪{Xk
s }

i s) otherwise

(〈a〉ϕ0) //
B
i s =

∨

(~t,a)∈V







(i /∈ acv(~t) ∧ 〈a〉 (ϕ0 //
B
i s)) ∨

({i} (acv(~t) ∧
∨

s
~t[i]
−→is′

〈

α (~t, a)
〉

(ϕ0 //
B
i s′)) ∨

({i} = acv(~t) ∧
∨

s
~t[i]
−→is′

(ϕ0 //
B
i s′))







This definition follows and generalises Andersen’s [4] (specialised for CCS) to networks. The main
difference is the definition of (〈a〉ϕ0) //

B
i s, CCS composition corresponding to vectors ((a, •), a), ((•, a), a),

or ((a, a), τ), a and a being an action and its CCS co-action, making the use of special labels α(~t, a) not
necessary. A minor difference is that we use µ-calculus terms instead of equations5. Any sub-formula
produced by quotienting has the same block number as the original sub-formula, reflecting the order of
equation blocks in Andersen’s definition. The set B keeps track of new variables already introduced in the
quotient formula. Quotienting is well-defined, because formulas are finite, every ϕ[Xk] has the form µXk.ϕ0

(the formula is in disjunctive form), and the size of the set B is bounded by | bv (ϕ)| × |Σi|. Note that well-
formedness of the block-labelling is preserved by quotienting, because for every variable Xk

s ∈ bv (ϕ//∅i s0)

we have Xk ∈ bv (ϕ) and for every variable Y k′

s′ ∈ fv ((ϕ//∅i s0)[X
k
s]) we have Y k′

∈ fv (ϕ[Xk]), and therefore
k′ ≤ k.

Example 8 The µ-calculus formula µX0. 〈a〉 true ∨ 〈b〉X0 (existence of a path of zero or more b leading
to an a) can be rewritten to disjunctive form as µX0. 〈a〉 ¬false ∨ 〈b〉X0. Quotienting of this formula with
respect to S3 in the network N introduced in Example 1 yields the formula µX0

0 . 〈a〉 ¬false ∨ 〈αa〉 ¬false ∨
〈αb〉µX0

2 . 〈a〉 ¬false∨ false. In other words, an action a can be reached after a (possibly empty) sequence of b
actions in the network N if and only if an action a, or an action αa, or an action αb followed by an action
a, can be reached immediately in N|{3}, given the behaviour of S3 depicted in Figure 1.

Interestingly, quotienting can be implemented as a network that realises a product between an LTS
encoding the formula (called a formula graph) and a component LTS of the network under verification. In
practice, the EXP.OPEN tool of CADP can be used for that purpose.

We now introduce the notion of formula graph, and then we define the network that implements quoti-
enting.

Definition 20 (Circuit) Let S = (Σ, A,−→, s0) be an LTS and T ⊆−→ be a subset of its transitions. The
states of T are defined as the set st (T) = {s, s′ ∈ Σ | (s, a, s′) ∈ T }. T is a circuit of S if for all s, s′ ∈ st (T)
there is a sequence of transitions belonging to T from s to s′. A state s ∈ st (T) is a root of the circuit T if
there is a sequence of transitions from s0 to s that does not traverse any transition of T .

5Note that terms will be compiled into graphs, thus enabling the sharing of sub-formulas that is also possible using equations.

INRIA

Compositional Verification using CADP 25

Definition 21 (Formula graph) A formula graph is an LTS (Σ, A,−→, s0) such that:

1. Every label σ ∈ A has either form ∨, ¬, 〈a〉 (for some a belonging to a fixed set of action names), or
µk (for some k ∈ N). To avoid confusion, in the sequel, we will use σ to denote the label of a formula
graph and a to denote a label of the network on which the formula is to be checked.

2. If s0
δ

−→ s
µk

−→ s′ for some δ ∈ A∗ and k ∈ N, then k is even if and only if δ contains an even number
of occurrences of the label ¬.

3. If s ∈ Σ is a root of a circuit then (a) the circuit contains a µk-transition and (b) if the first µk-
transition traversed on the circuit starting in s has block number k′ then every µk-transition belonging
to the circuit satisfies k ≥ k′.

Every formula graph can be decoded into a closed formula as follows.

Definition 22 (Decoding a formula graph) A formula graph P = (Σ, A,−→, s0) encodes the modal µ-
calculus formula decs (P, s0, ∅), where decs (P, s, E) is defined as follows (E ⊆ Σ). In our decoding every
variable is uniquely identified by the source state s and the block number k of the µ-transition, and written
sk.

decs (P, s, E) =
∨

s
σ

−→s′∈P

dect (P, s
σ

−→ s′, E)

where
dect (P, s

∨
−→ s′, E) = decs (P, s′, E)

dect (P, s
¬

−→ s′, E) = ¬ decs (P, s′, E)

dect (P, s
〈a〉
−→ s′, E) = 〈a〉 decs (P, s′, E)

dect (P, s
µk

−→ s′, E) =

{

sk if s ∈ E
µsk. decs (P, s′, E ∪ {s}) otherwise

This definition implies that a deadlock state decodes as false (empty disjunction). Function decs is well-
defined. In particular, it terminates because every cyclic path contains a label of the form µk. By recording
in the set E the source states of traversed µk-transitions, we thus avoid infinite traversals of cycles. In
practice, formula graphs need not be decoded.

Definition 23 (Encoding a formula into a formula graph) The formula graph corresponding to a
well-formed block-labelled formula ϕ in disjunctive form is an LTS written enc (ϕ), whose states are identi-
fied with sub-formulas of ϕ. The initial state of the formula graph is ϕ, false is a deadlock state, and each
sub-formula has transitions as follows:

Xk ∨
−→ ϕ[Xk] ¬ϕ0

¬
−→ ϕ0 〈a〉ϕ0

〈a〉
−→ ϕ0

ϕ1 ∨ ϕ2
∨

−→ ϕ1 ϕ1 ∨ ϕ2
∨

−→ ϕ2 µXk.ϕ0
µk

−→ ϕ0

Although the states of a formula graph are identified by formulas, only the transition labels are required
for decoding. In figures, states will be simply identified by numbers.

Note that the formula graph obtained by encoding a formula satisfies the conditions given in Definition 21.
Condition (2) is a direct consequence of the block-labelling convention stated in Definition 18. Condition (3)
comes from the fact that the roots of the circuits are the states associated to formulas of the form µXk.ψ
such that Xk occurs free in ψ. In particular, subcondition (b) is a consequence on the third well-formedness
condition given in Definition 18.

Example 9 The formula graph corresponding to the formula µX0.(〈a〉 true)∨〈b〉X0 introduced in Example 8
is depicted in Figure 5 (a).

Using this encoding, the quotient of a formula with respect to the ith LTS of a network can be computed
as a synchronous product using a network called quotient formula network.

RR n° 8708

26 H. Garavel, F. Lang, and R. Mateescu

4 2 5 6

0 1 3

¬〈b〉

〈a〉∨∨
∨µ0

9 143

1

∨

5 8
¬¬ 〈a〉 〈αa〉

6

0
∨

2
〈αb〉

4
∨

7 10

∨

∨

12
〈a〉

13
¬

µ0 µ0

11

(a) (b)
〈αb〉 〈a〉 ¬

0 1 2 3

〈αa〉

〈a〉

(c)

Figure 5: Examples of formula graphs

Definition 24 (Quotient formula network) Let ϕ be a modal µ-calculus formula in disjunctive form,

N = (~S, V) be a network of size n, and i ∈ [1, n]. The quotient formula network of ϕ with respect to ~S[i] is

defined as the network ((enc (ϕ), ~S[i]), V//i), where V//i denotes the following set of rules:

{ ((σ, •), σ) | σ ∈ {¬,∨} ∪ {µk | k ∈ blocks(ϕ)} } ∪
{ ((〈a〉 , •), 〈a〉) | (~t, a) ∈ V ∧ i /∈ acv(~t) } ∪
{ ((〈a〉 , ~t[i]),

〈

α (~t, a)
〉

) | (~t, a) ∈ V ∧ {i} (acv(~t) } ∪
{ ((〈a〉 , ~t[i]), ∨) | (~t, a) ∈ V ∧ {i} = acv(~t) }

Note that the LTS corresponding to the quotient formula network is a formula graph. We have proven [88]
that our encoding of closed formulas into formula graphs is sound, so that the formula can be recovered from
the formula graph into which the formula is encoded (Proposition 9 below), and that the LTS corresponding
to the quotient formula network indeed encodes the quotient correctly (Proposition 10 below).

Proposition 9 (Soundness of formula encoding) If ϕ is a closed formula in disjunctive form, then
decs (enc (ϕ), ϕ, ∅) is equivalent to ϕ.

Proposition 10 (Correctness of the quotient formula network) The LTS corresponding to the quo-

tient formula network of ϕ with respect to ~S[i] encodes a formula that is equivalent to ϕ//∅i s
0
i , where s0i is

the initial state of ~S[i].

Example 10 Consider the network N of Example 1 and the formula of Example 9. Quotienting of the
formula with respect to S3 involves the following set of rules:

{((¬, •),¬), ((∨, •),∨), ((µ0, •), µ0), ((〈a〉 , •), 〈a〉), ((〈a〉 , a), 〈αa〉), ((〈b〉 , b), 〈αb〉)}
It yields the formula graph depicted in Figure 5 (b). This graph encodes as expected the quotient formula of
Example 8, which can be evaluated on N|{3}.

Working with formulas in disjunctive form is crucial: branches in the formula graph denote disjunctions
between sub-formulas (or-nodes). During composition between the formula graph and a component LTS,
the impossibility to synchronize on a modality 〈a〉 (no transition labelled by ~t[i] in the current state of
the component LTS) denotes invalidation of the corresponding sub-formula, which merely disappears, in
conformance with the equality false ∨ ϕ0 = ϕ0.

The quotient of a formula graph with n states with respect to an LTS with m states may have up to
n×m states. Hence, as observed by Andersen [4], simplifications are needed to keep intermediate quotiented
formulas at a reasonable size. We present in Figure 6 several simplifications applying to formula graphs, as
conditional rules of the form “l r (cond)” where l and r are transition relations and cond is a Boolean
condition. l, r, and cond are expressed using variables representing either states (written s, s1, s2, . . .) or
labels (written σ, σ1, σ2, . . .), such that every variable occurring in r or in cond must also occur in l. It means
that all transitions matching the left-hand side so that cond is satisfied can be replaced by the transitions
of the right-hand side.

INRIA

Compositional Verification using CADP 27

(1) s1
∨��

s2
σ3

~~~~
~ σn

  A
AA

s3 . . . sn

 s1
σ3

��

σn

��

s2
σ3

~~~~
~ σn

 A
AA

s3 . . . sn

(s3, . . . , sn are all
the successors of s2)

(2) s1

µk

YY s1

(3) s1
¬ // s2

¬ // s3 s1

∨

77s2
¬ // s3 (s2 has a single

outgoing transition)

(4) s1
µk

// s2 s1
∨ // s2 (decoding of s2 does

not contain s1
k)

(5) s1
¬ // s2 s1 s2 (s2 evaluates to true)

(6) s1
σ2

~~~~
~ σn

  A
AA

s2 . . . sn

 s1
¬ // false

s2 . . . sn

(s1 evaluates to true)

(7) s1
σ // s2  s1 s2 (σ 6= ¬ and s2

evaluates to false)

(8) s1
σ2

~~~~
~ σn

 A
AA

s2 . . . sn

 s1

s2 . . . sn

(s1 evaluates to false)

Figure 6: Simplification rules applying to formula graphs

Elimination of ∨-transitions (1). This rule allows transitions generated by synchronization rules of
the form ((〈a〉 ,~t[i]),∨) in the quotient formula network to be eliminated. This elimination can be achieved
efficiently by applying reduction modulo τ∗.a equivalence [51], ∨-transitions being interpreted as internal (τ)
transitions.

Elimination of unguarded variables (2). When combined with the previous rule, this rule allows
unguarded variable occurrences to be eliminated. Indeed, an unguarded variable is characterized by a
(possibly empty) sequence of ∨-transitions connecting the target and source of a µ-transition. The elimination
of this sequence of ∨ transitions then produces a self-looping transition labelled by µ, which can be thereafter
eliminated using the current rule.

Elimination of double-negations (3). This rule can be used to simplify formulas of the form ¬¬ϕ,
which often occur in quotient formulas. For instance, a double-negation is introduced in the quotient of
the formula ¬ 〈a〉 ¬ϕ′ (which is the disjunctive form of [a]ϕ′) with respect to an LTS that offers an action
synchronizing with a (thus having the modality disappear if the synchronization is binary).

Elimination of µ-transitions (4). In this rule, the transition from s1 to s2 denotes the binder of a
propositional variable s1

k. If this variable does not occur free in the sub-formula denoted by state s2, then
the µ-transition can be replaced by an ∨-transition, which can be subsequently eliminated using rule (1).
Determining whether s1

k occurs free would require to decode the formula graph, which should be avoided
in practice. For this reason, we only consider the following sufficient conditions, which can be checked in
linear-time:� s1 and s2 are not in the same strongly connected component (i.e., there is no path from s2 to s1), or� s1 is not the initial state and has a single predecessor p, and either (1) p has a single outgoing transition

(which necessarily goes to s1) and this transition is labelled by µk′

, or (2) p satisfies the same condition

RR n° 8708

28 H. Garavel, F. Lang, and R. Mateescu

as s1, recursively (this recursion is well-founded as long as it is applied to states reachable from the
initial state)

Evaluation of constant sub-formulas (5–8). These four rules apply when some state denotes a sub-
formula that evaluates to a constant in any context. This can be determined by using the following BES,
which implements partial evaluation of the formula. This BES consists of blocks T k and F k (k ∈ [0, n]) of
respective signs µ and ν, n being the greatest block number in the formula graph. Blocks are ordered so
that k < k′ implies T k (resp. F k) occurs before T k′

(resp. F k′

):

T k :
{

T k
s =µ

∨

s
∨

−→s′ T
k
s′ ∨

∨

s
¬

−→s′ F
k
s′ ∨

∨

s
µk′

−→s′
T k′

s′

}

s∈Σ

F k :
{

F k
s =ν

∧

s
∨

−→s′ F
k
s′ ∧

∧

s
〈β〉
−→s′

F k
s′ ∧

∧

s
¬

−→s′ T
k
s′ ∧

∧

s
µk′

−→s′
F k′

s′

}

s∈Σ

We consider only the variables reachable from T 0
s0

or F 0
s0

, s0 being the initial state of the formula graph. A
state s denotes true (resp. false) if the Boolean variables T k

s (resp. F k
s) evaluate to true in all (reachable)

blocks k. Due to the presence of modalities, there may be states s and blocks k such that T k
s and F k

s are
both false, indicating that the corresponding sub-formula is not constant. Intuitively, T k

s expresses that s
evaluates to true in block k (i.e., sk evaluates to true) if one of its successors following a transition labelled
by ∨ or µk′

evaluates to true, or one of its successors following a transition labelled by ¬ evaluates to false.
Variable F k

s expresses that state s evaluates to false in block k (i.e., sk evaluates to false) if all its successors
following transitions labelled by ∨, µk′

, or modalities (by applying the identity 〈a〉 false = false) evaluate to
false and all its successors following transitions labelled by ¬ evaluate to true. Regarding fixed point signs,
observe that for the formula µXk.Xk (which is equivalent to the constant false), F k

µXk.Xk and T k
µXk.Xk are

defined respectively by the greatest fixed point equation F k
µXk.Xk =ν F k

µXk.Xk and the least fixed point

equation T k
µXk.Xk =µ T

k
µXk.Xk . This BES has the solution F k

µXk.Xk = true, T k
µXk.Xk = false, reflecting that

µXk.Xk is constantly false, as expected.
Repeated application of quotienting progressively eliminates modalities, until none of them remains in the

formula graph, which then necessarily evaluates to a constant equal to the result of evaluating the formula
on the whole network.

Sharing of equivalent sub-formulas. In addition to the above eight rules, reducing a formula graph
modulo strong bisimulation does not change its semantics. Strong bisimulation reduction can thus decrease
the size of intermediate formula graphs.

Example 11 After applying the above simplifications to the formula graph of Example 10, we obtain the
(smaller) formula graph depicted in Figure 5 (c), which corresponds to the formula (〈a〉 true) ∨ (〈αa〉 true) ∨
(〈αb〉 〈a〉 true).

Example 12 The graph corresponding to µX0.(〈a〉µY 0. 〈b〉X0) ∨ 〈c〉X0 reduces as expected to a deadlock
state representing the constant false (left as an exercise).

Note that the simplification of a formula graph produces a formula graph. In particular, the parity of
the number of occurrences of the label ¬ on paths leading to a µk-transition is not changed by any rule,
including rule (3) which eliminates negations by pair. Also, the simplifications do not create new circuits
and every µk-transition eliminated by rule (4) cannot be the first µk-transition occurring on any circuit.

All the simplifications that we propose in this paper correspond more or less to simplifications already
proposed by Andersen [4], but we apply them directly on formula graphs instead of systems of µ-calculus
equations.

The paper [88] presents a specialization of this technique to the alternation-free µ-calculus formulas
(using alternation-free BES), and how this specialisation can be again generalised to handle also useful
fairness operators of alternation 2 (in particular the infinite looping operator 〈 〉@) in linear time without
developing the complex machinery to evaluate general alternation-2 µ-calculus formulas.

INRIA

Compositional Verification using CADP 29

5 High-level strategies and smart reduction

The efficiency of compositional model generation (including formula graph generation in the case of partial
model checking) depends on the order in which the components are gathered and minimized. In practice,
the order can be specified by the user, but since it is not always possible to predict whether an order will be
more or less efficient than another without trying them and comparing the results, the user generally has to
rely on intuition. This burden can be relieved using pre-defined strategies, which can be either based on the
component hierarchy, or on heuristics to automatically determine efficient composition orders, based on the
interactions between components.

5.1 Pre-defined strategies based on component hierarchy

We present three strategies for compositional model generation modulo an equivalence relation R, namely
leaf reduction, root leaf reduction, and node reduction.

Definition 25 (Leaf and root leaf reductions) Given a composition expression B and an equivalence
relation R that is a congruence for composition expressions, leaf reduction computes another composition
expression leaf reduceR (B) which has the same hierarchy as B, such that:� hiding and cutting operators are propagated as far as possible in the composition expression, and� the LTSs occurring in leaf reduceR (B) are minimized modulo the equivalence relation R after hiding

and cutting.

Formally, leaf reduceR (B) is a shorthand for leaf reduceR (B, ∅, ∅), where leaf reduceR (B,Ah, Ac) is de-
fined as follows, Ah denoting a set of labels to be hidden in B and Ac denoting a set of labels to be cut in B.
The sets Ah and Ac satisfy the invariant Ah ∩Ac = ∅.

leaf reduceR (S,Ah, Ac) = reduceR (hide Ah in cut Ac in S)

leaf reduceR (B1 |[A]| B2, Ah, Ac) =
hide Ah ∩A in

leaf reduceR (B1, Ah \A,Ac)
|[A]|
leaf reduceR (B2, Ah \A,Ac)

leaf reduceR (rename θ in B0, Ah, Ac) =

rename θ in leaf reduceR (B0, θ
−1

(Ah), θ
−1

(Ac))

where θ
−1

(A) = {a | θ(a) ∈ A}

leaf reduceR (hide A in B0, Ah, Ac) =
leaf reduceR (B0, Ah ∪A,Ac \A)

leaf reduceR (cut A in B0, Ah, Ac) =
leaf reduceR (B0, Ah \A,Ac ∪A)

The root leaf reduction is the same as leaf reduction, except that the LTS corresponding to the composition
expression B′ is finally generated and minimized. Therefore, the final result of root leaf reduction is a
(minimal) LTS instead of a composition expression:

root leaf reduceR (B) = reduceR (leaf reduceR (B))

Proposition 11 If R is a congruence for composition expressions, then leaf reduceR (B) and
root leaf reduceR (B) are both equivalent to B modulo R.

Note however that B, leaf reduceR (B), and root leaf reduceR (B) are not the same operationally: the
sizes of intermediate LTSs differ in both expressions.

RR n° 8708

30 H. Garavel, F. Lang, and R. Mateescu

Proposition 12 For strong, branching, and divbranching bisimulations, the largest intermediate LTS gen-
erated to compute root leaf reduceR (B) is not larger than the largest intermediate LTS generated to compute
B.

The node reduction is another strategy, which makes more intermediate steps than leaf and root leaf
reduction: an intermediate LTS is generated and minimized after each parallel composition.

Definition 26 (Node reduction) Given a composition expression B and an equivalence relation R that
is a congruence for composition expressions, node reduction computes an LTS node reduceR (B). Formally,
node reduceR (B) is a shorthand for node reduceR (B, ∅, ∅), where node reduceR (B,Ah, Ac) is defined as
follows, Ah denoting a set of labels to be hidden in B and Ac denoting a set of labels to be cut in B. The
sets Ah and Ac satisfy the invariant Ah ∩Ac = ∅.

node reduceR (S,Ah, Ac) = reduceR (hide Ah in cut Ac in S)

node reduceR (B1 |[A]| B2, Ah, Ac) =
reduceR (hide Ah ∩A in

node reduceR (B1, Ah \A,Ac)
|[A]|
node reduceR (B2, Ah \A,Ac))

node reduceR (rename θ in B0, Ah, Ac) =

reduceR (rename θ in node reduceR (B0, θ
−1

(Ah), θ
−1

(Ac)))

where θ
−1

(A) = {a | θ(a) ∈ A}

node reduceR (hide A in B0, Ah, Ac) =
node reduceR (B0, Ah ∪A,Ac \A)

node reduceR (cut A in B0, Ah, Ac) =
node reduceR (B0, Ah \A,Ac ∪A)

Proposition 13 If R is a congruence for composition expressions, then node reduceR (B) is equivalent to
B modulo R.

Unlike root leaf reduction (which does not compute intermediate compositions before computing the
LTS corresponding to B), there is no guarantee that computing the node reduction of B is less expensive
(in time or memory) than computing the LTS corresponding to B. Indeed, the LTSs corresponding to the
intermediate compositions may be larger (even much larger) than the LTS corresponding to B. However,
there exist cases where node reduction is efficient.

5.2 Heuristic-based strategy: Smart reduction

Heuristics to automatically determine efficient composition orders, based on the component interactions,
have been proposed in [128] for concurrent finite state machines communicating via named channels. More
recently, such heuristics have been refined and implemented in a prototype tool for LTSs synchronizing on
their common alphabets [40]. In both works, the components to be composed are selected using two metrics:
an estimate of the proportion of internal transitions in the composition (the higher, the more the composition
graph being expected to be reducible), and an estimate of the proportion of transitions that interleave.

A limitation of the above works lies in the restricted composition operators, which are generally insuffi-
cient to capture the semantics of state-of-the-art software description languages: The parallel composition
operators used in [128] do not support multiway synchronization (more than two components synchroniz-
ing all together), and none of the parallel composition operators used in [128, 40] enable nondeterministic
synchronization (e.g., two clients competing to synchronize with a server on some label).

In this section, we present a refinement of the compositional model generation techniques of [128, 40],
called smart reduction [41], which relies on networks of LTSs. The first advantage is that it makes composi-
tional model generation applicable to a wider variety of operators, provided that they can be compiled into
networks. The second advantage is that networks enable any composition order, which is not in general the

INRIA

Compositional Verification using CADP 31

case in process algebraic models, where some composition orders, possibly including the optimal order, may
not be represented using the available algebraic operators.

The LTS corresponding to a network can be generated incrementally, by alternating compositions of well-
chosen subsets of the components and minimizations modulo an equivalence relation. We call aggregation
a composition followed by a minimization of the result, and compositional aggregation this incremental
technique. Contrary to composition expressions, networks enable all possible aggregations as they are not
constrained by a component hierarchy.

Definition 27 (Aggregation) As in Definition 19, we assume a function α(~t, a) that associates to each
(~t, a) ∈ V a unique label distinct from all others. Given a network N of size n and a set of indices I ⊆ [1, n],
we define the network agg (N, I) obtained by aggregation of components inside I as follows:

agg (N, I) = (reduceR (N|I) :: ~S|I, Vagg)

where N|I = (~S|I, V|I)

Vagg = { (a ::~t|I, a) | (~t, a) ∈ V ∧ acv(~t) ⊆ I } ∪
{ (α(~t, a) ::~t|I, a) | (~t, a) ∈ V ∧ ∅ ((I ∩ acv(~t)) (acv(~t) } ∪
{ (• ::~t|I, a) | (~t, a) ∈ V ∧ (I ∩ acv(~t)) = ∅ }

and V|I = { (~t|I, a) | (~t, a) ∈ V ∧ acv(~t) ⊆ I } ∪
{ (~t|I, α(~t, a)) | (~t, a) ∈ V ∧ ∅ ((I ∩ acv(~t)) (acv(~t) }

The components inside I (~S|I) are aggregated into reduceR (N|I) and the components outside I (~S|I) are
kept non-aggregated. The synchronization rules V|I of the auxiliary network N|I are obtained by projection
of V on to I, whereas the synchronization rules Vagg are obtained by synchronization of the labels in V|I with

the projection of V on to I.
For convenience, since I denotes the set of components to be aggregated, we call I an aggregation.

The rules of V|I and Vagg are organized in three subsets:� The first subset, containing those rules of the form (~t|I, a) in V|I and (a ::~t|I, a) in Vagg , represents the

synchronization rules that involve only components inside I. In this case, ~t|I is a vector of •, which
expresses that transitions of reduceR (N|I) obtained by synchronization of components inside I do not
need to synchronize with components outside I.� The second subset, containing those rules of the form (~t|I, α(~t, a)) in V|I and (α(~t, a) ::~t|I, a) in Vagg ,
represents the synchronization rules that involve both components inside I and components outside
I. This expresses that transitions of reduceR (N|I) obtained by synchronization of components inside

I still need to synchronize with components outside I. The special label α(~t, a) is an intermediate
label used for this synchronization. Note that in general, a cannot be used instead of α(~t, a) because
(1) a can be the internal label τ (even though ~t synchronizes only visible labels), which cannot be
synchronized, and (2) in general there can be several rules with the same label a (in particular when
synchronization is nondeterministic involved) and using a could create unexpected synchronizations.� The third subset, containing those rules of the form (• ::~t|I, a) in Vagg , represents the synchronization
rules that involve only components outside I. These rules do not impose synchronization constraints
on components inside I, thus explaining why V|I has no rule in the third subset.

Proposition 14 If R is a congruence for networks, then lts (agg (N, I)) is equivalent modulo R to lts (N).

Definition 28 (Compositional aggregation algorithm) A compositional aggregation algorithm to gen-
erate and minimize modulo R the LTS corresponding to a network of LTSs ((S1, . . . , Sn), V) of size n is
defined iteratively as follows:

1. N := (reduceR (S1), . . . , reduceR (Sn), V)

RR n° 8708

32 H. Garavel, F. Lang, and R. Mateescu

2. Select a set I of indices containing at least those of two of the component LTSs of N . A strategy for
selection will be addressed in the next section.

3. N := agg (N, I).

4. If N still contains more than two LTSs, then continue in step 2. Otherwise return reduceR (N).

Proposition 15 The compositional aggregation algorithm terminates and if R is a congruence for networks,
then it returns an LTS that is equivalent to its input network modulo R.

Equivalence modulo R follows from Proposition 14, which ensures that lts (N) remains invariantly equiv-
alent to the input modulo R until the end of the algorithm. Termination follows from the fact that the
size of agg (N, I) is the size of N plus 1 minus the size of I (which is at least 2). Since N is substituted
by agg (N, I) at each step, this guarantees that the size of N strictly decreases at each step. These results
establish the correctness of compositional aggregation.

Example 13 We write reducebra (S) for minimization of S modulo branching bisimulation. The com-
pound LTS corresponding to the network of Example 1, whose components S1, S2, and S3 are al-
ready minimal, can be generated modulo branching bisimulation by first composing S1 and S2, then
S3 as follows. First, build N12 = N|{1,2} = ((S1, S2), V12) for the aggregation of S1 and S2,
where V12 is the set of rules {((a, a), a), ((a, •), α1), ((b, b), α2), ((c, c), τ)}, α1 is the label α((a, •, a), a),
and α2 is the label α((b, b, b), b). Compute the intermediate LTS S12 = reducebra (lts (N12)) (see
below). Second, build N(12)3 = agg (N, {1, 2}) = ((S12, S3), V(12)3), where V(12)3 is the set
{((a, •), a), ((α1, a), a), ((α2, b), b), ((τ, •), τ), ((•, d), d)}. Return reducebra (lts (N(12)3)) (see lts (N(12)3) be-
low), which is branching equivalent to lts (N) (see Figure 1). Note that both LTSs lts (N12) and lts (N(12)3)
are smaller than lts (N).

0 1 3

2 4

a τ τ

τ
α1

α2

α1

5 7

986 11
τα2 τ

10

α1

a

0 1

4

a

α1
τ

2

α1

35

α2

α1

aα2

0 1 3

2 4

a
5

6

a

7
b d a

d b

a

lts (N12) reducebra (lts (N12)) lts (N(12)3)

Other aggregation orders are possible, yielding different intermediate graphs. Figure 7 gives the sizes of
those intermediate graphs corresponding to the different aggregation orders. The largest intermediate graph
size of each order is indicated in bold type. This table shows that the aggregation order described above
(order 1) is optimal in terms of largest intermediate graph (12 states and 12 transitions).

The most difficult issue in compositional aggregation concerns step 2 of the algorithm, namely to select,
if possible automatically, an aggregation I that avoids state explosion. We present smart reduction, which
corresponds to compositional aggregation using a heuristic based on metrics evaluated against possible
aggregations. The metrics use an estimate of the number of compound transitions in I, defined as follows.

Definition 29 (Estimate number of compound transitions) The estimate number of compound tran-
sitions in I generated by synchronization vector ~t, written ET (I,~t), is defined below:

ET (I,~t) =











0 if I ∩ acv(~t) = ∅
∏

|Σi| ×
∏

|
~t[i]
−→i | otherwise

i∈I\acv(~t) i∈I∩acv(~t)

Informally, ET (I,~t) counts, for vector ~t, the number of transitions going out of every product state
of I, including unreachable states. This count equals 0 if ~t does not involve components inside I (first
line). Otherwise, N|I has a rule of the form (~t|I, b). This rule generates a transition in a state of N|I

without condition on the states of the components ~S[i] such that i ∈ I \ acv(~t) — thus justifying the first

INRIA

Compositional Verification using CADP 33

Order 1 : (S1, S2) then S3 states transitions
comp(S1, S2) 12 12

reducebra (comp(S1, S2)) 6 7
comp(reducebra (comp(S1, S2)), S3) 8 8

reducebra (comp(reducebra (comp(S1, S2)), S3)) 7 7

Order 2 : (S1, S3) then S2 states transitions
comp(S1, S3) 19 23

reducebra (comp(S1, S3)) 17 22
comp(reducebra (comp(S1, S3)), S2) 15 17

reducebra (comp(reducebra (comp(S1, S3)), S2)) 7 7

Order 3 : (S2, S3) then S1 states transitions
comp(S2, S3) 18 34

reducebra (comp(S2, S3)) 18 34
comp(reducebra (comp(S2, S3)), S1) 15 17

reducebra (comp(reducebra (comp(S2, S3)), S1)) 7 7

Order 4 : (S1, S2, S3) states transitions
comp(S1, S2, S3) 15 17

reducebra (comp(S1, S2, S3)) 7 7

Figure 7: Sizes of intermediate graphs for all aggregation orders; given S1, . . . , Sm some components of the
current network N and I the set of their indices, comp(S1, . . . , Sm) denotes lts (N|I)

product in the definition of ET (I,~t) — and provided that the states of the components ~S[i] such that
i ∈ I ∩ acv(~t) have a transition labelled ~t[i] — thus justifying the second product. In general, the exact
number of compound transitions in I generated by synchronization vector ~t is below this count since some
states may be unreachable.

We now define our metrics on networks, which is the sum of two terms, namely the hiding metrics and
the interleaving metrics , defined below.

Definition 30 (Hiding metrics) The hiding metrics is defined by HM (I) = HR(I)/|I|, where HR(I) (the
hiding rate) is defined as follows:

HR(I) =

∑

ET (I,~t)

(~t,τ)∈V ∧acv(~t)⊆I

1 +
∑

ET (I,~t)

(~t,a)∈V

Informally, HR(I) represents an estimate of the proportion of transitions in N|I that are internal. Those
transitions are necessarily created by rules involving only components inside I. The addition of 1 in its divisor
avoids division by 0 in pathological cases. The divisor |I| of HM (I) aims at favouring smaller aggregations,
which are likely to yield smaller intermediate LTSs.

Using HM (I) is justified in the context of weak equivalence relations (e.g., branching bisimulation),
because internal transitions are often eliminated by the corresponding minimizations. Although to a lesser
extent, it is also justified in the context of strong bisimulation, because hiding enables abstracting away from
labels that otherwise would differentiate the behaviour of equivalent states.

However, in both cases, HM (I) is not sufficient to avoid intermediate explosion due to the aggregation
of loosely synchronized LTSs. To palliate this, the hiding metrics will be combined with the interleaving
metrics defined as follows.

Definition 31 (Interleaving metrics) Let ~t@i denote the synchronization vector of size n defined by
(~t@i)[i] = ~t[i] and (∀j ∈ [1, n] \ {i}) (~t@i)[j] = •.

The interleaving metrics is defined by IM (I) = (1 − IR(I))/|I|, where the interleaving rate IR(I) is
defined as follows:

RR n° 8708

34 H. Garavel, F. Lang, and R. Mateescu

IR(I) =

∑

ET (I,~t)

(~t,a)∈V

1 +
∑ ∑

ET (I,~t@i)

(~t,a)∈V i∈I∩acv(~t)

Intuitively, the value IR(I) is the quotient between an estimate of the number of compound transitions of
I and the number of compound transitions that I would have if all components were fully interleaving. For
an aggregation I of fully interleaving components, we thus have IR(I) very close to 1. It is a refinement of
the interleaving count defined in [40], which uses the proportion of fully interleaving (i.e., non-synchronized)
component LTS transitions out of the total number of component LTS transitions. We believe that IR(I)
is more accurate, because it also measures the partial interleaving of synchronized transitions with the
remainder of the aggregation.

Definition 32 (Combined metrics) Taking into account both the hiding rate and the interleaving rate,
we use here the combined metrics CM (I) = HM (I) + IM (I).

Smart reduction selects the aggregation to which the metrics gives the highest value (high proportion
of internal transitions and low interleaving). To avoid the combinatorial explosion of the number of ag-
gregations, we proceed as in [40] and only consider: (1) aggregations whose size is bounded by a constant
(definable by the user), and (2) aggregations that are connected. An aggregation is connected if for each pair
of distinct components Si, Sj in the aggregation, Si and Sj are connected, which is defined recursively as
follows: either there is a synchronization rule (~t, a) such that {i, j} ⊆ acv(~t) (i.e., Si and Sj are synchronized)
or, recursively, the aggregation contains a third (distinct) LTS Sk connected to both Si and Sj.

Example 14 The metrics evaluate as follows on the network of Examples 1 and 13:

I {1, 2} {1, 3} {2, 3} {1, 2, 3}
HM (I) 0.211 0 0 0.129
IM (I) 0.357 0.227 0.124 0.249
CM (I) 0.568 0.227 0.124 0.378

As expected, the combined metrics gives the highest value to {1, 2}, therefore designating it as the best
aggregation in the first step. Note that, more generally in this example, a comparison between the graph
sizes in Figure 7 and the values in the above table shows that one aggregation is more efficient than another
whenever the combined metrics gives it a higher value.

5.3 Combining smart reduction and partial model checking

The order in which the components of the network are composed and minimized has also an influence on
the efficiency of partial model checking. The only difference is that we aim to generate compositionally
the LTS corresponding to the quotient formula network obtained by composition of the formula graph with
the network of LTSs under verification. Therefore, the smart reduction heuristics can be used to select
the next aggregation to be computed. The reduction that has to be applied at each step depends whether
the selected aggregation contains the formula graph (corresponding to the computation of a quotient) or
not (corresponding to a simple compositional model generation step). If the formula graph belongs to the
aggregation, then the simplifications designed for partial model checking must be applied. Otherwise, the
aggregation can be minimized modulo any appropriate equivalence relation that is adequate with the formula
under verification.

Currently, we use a simple strategy: the heuristics always selects an aggregation limited to two compo-
nents, which always includes the formula graph, so that the formula graph simplifications are applied at each
step. More elaborate strategies could be designed in the future.

INRIA

Compositional Verification using CADP 35

6 Implementation in the CADP toolbox

All the above concepts and algorithms for compositional verification have been implemented in the framework
of CADP [58]. CADP (Construction and Analysis of Distributed Processes) is a tool platform implementing
salient results of concurrency theory, with a particular focus on applicability and scalability of the proposed
approaches. Related tool platforms for asynchronous, action-based systems are, e.g., the Edinburgh Concur-
rency Workbench [37] and Concurrency Workbench of the New Century6 for CCS, the Failures-Divergences
Refinement tools [10, 65] for CSP, the micro Common Representation Language7 toolset [72] for ACP, and
LTSmin8, which supports several input languages [21].

The CADP9 toolbox is one of the pioneering platforms in concurrency theory, as its development was un-
dertaken in the mid-80s. Since then, the toolbox has grown to include nearly 50 tools; moreover, CADP tries
as much as possible to interface with tools developed by other research teams, so as to provide comprehensive
solutions for analyzing complex concurrent models.

Many tools of CADP address compositional verification issues, or are needed to do so. In the present
section, we give an orderly presentation of these tools sorted according to their functionalities.

6.1 Labelled transition systems and their generation

CADP implements the theoretical concept of LTS in two different ways:� For explicit LTSs that are defined in extension by giving the list of their states and transitions, CADP
provides a file format named BCG (Binary-Coded Graphs). This format enables large LTSs to be stored
on disk in a compact manner (typically, two bytes per transition). It is equipped with programming
libraries for reading and writing BCG files, as well as a collection of tools that query and transform BCG
files, e.g., to compute statistics such as the branching factor, to display the list of labels attached to
transitions, to relabel transitions using string substitutions defined by regular expressions, etc. Notice
that CADP supports other LTS formats (such as AUT, FC2, and SEQ), which are textual and, thus,
readable by humans; however, BCG remains the format of choice for large explicit LTSs.� For implicit LTSs that are defined in comprehension by giving their initial state and their transition
function, CADP provides the OPEN/CAESAR Application Programming Interface [56]. This interface
enables algorithms to be written for on-the-fly LTS exploration, and provides sufficient abstraction
capabilities to make such algorithms independent from the details of the particular source language
used to specify these LTSs. Above the OPEN/CAESAR interface, many tools have been developed,
some of them will be described in this section.

These LTSs can be produced in different ways using the CADP tools. They can be generated from
specifications written in a data-passing process calculus such as LOTOS (using the CAESAR.ADT and
CAESAR compilers [55, 60]) or from the parallel composition of several LTSs (using the EXP.OPEN tool
[85], which implements the parallel, hiding, and renaming operators of all mainstream process calculi, and
supports the Arnold-Nivat synchronization vectors as well). These LTSs can also be generated from other
concurrent languages, such as LNT [28], FSP [94, 89], CHP [98, 59] that are automatically translated to
LOTOS and/or EXP.OPEN input formalism.

6.2 Equivalence checking: Minimization and comparison of labelled transition
systems

The CADP toolbox also provides tools for minimizing (i.e., computing the quotient) of an LTS modulo
various behavioral equivalence relations — especially bisimulations — and to compare two LTSs with each
other modulo various behavioral equivalence or preorder relations. The development of such tools has been a

6http://www.cs.sunysb.edu/~cwb
7mcrl2.org
8fmt.cs.utwente.nl/tools/ltsmin
9http://cadp.inria.fr

RR n° 8708

http://www.cs.sunysb.edu/~cwb
mcrl2.org
fmt.cs.utwente.nl/tools/ltsmin
http://cadp.inria.fr

36 H. Garavel, F. Lang, and R. Mateescu

continuous effort since the early days of CADP. The ALDEBARAN tool [52] was developed for this purpose,
and was later replaced by version 1 of another tool named BCG MIN.

At present, CADP provides three equivalence-checking tools: version 2 of BCG MIN [39], which can
minimize an explicit LTS encoded in the BCG format, BCG CMP, which can compare two explicit LTSs
encoded in the BCG format, and BISIMULATOR [102], which can compare an implicit LTS that implements
the OPEN/CAESAR interface against an explicit LTS encoded in the BCG format. On powerful machines,
these tools have been able to successfully handle LTS with one billion explicit states and several billion
transitions. The comparison of LTSs can generate diagnostics, i.e., discrimininating sequences of transitions
(or more generally, graph fragments) that explain why two LTSs are not equivalent or included one in the
other.

6.3 Semi-composition and interfaces

To implement the concept of semi-composition, CADP provides the PROJECTOR tool, which takes as
input an implicit LTS (represented using the OPEN/CAESAR Application Programming Interface) and an
interface (encoded in the BCG format), and produces as output a BCG file containing the semi-composition
of the LTS and the interface. The PROJECTOR tool has been continuously enhanced: over the years, three
successive versions of the tool have been developed. The current version is PROJECTOR 3. PROJECTOR
was used successfully in the verification of an industrial protocol [132].

6.4 Model checking: Local and partial evaluation

There are many model checkers in the world, with many academic prototypes and a few industrial-strength
tools. Most model checkers follow the state-based approach, in which temporal logic formulas are built upon
atomic properties that can query the values of variables contained in each state of the system, e.g., computing
the set of states in which a given variable X is positive. The state-based approach relies on a “white-box”
assumption, i.e., the assumption that the contents of all variables of the system under verification are
observable.

In concurrency theory, however, such a “white-box” assumption does not hold in general, and an action-
based approach is used instead: the mainstream semantic models of concurrency theory (e.g., the concepts of
LTS or Markov chains) follow a “black box” assumption, in which all information is attached to transitions
and no information is attached to states, except the difference between the initial state(s) and other states.
Practically, in order to remain compatible with equivalence checking (especially, bisimulations), the atomic
properties of the temporal logic used must refer to actions (i.e., transition labels) rather than state contents.
Such design constraint is materialized, e.g., by the difference that exists between the modal µ-calculus [25],
which is action-based, and the propositional µ-calculus [82], which is state-based.

The CADP toolbox provides advanced tools for model checking, but does it in a way that remains
compatible with the foundations of concurrency theory. Namely, the CADP tools follow the action-based
approach rather than the state-based one. All the model checking tools of CADP work on the fly, on
implicit LTSs rather than explicit LTSs, thus enabling to halt state-space generation as soon as the property
under evaluation is found to be false or true. Moreover, all the model checking tools of CADP can produce
diagnostics (also called witnesses or counterexamples), i.e., (explicit) fragments from the implicit LTS in
order to explain why a property is true or false.

The first model checking tools added to CADP in the 90s were specialized for simple classes of properties.
For instance, the EXHIBITOR tool searches for traces matching a given regular expression, and the TER-
MINATOR tool searches for deadlocks (i.e., states with no outgoing transition) using Holzmann’s bitstate
hashing algorithm.

Later, more generic model checkers have been added to CADP. The EVALUATOR 3 model checker
[104] is based on the alternation-free modal µ-calculus, supplemented for convenience with regular expres-
sions on action names and execution sequences. To produce its verdicts, EVALUATOR 3 relies on the
CAESAR SOLVE engine [102], a library for solving Boolean equation systems on the fly and generating ap-
propriate diagnostics. For many years, EVALUATOR 3 has been intensively used within CADP and applied
to a number of large case studies, many of which in an industrial context.

INRIA

Compositional Verification using CADP 37

Recently, EVALUATOR 4 [105] has been introduced as the new default model checker of CADP. EVAL-
UATOR 4 generalizes EVALUATOR 3 by accepting a more expressive logic named MCL, in which one can
specify properties and dependencies on the typed data values contained in action names. Using MCL, one
can express meaningful and practically relevant properties (such as: “on any execution path, the sequence
number attached to each message is constantly increasing”) that cannot be expressed using conventional
logics, which consider actions as members of some finite alphabet, rather than complex data structures con-
taining both communication channel names as well as typed value exchanged between concurrent processes.
To evaluate the rich formula language of MCL, the concept of Parameterized Boolean Equation Systems [100]
has been invented and implemented in the EVALUATOR 4 tool.

Finally, in order to support partial model checking, the PMC10 tool has been developed and made
available as a CADP companion tool.

6.5 The SVL language for compositional verification

Although compositional verification is firmly grounded in strong theoretical results and although it is likely
to bring significant reductions in complexity, this is not sufficient to make it usable on a practical scale,
especially by novice users. Indeed, applying compositional verification to any non-trivial system raises a
number of difficult, low-level, yet unavoidable issues, among which: invoking all the required CADP tools
in the proper order with appropriate command-line options, splitting models into components and logic
formulas into subformulas, recombining system components and subformulas into larger agglomerates, and
managing tens (and often hundreds) of intermediate files, which need to be archived, given unique names,
and to be deleted as soon as they are no longer useful.

To address these issues, the CADP toolbox is equipped with a unique solution named SVL (Script
Verification Language)11 [57, 84]. SVL is both a high-level scripting language proposed to CADP end-users,
as well as a compiler that translates SVL scripts into Bourne shell scripts, which can be directly executed on
any POSIX system and perfom all low-level tasks of invoking the CADP tools and managing intermediate
files. SVL enables the description of systems consisting of:� Explicit LTSs encoded in one of the formats supported by CADP, namely, AUT, BCG, FC2, or SEQ;� Implicit LTSs represented using the OPEN/CAESAR Application Programming Interface and gener-

ated from high-level languages such as LOTOS, LNT, FSP, or any concurrent language that can be
translated to these;� Explicit LTSs obtained from implicit LTSs by exhaustively enumerating all their reachable states and
transitions;� Parallel composition of LTSs combined together using the parallel operators of mainstream process
calculi (e.g., ACP/µCRL [72], CCS [108], CSP [125], LOTOS [79], E-LOTOS [80], LNT [28]) or
Arnold-Nivat synchronization vectors;� Semi-composition of an LTS projected over another LTS playing the role of an interface;� Modification of an LTS by applying operations that hide or rename given labels, or that cut transitions
labelled with given labels (i.e., labels that match specified regular expressions);� Minimization (total or partial) of an LTS modulo some behavioural equivalence, e.g., bisimulation
relations.

Additionally, SVL provides language constructs to perform the following verification tasks:� Equivalence checking: comparison of two systems to decide whether they are equivalent or included
one in the other modulo behaviour equivalence or preorder relations;

10http://convecs.inria.fr/software/pmc
11http://cadp.inria.fr/man/svl.html

RR n° 8708

http://convecs.inria.fr/software/pmc
http://cadp.inria.fr/man/svl.html

38 H. Garavel, F. Lang, and R. Mateescu

TFTP A TFTP B
Scenario read write read write

A X

B X

C X X

D X X

E X X

Table 1: The five scenarios of the TFTP/UDP case study� Model checking: search for deadlocks or livelocks in a system and, more generally, evaluation of a
temporal logic formula on a system;� Compositional verification: SVL has so-called meta-operators that recursively apply (total or partial)
minimizations to the sub-components of a system, using various compositional reduction strategies,
among which smart reduction.

Finally, SVL implements various expert strategies to make verification tractable. For instance, the LTSs
representing interfaces are automatically minimized modulo safety equivalence before being used for semi-
composition; also, when branching minimization fails to handle a large LTS, then SVL first tries to apply
strong minimization before restarting branching bisimulation, and so on. Examples of SVL scripts are
provided in Section 7.

7 Applications and experimental results

We now illustrate how the various compositional verification techniques presented in this paper and available
in CADP can be applied to a common case study, an airplane-ground communication protocol studied by
Airbus and based upon TFTP/UDP (Trivial File Transfer Protocol/User Datagram Protocol) [62]. The
modelled system consists of two TFTP entities (A and B), connected by an UDP link that can be modelled
as a lossy FIFO channel.

Since the state space of this case study is very large, five scenarios named A to E are considered [62],
depending on whether each TFTP entity may write and/or read a file (see Table 1). We used the same
five scenarios in our study. All of them are specified in LNT [28], in files named SCENARIO A.lnt to
SCENARIO E.lnt, as the parallel composition of eight concurrent components named TFTP A, TFTP B,
MEDIUM A, MEDIUM B, RCV A, RCV B, SND A, and SND B. All experiments were done on a 64-bit
computer with 148 gigabytes of memory.

7.1 Generation of minimized LTS

Direct generation of the compound LTS. Our aim is to generate a compound LTS that is as small as
possible, either for strong or for (div)branching bisimulation. A first way to obtain this LTS is to generate
directly and then minimize the compound LTS. For scenario A and divbranching equivalence, we use the
following SVL script:

"SCENARIO A.bcg" = divbranching reduction of
generation of "SCENARIO A.lnt"

The LTS is small enough to be generated directly, and contains 12, 885, 069 states and 51, 305, 563 transi-
tions. Its reduction modulo divbranching bisimulation yields an LTS with 1, 620, 754 states and 7, 060, 163
transitions, i.e., between 7 and 8 times less states and transitions, but the reduction already requires more
than 1 gigabyte of memory. For the other scenarios, the LTSs obtained are much larger, which justifies
resorting to compositional methods.

INRIA

Compositional Verification using CADP 39

Non-minimized Minimized
States Trans. States Trans.

TFTP A 30,865 263,986 704 4,542
TFTP B 24,846 213,118 504 3,421
MEDIUM {A,B} 4,642 9,296 801 5,440
SND A, RCV B 1 4 1 4
SND B, RCV A 1 4 1 4

Table 2: LTS sizes for scenario A, before and after minimization modulo strong, branching, or divbranching
bisimulations (component LTSs do not contain internal actions)

Scenario B Scenario C Scenario D Scenario E
States Trans. States Trans. States Trans. States Trans.

TFTP A 719 4,610 704 4,542 719 4,610 719 4,610
TFTP B 504 3,421 1,058 7,164 1,058 7,164 1,079 7,274
MEDIUM {A,B} 801 5,440 801 5,440 801 5,440 801 5,440
SND A, RCV B 1 4 1 7 1 5 1 6
SND B, RCV A 1 3 1 7 1 6 1 6

Table 3: Component LTS sizes (states and transitions) once minimized for strong, branching, or divbranching
bisimulation (which coincide on this example) for scenarios B to E

Component LTS generation. The first step consists in generating and reducing the LTSs of the compo-
nents. We use the LNT.OPEN and GENERATOR tools of CADP to generate the LTSs of the components,
and BCG MIN to minimize them. This can be done easily using SVL statements of the following form:

"TFTP A.bcg" = divbranching reduction of
generation of "SCENARIO A.lnt" : TFTP A

or equivalently:

% DEFAULT PROCESS FILE="SCENARIO A.lnt"
"TFTP A.bcg" = divbranching reduction of generation of TFTP A

For scenario A, we obtain the LTS sizes of Table 2. Left columns report LTS sizes before reduction and right
columns report LTS sizes after reduction modulo strong bisimulation — which coincides with (div)branching
bisimulation since components do not have internal actions. For the 4 other scenarios, Table 3 provides the
sizes after strong reduction of the LTSs corresponding to the eight components.

Using an automatically generated interface. Although the component LTSs are not very large, an
interface can be used to constrain the largest component, namely TFTP A, for the sake of illustration. In
SCENARIO A, the refined interface that takes into account constraints imposed on TFTP A by SND A,
generated using EXP.OPEN, has the same number of states and transitions as SND A. On-the-fly semi-
composition of TFTP A with this interface yields an LTS containing 119 states and 320 transitions, which
avoids generating the LTS containing 30, 865 states and 263, 986 transitions. By being two orders of mag-
nitude smaller, this constrained LTS can be minimized more efficiently. Note, however, that this does not
decrease the size of the compound LTS, which remains unchanged as expected.

Generation and minimization of the global compound LTS using root leaf reduction. Once
component LTSs are generated and minimized, they can be composed, yielding a non-minimal (but partially
reduced) LTS that can then be further minimized modulo an equivalence relation. This is done by root
leaf reduction, the simplest strategy proposed in CADP. All these steps can be achieved using a single SVL
statement, in which the LTS composition expression is the same as the composition of processes defined in

RR n° 8708

40 H. Garavel, F. Lang, and R. Mateescu

non-minimized strong bisimulation (div)branching bisimulation
Scen. States Transitions States Transitions States Transitions

A 1,905,716 7,950,203 1,785,841 7,695,534 1,620,754 7,060,163
B 851,171 3,503,318 827,396 3,548,292 754,112 3,262,499
C 34,003,384 151,810,170 33,430,548 144,216,908 29,278,308 128,562,334
D 39,908,375 177,531,725 33,205,455 152,203,388 29,140,913 135,963,503
E 19,016,593 77,698,491 18,322,082 78,628,709 15,895,904 69,420,304

Table 4: Size of the LTS corresponding to the whole system for each scenario (component LTSs minimized),
non-minimized, once minimized modulo strong bisimulation, and once minimized modulo branching or di-
vbranching bisimulation (which coincide on this example)

Generation Strong (Div)branching
minimization minimization

Scenario time memory time memory time memory
A 19 36 33 167 34 170
B 8 23 12 73 15 74
C 670 434 1,060 3,138 1,138 3,204
D 805 503 1,193 3,766 1,237 3,841
E 326 246 501 1,716 493 1,743

Table 5: Generation and minimization: time (in seconds) and memory (in megabytes) for the LTS corre-
sponding to each scenario

file SCENARIO A.lnt:

% DEFAULT PROCESS FILE="SCENARIO A.lnt"
"SCENARIO A.bcg" = root leaf divbranching reduction of

par
SEND A,RECEIVE A → hide GET A,PUT A in TFTP A end hide

‖ SEND B,RECEIVE B → hide GET B,PUT B in TFTP B end hide
‖ SEND A,RECEIVE B → MEDIUM A
‖ SEND B,RECEIVE A → MEDIUM B
‖ RECEIVE A → RECEIVE A
‖ RECEIVE B → RECEIVE B
‖ SEND A → SEND A
‖ SEND B → SEND B
end par

Table 4 provides LTS sizes after composition, non-minimized and minimized modulo strong, branching,
and divbranching bisimulation. Note that branching and divbranching bisimulations coincide, because the
global compound LTS does not contain cycles of internal transitions. LTS reductions are not dramatic here,
essentially because only a few labels are hidden. Table 5 provides the time and memory used to generate
the global compound LTS from the component LTSs, and to minimize it modulo strong bisimulation and
(div)branching bisimulation.

Compositional generation of the state space using other strategies. More elaborate strategies
(namely node reduction and smart reduction) consist in composing the minimized LTSs in a certain order,
and minimizing the intermediate LTSs after hiding synchronized labels. For each of these strategies, Table 6
reports both the memory peak and the size of the largest LTS generated for scenario A. These strategies
can be easily implemented by replacing the root leaf keywords in the above SVL script by either node or
smart. Both node and smart reductions are good strategies for this example. The largest LTS generated by
smart reduction has the same size as for node reduction, although the composition order differs slightly. In
both cases, memory peak (156 megabytes instead of one gigabyte) and largest intermediate LTS size (less

INRIA

Compositional Verification using CADP 41

Largest LTS size Memory peak
States Trans. (megabytes)

root leaf reduction 1,905,716 7,950,203 170
node reduction 1,783,372 7,827,859 156
smart reduction 1,783,372 7,827,859 156

Table 6: Compositional strategies for Scenario A (branching bisimulation)

Scenario Largest LTS Time Memory

A 1,810,925 50 158
B 811,893 25 70
C 32,574,552 1,605 4,492
D 38,567,594 1,907 996
E 17,986,105 755 1,812

Table 7: Smart divbranching reduction (without label hiding) results for the TFTP/UDP case study: largest
LTS sizes (in the number of states), CPU time (in seconds), and memory peak (in megabytes)

than 2 million states instead of more than 12 millions) are about six times lower than for direct generation.
Table 7 reports largest LTS size (in the number of states), CPU time (in seconds), and peak of memory (in
megabytes) used to minimize the LTSs corresponding to the five scenarios modulo divbranching equivalence
using smart reduction.

7.2 Model checking

We consider the MCL properties named A01 to A28, studied in [62], as well as an additional alternation-2
fairness property A29 not checked in [62]. These properties are reported in Appendix A (page 55).

Standard model checking. We first model check the properties on the BCG graphs corresponding to the
five scenarios, minimized modulo divbranching equivalence using the methods presented in Section 7.1. This
is done using the tool BCG OPEN and the model checker EVALUATOR 3 [104] of CADP. These tools are
automatically invoked by SVL script fragments of the following form, where in the formula part (i.e., between
symbols “|=” and “;”), double quotes enclose character strings denoting a label, such as "REINIT A", and
single quotes enclose regular expressions denoting a label, such as ′RECEIVE A.∗

′
.

property A06
An internal error must cause the transfer to abort. The following formula
ensures that there is no sequence of transitions in which a reception or a
transmission can occur after an internal error but before a reinitialisation
and/or the transmission of an error.

is

"SCENARIO.bcg" |=
[

true
∗ .

"INTERNAL ERROR A" .
not ("REINIT A" or "SEND A !ERROR")∗ .
′RECEIVE A.∗′ or (′SEND A.∗′ and not "SEND A !ERROR")

] false;
expected true

end property

Table 8 reports time and memory results for model checking. Some properties being irrelevant to some
scenarios (e.g., they concern a read or write operation absent in the corresponding scenario), they are not

RR n° 8708

42 H. Garavel, F. Lang, and R. Mateescu

Scenario A Scenario B Scenario C Scenario D Scenario E

Prop time memory time memory time memory time memory time memory

A01 13 106 5 49 700 1, 803 714 1, 807 330 946
A02 16 110 5 50 840 1, 900 867 1, 908 386 4
A03 11 100 4 45 582 1, 700 599 1, 714 257 877
A04 13 106 5 49 700 1, 803 711 1, 807 330 946
A05 3 34 1 16 52 663 55 693 28 361
A06 12 101 4 47 635 1, 734 661 1, 755 283 898
A07 12 101 4 47 633 1, 734 658 1, 755 282 898
A08 11 100 4 46 587 1, 704 603 1, 718 260 880
A09a 662 1, 777 309 927
A09b 692 1, 805
A10 1, 018 1, 998 410 1, 015
A11 884 1, 924 1, 432 2, 239 425 1, 032
A12 69 861 57 710 29 393
A13 1, 169 2, 242 511 1, 176
A14 30 135 1, 488 2, 301 636 1, 218
A15 6 46 67 827 55 715 314 921
A16 39 427
A17 171 941 133 923
A18 4 46 86 856 75 808 265 877
A19 32 96 3, 789 3, 441 4, 925 4, 020 1, 262 1, 687
A20 3 40 143 999 43 465
A21 86 188 2, 303 2, 782 1, 094 1, 571
A22 1 16 321 1, 191 45 441
A23 22 88 3, 062 3, 239 1, 157 1, 660
A24 3 34 120 859
A25 79 192 2, 718 3, 028
A26 13 105 651 1, 760 306 921
A27 20 105 1, 158 2, 091 503 1, 112
A28 7 56 1, 259 2, 147 1, 133 2, 087 495 1, 088
A29 13 106 5 49 698 1, 803 714 1, 807 331 946

Table 8: Standard model checking results for the TFTP/UDP case study: CPU time (in seconds) and
memory (in megabytes)

checked, which explains the shaded cells. As can be seen from the results, a TRUE/FALSE verdict is returned
for all verifications, because the model on which they are applied is not too large. However, some of them
use much time and memory, e.g., model checking property A19 on scenario D takes 1 hour and 20 minutes
and uses more than 4 gigabytes of memory.

On-the-fly model checking. We then model check the properties on the fly, i.e., without generating the
compound LTS but directly on the composition expression, the transitions being fired on demand by the
model checker. This is done still by using EVALUATOR 3, but replacing BCG OPEN by EXP.OPEN. These
tools are automatically invoked using an SVL fragment similar to the above, but replacing "SCENARIO.bcg"
by "SCENARIO.exp", which stores the corresponding composition expression. The time and memory results
are reported in Table 9. Note that most often, on-the-fly model checking takes more time and memory
than standard model checking, because it includes the resources needed by EXP.OPEN to compute fireable
transitions, which is more expensive than enumerating the already computed transitions of a BCG graph.
However, in a few cases, on-the-fly model checking is faster and uses less memory, in particular when the
portion of the LTS to be explored is smaller than the entire compound LTS. For instance, the time and
memory used to check property A15 on scenario D decreases from 55 seconds and 715 megabytes using
standard model checking down to 15 seconds and 156 megabytes using on-the-fly model checking.

Model checking using maximal hiding and smart reduction. Our next experiment concerns the
combination of maximal hiding with smart reduction. For formulas A08, A09a, A09b, A14, and A16, the
maximal hiding set is empty, and hence we do not consider them in this experiment. For each of the
relevant formulas and for each scenario, the maximal hiding set is generated (using an ad-hoc option of
EVALUATOR 4) and then used to minimize the system modulo divbranching bisimulation with smart
reduction, and the property is verified on the minimized LTS using EVALUATOR. Maximal hiding is not
yet integrated in the SVL scripting language, but this is planned on a short term. Table 10 reports the time

INRIA

Compositional Verification using CADP 43

Scenario A Scenario B Scenario C Scenario D Scenario E

Prop time memory time memory time memory time memory time memory

A01 28 199 10 89 1, 324 2, 947 1, 590 3, 351 772 1, 530
A02 31 207 12 93 1, 640 3, 156 2, 010 3, 631 883 1, 612
A03 22 182 8 80 1, 210 2, 737 1, 365 3, 162 668 1, 386
A04 26 199 10 89 1, 400 2, 947 1, 598 3, 351 770 1, 530
A05 1 10 1 7 1 7 1 7 1 10
A06 23 187 9 85 1, 306 2, 808 1, 540 3, 249 667 1, 428
A07 23 187 9 85 1, 299 2, 808 1, 687 3, 249 674 1, 428
A08 22 186 8 80 1, 220 2, 745 1, 620 3, 170 625 1, 390
A09a 1, 679 3, 290 695 1, 488
A09b 1, 415 2, 955
A10 2, 112 3, 354 929 1, 674
A11 1, 722 3, 206 3, 583 4, 444 997 1, 711
A12 76 620 8 133 6 101
A13 3, 297 4, 499 1, 446 2, 094
A14 54 267 2, 681 3, 988 1, 443 2, 107
A15 11 118 55 521 15 156 705 1, 524
A16 40 186
A17 315 667 217 569
A18 9 85 86 476 35 255 599 1, 391
A19 53 207 6, 159 6, 352 9, 393 8, 753 2, 697 3, 104
A20 1 31 224 837 39 261
A21 131 374 4, 004 4, 958 2, 293 2, 817
A22 1 35 147 427 43 191
A23 39 170 5, 605 6, 909 2, 345 3, 039
A24 1 41 148 427
A25 133 391 4, 163 5, 480
A26 25 195 1, 383 2, 857 687 1, 477
A27 38 228 2, 323 3, 534 1, 196 1, 871
A28 15 102 2, 538 3, 654 2, 615 4, 032 1, 277 1, 821
A29 26 198 11 88 1, 524 2, 942 1, 738 3, 350 700 1, 525

Table 9: On-the-fly model checking results for the TFTP/UDP case study: CPU time (in seconds) and
memory (in megabytes)

(in seconds) and memory peak (in megabytes). Table 11 reports the largest intermediate LTS size (in the
number of states) reached during each experiment. The percentages (columns labelled with %) indicate the
ratio between the size of the largest LTS generated during this experiment and the size given in Table 7
of the largest LTS generated during smart divbranching reduction without label hiding. All experiments
show a gain, sometimes impressive. For instance, the number of states of the largest LTS generated to check
property A12 on scenario D represents only 3 % of the maximum number of states generated by smart
divbranching reduction without label hiding. The gain in CPU time and memory peak is also significant.

Partial model checking. As the last experiment, we apply the partial model checking approach described
in Section 5.2. Table 12 gives, for each scenario and each property, the time in seconds and the peak of
memory in megabytes used by partial model checking. The symbol “⋆” corresponds to verifications that
either take too long (exceeding a 12 hour limit) and/or use too much memory (more than 16 gigabytes).
Note that most of the time and memory are used by formula simplifications, as compared to the rather low
complexity of the synchronous product operation used for quotienting. Partial model checking is not yet
integrated in the SVL scripting language, so that tools have to be invoked manually at the moment.

These results confirm that partial model checking may be much more efficient (up to several hundred
times less memory in this example) than both standard and on-the-fly model checking. This is particularly
true for some formulas having the form “[R] false” and “〈R〉 true”, where R is a regular expression; Such
formulas denote the absence (respectively the existence) of a sequence of transitions matching R. In these
examples, the quotient evaluates to true (in the case of formulas of the form “[R] false”) or false (in the case
of formulas of the form “〈R〉 true”) before all component LTSs have been taken into account in the quotient,
because it is possible to determine that none of the paths possible in the parts of the system already explored
may yield a path satisfying R in the compound system. As an illustration, Table 13 gives details on the
verification of formula A09b on Scenario C. This formula has the form “[R] false” and evaluates to true after
the partial model checking steps reported in Table 13.

RR n° 8708

44 H. Garavel, F. Lang, and R. Mateescu

Scenario A Scenario B Scenario C Scenario D Scenario E

Prop time mem. time mem. time mem. time mem. time mem.

A01 16 101 14 39 247 1, 381 301 1, 565 134 701
A02 16 75 10 35 245 1, 036 165 765 136 570
A03 6 16 6 6 70 299 160 74 38 159
A04 16 100 10 42 247 1, 231 157 996 133 724
A05 11 52 10 20 130 678 83 481 71 377
A06 14 52 12 20 183 690 116 488 100 390
A07 14 52 12 20 183 690 116 488 100 390
A10 272 857 84 588
A11 153 996 227 372 129 439
A12 71 306 169 78 39 164
A13 125 537 103 439
A15 14 45 304 1, 199 325 1, 334 166 575
A17 125 744 310 489
A18 9 25 159 1, 418 136 508 91 1, 040
A19 10 26 303 1, 388 243 451 128 1, 056
A20 10 70 166 1, 973 83 633
A21 13 70 237 1, 973 122 633
A22 11 26 229 513 93 653
A23 12 26 267 513 117 653
A24 12 84 164 1, 110
A25 15 84 211 1, 110
A26 13 95 175 1, 405 97 762
A27 17 66 1, 001 4, 492 626 2, 262
A28 7 8 1, 186 3, 953 270 771 454 1, 365
A29 15 100 9 42 247 1, 231 157 996 133 724

Table 10: Maximal hiding results for the TFTP/UDP case study: time (in seconds) and memory peak (in
megabytes)

Scenario A Scenario B Scenario C Scenario D Scenario E
size % size % size % size % size %

A01 440, 679 24 % 152, 392 18 % 7, 446, 443 22 % 9, 910, 844 25 % 4, 207, 603 23 %
A02 436, 352 24 % 213, 665 26 % 7, 446, 443 22 % 4, 379, 978 11 % 4, 207, 603 23 %
A03 293, 563 16 % 29, 192 3 % 4, 793, 248 14 % 1, 260, 400 3 % 2, 694, 634 14 %
A04 436, 352 24 % 213, 665 26 % 7, 446, 443 22 % 4, 379, 978 11 % 4, 207, 603 23 %
A05 285, 256 15 % 103, 739 12 % 4, 845, 485 14 % 2, 798, 880 7 % 2, 740, 106 15 %
A06 341, 953 18 % 122, 465 15 % 5, 561, 875 17 % 3, 104, 457 8 % 3, 174, 438 17 %
A07 341, 953 18 % 122, 465 15 % 5, 561, 875 17 % 3, 104, 457 8 % 3, 174, 438 17 %
A10 4, 793, 248 14 % 2, 694, 634 14 %
A11 4, 793, 248 14 % 1, 260, 400 3 % 2, 694, 634 14 %
A12 4, 819, 226 14 % 1, 319, 036 3 % 2, 740, 106 15 %
A13 3, 201, 847 8 % 3, 219, 910 17 %
A15 305, 590 37 % 8, 678, 547 26 % 8, 591, 743 22 % 4, 097, 150 22 %
A17 3, 728, 837 11 % 2, 333, 189 6 %
A18 94, 094 11 % 4, 793, 248 14 % 1, 863, 667 4 % 2, 694, 634 14 %
A19 96, 945 11 % 4, 793, 248 14 % 1, 863, 667 4 % 2, 694, 634 14 %
A20 293, 563 16 % 4, 793, 248 14 % 2, 694, 634 14 %
A21 293, 563 16 % 4, 793, 248 14 % 2, 694, 634 14 %
A22 115, 924 14 % 1, 474, 645 3 % 3, 174, 438 17 %
A23 115, 924 14 % 1, 474, 645 3 % 3, 174, 438 17 %
A24 351, 927 19 % 5, 561, 875 17 %
A25 351, 927 19 % 5, 561, 875 17 %
A26 351, 927 19 % 5, 561, 875 17 % 3, 174, 438 17 %
A27 293, 563 16 % 4, 793, 248 14 % 2, 694, 634 14 %
A28 37, 012 4 % 4, 793, 248 14 % 1, 721, 736 4 % 2, 694, 634 14 %
A29 436, 352 24 % 213, 665 26 % 7, 446, 443 22 % 4, 379, 978 11 % 4, 207, 603 23 %

Table 11: Maximal hiding results for the TFTP/UDP case study: largest LTS size (in the number of states)
and percentage w.r.t. the largest LTS size generated by smart reduction without label hiding (see Table 7)

The fairness formula A29 also evaluates more efficiently using partial model checking. This formula,
specified in MCL as “〈true∗.A1.(¬(A1 ∨A2))

∗.A3.(¬A1)
∗.A2〉@”, denotes the existence of a cyclic sequence

of transitions matching the regular expression “true∗.A1.(¬(A1 ∨ A2))
∗.A3.(¬A1)

∗.A2”, where A1, A2, and
A3 are particular actions. It evaluates to false on all scenarios. The first steps of partial model checking for
this formula on Scenario E are detailed in Table 14.

INRIA

Compositional Verification using CADP 45

Scenario A Scenario B Scenario C Scenario D Scenario E

Prop time memory time memory time memory time memory time memory

A01 2 6 3 6 3 24 2 27 3 23
A02 3 6 3 6 6 25 7 28 6 10
A03 1 6 1 6 1 6 1 6 1 6
A04 3 6 3 6 3 6 3 29 3 7
A05 5 6 5 6 5 6 5 6 5 10
A06 3 6 3 6 3 6 3 7 3 6
A07 3 6 3 6 3 6 3 6 3 6
A08 3 6 3 6 3 6 3 6 3 6
A09a 7 28 3 6
A09b 8 6
A10 3 6 3 6
A11 3 6 1 7 3 6
A12 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

A13 ⋆ ⋆ ⋆ ⋆

A14 3 6 3 23 3 15
A15 5 15 ⋆ ⋆ ⋆ ⋆ 7 59
A16 1 8
A17 ⋆ ⋆ ⋆ ⋆

A18 1 6 7 11 3 6 1 6
A19 3 6 3 90 3 13 3 55
A20 3 9 6 21 6 25
A21 3 6 3 25 3 25
A22 12 7 2, 712 1, 271 1, 007 650
A23 3 6 9 9 6 40
A24 13 9 3, 189 1, 786
A25 3 6 6 40
A26 3 6 3 15 3 10
A27 3 6 3 6 3 6
A28 3 6 3 22 3 6 3 6
A29 2 7 2 7 6 9 3 7 5 9

Table 12: Partial model checking results for the TFTP/UDP case study: time (in seconds) and memory
peak (in megabytes)

Step States Transitions

Initial formula graph 13 62
Simplification & reduction 7 56
Quotient wrt. TFTP A 125 1,964
Simplification & reduction 60 1,512
Quotient wrt. TFTP B 9,166 69,490
Simplification & reduction 5,308 50,799
Quotient wrt. MEDIUM B (encodes true) 2 1

Table 13: Successive steps for the partial model checking of property A09b

Step States Transitions

Initial formula graph 19 151
Simplification & reduction 7 139
Quotient wrt. TFTP B 903 20,388
Simplification & reduction 896 20,099
Quotient wrt. TFTP A 26,369 197,480
Simplification & reduction (encodes false) 1 0

Table 14: Successive steps for the partial model checking of property A29

In a few other cases, partial model checking leads to combinatorial explosion (properties A12, A13, A15,
and A17) while other model checking techniques perform efficiently. We illustrate this with the verification

RR n° 8708

46 H. Garavel, F. Lang, and R. Mateescu

Step Time Memory States Transitions

Initial formula graph 8 56
Simplification 0 4 8 56
Reduction 0 66 4 52
Quotient wrt. TFTP A 0 66 210 5,687
Simplification 0 4 136 3,665
Reduction 0 66 134 3,587
Quotient wrt. TFTP B 0 66 21,172 168,172
Simplification 0 6 21,015 168,172
Reduction 1 66 14,042 119,789
Quotient wrt. MEDIUM B 14 66 1,648,096 10,327,294
Simplification 35 267 1,648,089 10,327,294
Reduction 72 234 1,551,338 14,773,975
Quotient wrt. MEDIUM A 686 540 40,572,824 229,050,227

. . .

Table 15: First successive steps for the partial model checking of property A12 (time in seconds and memory
in megabytes)

of formula A12 on scenario C. This formula has the form “〈R〉 true” and evaluates to true. The first steps
of partial model checking are detailed in Table 15, which provides the time and memory used to complete
each step. The reduction step includes both pre-reduction modulo τ∗.a equivalence (i.e., elimination of
τ -transitions) and minimization modulo strong bisimulation. Note that this may produce a graph that is
not minimal in the number of transitions, although always minimal in the number of states. This explosion
seems inherent to the structure of the system and the formula, as intermediate quotients need to capture a
large part of the behaviour before the truth value of the formula can be determined. These experiments show
that partial model checking is complementary to, but does not replace, other model checking techniques.

8 Conclusion

This report has given a comprehensive panorama of compositional verification techniques that can be used
in an asynchronous, action-based modeling setting. Although such techniques are inherently complex and
require significant implementation efforts, they often achieve impressive state-space reduction, successfully
tackling verification problems that could not be addressed otherwise. All the approaches presented in this
report have been implemented, a task for which the CADP toolbox proved to be a suitable experimentation
platform.

It is worth noticing that most of the results presented here are firmly rooted in concurrency theory.
They build upon major advances of concurrency theory, namely: (1) formally-defined parallel composition
operators that use transition labels as the criterion to decide when concurrent processes must synchronize
and when they can interleave; (2) formally-defined abstraction operators that can hide or rename transition
labels; (3) preorder and equivalence relations, such as bisimulations, that can be used to compare the
behaviors of system models, that can be efficiently computed, and that satisfy the key property of congruence,
meaning that such relations are “compatible” with the parallel composition operators; and (4) the existence
of modal µ-calculus and action-based temporal logics that, under certain conditions, are preserved by these
equivalence relations and exhibit suitable properties with respect to parallel composition operators. Although
implementing compositional approaches is intrinsically difficult, all these results give concurrency theory a
unique advantage to fight state-explosion issues on the long term.

Regarding future work, there are two grand challenges to be met: (i) as the size of models under verifica-
tion steadily increases, the efficiency of compositional approaches (i.e., the state-space reductions that they
allow) should progress as well, and (ii) automation of compositional verification should increase, making it
easily available to non-expert users. The latter point is particularly difficult, as there are multiple approaches

INRIA

Compositional Verification using CADP 47

to compositional verification, as evidenced in the present report. Given the multiple sources of complexity,
not a single compositional approach is sufficient in itself, as complexity can only be mastered by combining
different approaches and strategies. In this respect, action-based approaches to compositional verification are
probably easier to automate than state-based ones, because the former benefit from the existence of equiva-
lence relations that preserve full classes of properties, whereas the latter must take into account (especially
with the assume-guarantee paradigm) each particular property of the system under verification.

Among the open issues, one may wonder whether the principles of semi-composition and interfaces (as
described in Section 3) could be transposed to formula-dependent approaches (as described in Section 4).
Such a combination would be promising, but remains to be investigated. Also, it is worth noticing that
all the approaches presented in the present report are based upon the decomposition of a system into
concurrent components, according to parallel composition operators used to model that system; orthogonal
decompositions could also be considered, in particular those taking into account data structures, especially
for systems that are architected around large amounts of shared data.

References

[1] L. Aceto, W. Fokkink, and C. Verhoef. Structural Operational Semantics. In Handbook of Process
Algebra, chapter 3, pages 197–292. North-Holland, 2001.

[2] K. Ajami, S. Haddad, and J.-M. Ilié. Exploiting Symmetry in Linear Time Temporal Logic Model
Checking: One Step Beyond. In Proceedings of Tools and Algorithms for Construction and Analysis of
Systems TACAS’98, volume 1384 of Lecture Notes in Computer Science, pages 52–67. Springer, 1998.

[3] H. R. Andersen. Model checking and boolean graphs. Theoretical Computer Science, 126(1):3–30,
1994.

[4] H. R. Andersen. Partial Model Checking. In Proceedings of Logic in Computer Science LICS’95, pages
398–407. IEEE, 1995.

[5] H. R. Andersen and J. Lind-Nielsen. Partial Model Checking of Modal Equations: A Survey. Journal
on Software Tools for Technology Transfer (STTT), 2:242–259, 1999.

[6] H. R. Andersen, J. Staunstrup, and N. Maretti. A Comparison of Modular Verification Techniques. In
Proceedings of CAAP/FASE’97, volume 1214 of Lecture Notes in Computer Science. Springer, 1997.

[7] H. R. Andersen, J. Staunstrup, and N. Maretti. Partial Model Checking with ROBDDs. In Proceedings
of Tools and Algorithms for Construction and Analysis of Systems TACAS’97, volume 1217 of Lecture
Notes in Computer Science. Springer, 1997.

[8] H. R. Andersen and G. Winskel. Compositional Checking of Satisfaction. In Proceedings of Computer
Aided Verification CAV’91, volume 575 of Lecture Notes in Computer Science, pages 24–36. Springer,
1991.

[9] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-Haim,
E. Singerman, A. Tiemeyer, M. Y. Vardi, and Y. Zbar. The ForSpec Temporal Logic: A New Temporal
Property-Specification Language. In Proceedings of Tools and Algorithms for the Construction and
Analysis of Systems TACAS’02, volume 2280 of Lecture Notes in Computer Science, pages 296–211.
Springer, 2002.

[10] P. J. Armstrong, M. Goldsmith, G. Lowe, J. Ouaknine, H. Palikareva, A. W. Roscoe, and J. Worrell.
Recent Developments in FDR. In Proceedings of Computer Aided Verification CAV’12, volume 7358
of Lecture Notes in Computer Science, pages 699–704. Springer, 2012.

[11] A. Arnold. MEC: A System for Constructing and Analysing Transition Systems. In Proceedings of
Automatic Verification Methods for Finite State Systems CAV’89, volume 407 of Lecture Notes in
Computer Science, pages 117–132. Springer, 1989.

RR n° 8708

48 H. Garavel, F. Lang, and R. Mateescu

[12] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[13] R. Barbuti, N. de Francesco, A. Santone, and G. Vaglini. Selective Mu-Calculus and Formula-Based
Equivalence of Transition Systems. Journal of Computer and System Sciences, 59(3):537–556, 1999.

[14] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Runtime Verification. In Proceedings
of Verification, Model Checking, and Abstract Interpretation VMCAI’04, volume 2937 of Lecture Notes
in Computer Science, pages 44–57. Springer, 2004.

[15] S. Basu and C.R. Ramakrishnan. Compositional Analysis for Verification of Parameterized Systems. In
Proceedings of Tools and Algorithms for the Construction and Analysis of Systems TACAS’03, volume
2619 of Lecture Notes in Computer Science, pages 315–330. Springer, 2003.

[16] I. Beer, S. Ben-David, and A. Landver. On-the-Fly Model Checking of RCTL Formulas. In Proceedings
of Computer Aided Verification CAV’98, volume 1427 of Lecture Notes in Computer Science, pages
184–194. Springer, 1998.

[17] B. Berard and F. Laroussinie. Verification compositionnelle des p-automates. Technical Report Lot
4.1, Réseau National des Technologies Logicielles, projet AVERROES, 2003.

[18] J. A. Bergstra and J. W. Klop. Algebra of Communicating Processes with Abstraction. Theoretical
Computer Science, 37:77–121, 1985.

[19] J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process Algebra. Elsevier, 2001.

[20] S. Blom and S. Orzan. Distributed state space minimization. Software Tools for Technology Transfer,
7(3):280–291, 2005.

[21] S. Blom, J. van de Pol, and M. Weber. LTSmin: Distributed and Symbolic Reachability. In Proceedings
of Computer Aided Verification CAV’10, volume 6174 of Lecture Notes in Computer Science, pages
354–359. Springer, 2010.

[22] N. Bodentien, J. Vestergaard, J. Friis, K. Kristoffersen, and K. G. Larsen. Verification of State/Event
Systems by Quotienting. Technical Report RS-99-41, Basic Research in Computer Science, 1999.

[23] A. Bouajjani, J.-C. Fernandez, S. Graf, C. Rodŕıguez, and J. Sifakis. Safety for Branching Time
Semantics. In Proceedings of ICALP. Springer, 1991.

[24] A. Bouali, A. Ressouche, V. Roy, and R. de Simone. The Fc2Tools set: a Toolset for the Verification of
Concurrent Systems. In Proceedings of Computer-Aided Verification CAV’96, volume 1102 of Lecture
Notes in Computer Science. Springer, 1996.

[25] J. C. Bradfield and C. Stirling. Modal Logics and Mu-Calculi: An Introduction. In Handbook of Process
Algebra, chapter 4, pages 293–330. Elsevier, 2001.

[26] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A Theory of Communicating Sequential Processes.
Journal of the ACM, 31(3):560–599, 1984.

[27] F. Cassez and F. Laroussinie. Model-checking for hybrid systems by quotienting and constraints solving.
In Proceedings of Computer Aided Verification CAV’00, volume 1855 of Lecture Notes in Computer
Science. Springer, 2000.

[28] D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, C. McKinty, V. Powazny, F. Lang, W. Serwe, and
G. Smeding. Reference Manual of the LNT to LOTOS Translator (Version 6.1). INRIA/VASY and
INRIA/CONVECS, 131 pages, 2014.

[29] G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, and F. Zulian. Specification and Verification of
the PowerScale Bus Arbitration Protocol: An Industrial Experiment with LOTOS. In Proceedings
of Formal Description Techniques for Distributed Systems and Communication Protocols / Protocol
Specification, Testing, and Verification FORTE/PSTV’96, pages 435–450. IFIP, Chapman & Hall,
1996.

INRIA

Compositional Verification using CADP 49

[30] K. H. Cheung. Compositional Analysis of Complex Distributed Systems. PhD thesis, Department of
Computer Science, Hong Kong University of Science and Technology, Hong Kong, 1998.

[31] S. C. Cheung and J. Kramer. Enhancing Compositional Reachability Analysis with Context Con-
straints. In Proceedings of Foundations of Software Engineering, pages 115–125. ACM Press, 1993.

[32] S. C. Cheung and J. Kramer. Compositional Reachability Analysis of Finite-State Distributed Systems
with User-Specified Constraints. In Proceedings of Foundations of Software Engineering, pages 140–
150. ACM Press, 1995.

[33] S. C. Cheung and J. Kramer. Context Constraints for Compositional Reachability. ACM Transactions
on Software Engineering Methodology TOSEM, 5(4):334–377, 1996.

[34] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

[35] E. M. Clarke, E. A. Emerson, S. Jha, and A. Prasad Sistla. Symmetry Reductions in Model Checking.
In Proceedings of Computer Aided Verification CAV’98, volume 1427 of Lecture Notes in Computer
Science, pages 147–158. Springer, 1998.

[36] E. M. Clarke, S. Jha, R. Enders, and T. Filkorn. Exploiting Symmetry in Temporal Logic Model
Checking. Formal Methods in System Design, 9(1/2):77–104, 1996.

[37] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench. In Proceedings of Automatic
Verification Methods for Finite State Systems, volume 407 of Lecture Notes in Computer Science, pages
24–37. Springer, 1989.

[38] R. Cleaveland and B. Steffen. A Linear-Time Model-Checking Algorithm for the Alternation-Free
Modal Mu-Calculus. Formal Methods in System Design, 2(2):121–147, 1993.

[39] N. Coste, H. Garavel, H. Hermanns, F. Lang, R. Mateescu, and W. Serwe. Ten Years of Performance
Evaluation for Concurrent Systems Using CADP. In Proceedings of Leveraging Applications of Formal
Methods, Verification and Validation ISoLA’10, volume 6416 of Lecture Notes in Computer Science,
pages 128–142. Springer, 2010.

[40] P. Crouzen and H. Hermanns. Aggregation Ordering for Massively Parallel Compositional Models. In
Proceedings of Application of Concurrency to System Design ACSD’10. IEEE, 2010.

[41] P. Crouzen and F. Lang. Smart Reduction. In Proceedings of Fundamental Approaches to Software
Engineering FASE’2011, volume 6603 of Lecture Notes in Computer Science, pages 111–126. Springer,
2011.

[42] M. Dam. Model Checking Mobile Processes. In Proceedings of Concurrency Theory CONCUR’93,
volume 715 of Lecture Notes in Computer Science, pages 22–36. Springer, 1993.

[43] X. Du, S. A. Smolka, and R. Cleaveland. Local Model Checking and Protocol Analysis. Journal on
Software Tools for Technology Transfer STTT, 2(3):219–241, 1999.

[44] E. A. Emerson and E. M. Clarke. Using Branching Time Logic to Synthesize Synchronization Skeletons.
Science of Computer Programming, 2:241–266, 1982.

[45] E. A. Emerson and J. Y. Halpern. “Sometimes” and “Not Never” Revisited: On Branching versus
Linear Time Temporal Logic. Journal of the ACM, 33(1):151–178, 1986.

[46] E. A. Emerson and C.-L. Lei. Efficient Model Checking in Fragments of the Propositional Mu-Calculus.
In Proceedings of Logic in Computer Science LICS’86, pages 267–278, 1986.

[47] A. Fantechi, S. Gnesi, and G. Ristori. From ACTL to Mu-Calculus. In Proceedings of Theory and
Practice in Verification, pages 3–10. IEI-CNR, 1992.

RR n° 8708

50 H. Garavel, F. Lang, and R. Mateescu

[48] A. Fantechi, S. Gnesi, and G. Ristori. Model Checking for Action-Based Logics. Formal Methods in
System Design, 4:187–203, 1994.

[49] J.-C. Fernandez. ALDEBARAN : un système de vérification par réduction de processus communicants.
Thèse de Doctorat, Université Joseph Fourier (Grenoble), 1988.

[50] J.-C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodŕıguez, and J. Sifakis. A Toolbox for the
Verification of LOTOS Programs. In Proceedings of Software Engineering ICSE’14, pages 246–259.
ACM, 1992.

[51] J.-C. Fernandez and L. Mounier. “On the Fly” Verification of Behavioural Equivalences and Preorders.
In Proceedings of Computer-Aided Verification CAV’91, volume 575 of Lecture Notes in Computer
Science, pages 181–191. Springer, 1991.

[52] J.-C. Fernandez and L. Mounier. A Tool Set for Deciding Behavioral Equivalences. In Proceedings of
CONCUR’91, 1991.

[53] M. J. Fischer and R. E. Ladner. Propositional Dynamic Logic of Regular Programs. Journal of
Computer and System Sciences, 18(2):194–211, 1979.

[54] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking software. In
Proceedings of Principles of Programming Languages POPL’05. ACM Press, 2005.

[55] H. Garavel. Compilation of LOTOS Abstract Data Types. In Proceedings of Formal Description
Techniques FORTE’89, pages 147–162. North-Holland, 1989.

[56] H. Garavel. OPEN/CÆSAR: An Open Software Architecture for Verification, Simulation, and Testing.
In Proceedings of Tools and Algorithms for the Construction and Analysis of Systems TACAS’98,
volume 1384 of Lecture Notes in Computer Science, pages 68–84. Springer, 1998.

[57] H. Garavel and F. Lang. SVL: a Scripting Language for Compositional Verification. In Proceedings of
Formal Techniques for Networked and Distributed Systems FORTE’2001, pages 377–392. IFIP, Kluwer
Academic Publishers, 2001.

[58] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2010: A Toolbox for the Construction and
Analysis of Distributed Processes. In Proceedings of Tools and Algorithms for the Construction and
Analysis of Systems TACAS’2011, volume 6605 of Lecture Notes in Computer Science, pages 372–387,
2011.

[59] H. Garavel, G. Salaün, and W. Serwe. On the Semantics of Communicating Hardware Processes and
their Translation into LOTOS for the Verification of Asynchronous Circuits with CADP. Science of
Computer Programming, 74(3):100–127, 2009.

[60] H. Garavel and J. Sifakis. Compilation and Verification of LOTOS Specifications. In Proceedings of
Protocol Specification, Testing and Verification PSTV’90, pages 379–394. IFIP, North-Holland, 1990.

[61] H. Garavel and M. Sighireanu. A Graphical Parallel Composition Operator for Process Algebras. In
Proceedings of Formal Description Techniques for Distributed Systems and Communication Protocols
/ Protocol Specification, Testing, and Verification FORTE/PSTV’99, pages 185–202. IFIP, Kluwer
Academic Publishers, 1999.

[62] H. Garavel and D. Thivolle. Verification of GALS Systems by Combining Synchronous Languages and
Process Calculi. In Proceedings of Model Checking Software SPIN’2009, volume 5578 of Lecture Notes
in Computer Science, pages 241–260. Springer, 2009.

[63] D. Giannakopoulou. Model Checking for Concurrent Software Architectures. PhD thesis, Imperial
College of Science, Technology and Medicine, University of London, 1999.

[64] D. Giannakopoulou and J. Magee. Fluent Model Checking for Event-Based Systems. In Proceedings
of Foundations of Software Engineering ESEC/FSE’2003, pages 257–266. ACM, 2003.

INRIA

Compositional Verification using CADP 51

[65] T. Gibson-Robinson, P. J. Armstrong, A. Boulgakov, and A. W. Roscoe. FDR3 – A Modern Refinement
Checker for CSP. In Proceedings of Tools and Algorithms for the Construction and Analysis of Systems
TACAS’14, volume 8413 of Lecture Notes in Computer Science, pages 187–201. Springer, 2014.

[66] P. Godefroid. Using Partial Orders to Improve Automatic Verification Methods. In Proceedings of
Computer-Aided Verification CAV’90, volume 3 of DIMACS Series in Discrete Mathematics and The-
oretical Computer Science, pages 321–340. AMS-ACM, 1990.

[67] P. Godefroid and P. Wolper. A Partial Approach to Model Checking. In Proceedings of Logic in
Computer Science LICS’91. IEEE, 1991.

[68] P. Godefroid and P. Wolper. Using Partial Orders for the Efficient Verification of Deadlock Freedom
and Safety Properties. In Proceedings of Computer-Aided Verification CAV’91, volume 575 of Lecture
Notes in Computer Science. Springer, 1991.

[69] S. Graf and B. Steffen. Compositional Minimization of Finite State Systems. In Proceedings of
Computer-Aided Verification CAV’90, volume 531 of Lecture Notes in Computer Science, pages 186–
196. Springer, 1990.

[70] S. Graf, B. Steffen, and G. Lüttgen. Compositional Minimisation of Finite State Systems using Interface
Specifications. Formal Aspects of Computation, 8(5):607–616, 1996.

[71] J. F. Groote, T. W. D. M. Kouters, and A. A. H. Osaiweran. Specification guidelines to avoid the state
space explosion problem. Journal on Software Testing, Verification and Reliability, 2014. Published
online.

[72] J. F. Groote and A. Ponse. The Syntax and Semantics of µCRL. In Proceedings of Workshop on the
Algebra of Communicating Processes ACP’94, Workshops in Computing Series, pages 26–62. Springer,
1995.

[73] J. F. Groote and F. Vaandrager. An Efficient Algorithm for Branching Bisimulation and Stuttering
Equivalence. In Proceedings of ICALP’90, volume 443 of Lecture Notes in Computer Science, pages
626–638. Springer, 1990.

[74] N. Halbwachs. Synchronous Pogramming of Reactive Systems. Kluwer, 1993.

[75] K. Hamaguchi, H. Hiraishi, and S. Yajima. Branching Time Regular Temporal Logic for Model
Checking with Linear Time Complexity. In Proceedings of Computer Aided Verification CAV’90,
volume 531 of Lecture Notes in Computer Science, pages 253–262. Springer, 1990.

[76] M. Hennessy. The Semantics of Programming Languages: an Elementary Introduction using Structural
Operational Semantics. John Wiley and Sons, 1990.

[77] C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM, 21(8):666–677,
1978.

[78] C. N. Ip and D. L. Dill. Better Verification Through Symmetry. Formal Methods in System Design,
9(1/2):41–75, 1996.

[79] ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal Ordering of Obser-
vational Behaviour. International Standard 8807, International Organization for Standardization —
Information Processing Systems — Open Systems Interconnection, 1989.

[80] ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard 15437:2001, International
Organization for Standardization — Information Technology, 2001.

[81] S. Katz and D. Peled. An Efficient Verification Method for Parallel and Distributed Programs. In
Proceedings of Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency,
volume 354 of Lecture Notes in Computer Science, pages 489–507. Springer, 1988.

RR n° 8708

52 H. Garavel, F. Lang, and R. Mateescu

[82] D. Kozen. Results on the Propositional µ-Calculus. Theoretical Computer Science, 27:333–354, 1983.

[83] J.-P. Krimm and L. Mounier. Compositional State Space Generation from LOTOS Programs. In
Proceedings of Tools and Algorithms for the Construction and Analysis of Systems TACAS’97, volume
1217 of Lecture Notes in Computer Science. Springer, 1997.

[84] F. Lang. Compositional Verification using SVL Scripts. In Proceedings of Tools and Algorithms for
the Construction and Analysis of Systems TACAS’2002, volume 2280 of Lecture Notes in Computer
Science, pages 465–469. Springer, 2002.

[85] F. Lang. EXP.OPEN 2.0: A Flexible Tool Integrating Partial Order, Compositional, and On-the-fly
Verification Methods. In Proceedings of Integrated Formal Methods IFM’2005, volume 3771 of Lecture
Notes in Computer Science, pages 70–88. Springer, 2005.

[86] F. Lang. Refined Interfaces for Compositional Verification. In Proceedings of Formal Techniques for
Networked and Distributed Systems FORTE’2006, volume 4229 of Lecture Notes in Computer Science,
pages 159–174. Springer, 2006.

[87] F. Lang and R. Mateescu. Partial Model Checking using Networks of Labelled Transition Systems and
Boolean Equation Systems. In Proceedings of Tools and Algorithms for the Construction and Analysis
of Systems TACAS’2012, volume 7214 of Lecture Notes in Computer Science, pages 141–156. Springer,
2012.

[88] F. Lang and R. Mateescu. Partial Model Checking using Networks of Labelled Transition Systems and
Boolean Equation Systems. Logical Methods in Computer Science, 9(4):1–32, 2013.

[89] F. Lang, G. Salaün, R. Hérilier, J. Kramer, and J. Magee. Translating FSP into LOTOS and Networks
of Automata. Formal Aspects of Computing, 22(6):681–711, 2010.

[90] F. Laroussinie and K. G. Larsen. Compositional Model Checking of Real Time Systems. In Proceedings
of Concurrency Theory CONCUR’95, volume 962 of Lecture Notes in Computer Science. Springer,
1995.

[91] F. Laroussinie and K. G. Larsen. CMC: A Tool for Compositional Model Checking of Real-Time
Systems. In Proceedings of Formal Description Techniques for Distributed Systems and Communication
Protocols / Protocol Specification, Testing and Verification FORTE/PSTV’98, volume 135 of IFIP
Conference Proceedings. Kluwer, 1998.

[92] K. G. Larsen. Proof Systems for Hennessy-Milner logic with Recursion. In Proceedings of Trees in
Algebra and Programming CAAP’88, volume 299 of Lecture Notes in Computer Science, pages 215–230.
Springer, 1988.

[93] K. G. Larsen, P. Pettersson, and W. Yi. Compositional and Symbolic Model Checking of Real-Time
Systems. In Proceedings of Real-Time Systems. IEEE, 1995.

[94] J. Magee and J. Kramer. Concurrency: State Models and Java Programs. Wiley, 2006 edition, 2006.

[95] J. Malhotra, S. A. Smolka, A. Giacalone, and R. Shapiro. A Tool for Hierarchical Design and Simulation
of Concurrent Systems. In Proceedings of Specification and Verification of Concurrent Systems, pages
140–152. British Computer Society, 1988.

[96] Z. Manna and A. Pnueli. A Hierarchy of Temporal Properties. In Proceedings of Principles of Dis-
tributed Computing PODC’90, pages 377–408, 1990.

[97] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems, volume I (Specifi-
cation). Springer, 1992.

[98] A. J. Martin. Compiling Communicating Processes into Delay-Insensitive VLSI Circuits. Distributed
Computing, 1(4):226–234, 1986.

INRIA

Compositional Verification using CADP 53

[99] F. Martinelli. Symbolic Partial Model Checking for Security Analysis. In Proceedings of Mathematical
Methods, Models, and Architectures for Computer Network Security MMM-ACNS, volume 2776 of
Lecture Notes in Computer Science. Springer, 2003.

[100] R. Mateescu. Local Model-Checking of an Alternation-Free Value-Based Modal Mu-Calculus. In
Proceedings ofVerification, Model Checking and Abstract Interpretation VMCAI’98. University Ca’
Foscari of Venice, 1998.

[101] R. Mateescu. Efficient Diagnostic Generation for Boolean Equation Systems. In Proceedings of Tools
and Algorithms for the Construction and Analysis of Systems TACAS’2000, volume 1785 of Lecture
Notes in Computer Science, pages 251–265. Springer, 2000.

[102] R. Mateescu. CAESAR SOLVE: A Generic Library for On-the-Fly Resolution of Alternation-Free
Boolean Equation Systems. Journal on Software Tools for Technology Transfer STTT, 8(1):37–56,
2006.

[103] R. Mateescu and G. Salaün. Translating Pi-Calculus into LOTOS NT. In Proceedings of Integrated For-
mal Methods IFM’2010, volume 6396 of Lecture Notes in Computer Science, pages 229–244. Springer,
2010.

[104] R. Mateescu and M. Sighireanu. Efficient On-the-Fly Model-Checking for Regular Alternation-Free
Mu-Calculus. Science of Computer Programming, 46(3):255–281, 2003.

[105] R. Mateescu and D. Thivolle. A Model Checking Language for Concurrent Value-Passing Systems.
In Proceedings of Formal Methods FM’08, volume 5014 of Lecture Notes in Computer Science, pages
148–164. Springer, 2008.

[106] R. Mateescu and A. Wijs. Property-Dependent Reductions Adequate with Divergence-Sensitive
Branching Bisimilarity. Science of Computer Programming, 96(3):354–376, 2014.

[107] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer Science.
Springer, 1980.

[108] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[109] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge University Press, 1999.

[110] M. Müller-Olm, D. Schmidt, and B. Steffen. Model-Checking: A Tutorial Introduction. In Proceedings
of Static Analysis Symposium SAS’99, volume 1694 of Lecture Notes in Computer Science, pages
330–354. Springer, 1999.

[111] R. De Nicola, A. Fantechi, S. Gnesi, and G. Ristori. An Action-Based Framework for Verifying Logical
and Behavioural Properties of Concurrent Systems. In Proceedings of Computer Aided Verification
CAV’91, volume 575 of Lecture Notes in Computer Science, pages 37–47. Springer, 1991.

[112] R. De Nicola and F. W. Vaandrager. Action versus State Based Logics for Transition Systems. In
Semantics of Concurrency, volume 469 of Lecture Notes in Computer Science, pages 407–419. Springer,
1990.

[113] A. A. H. Osaiweran. Formal Development of Control Software in the Medical Systems Domain. PhD
thesis, Eindhoven University of Technology, 2012.

[114] W. T. Overman and S. D. Crocker. Verification of Concurrent Systems: Function and Timing. In Pro-
ceedings of Protocol Specification, Testing and Verification PSTV’82, pages 401–409. North-Holland,
1982.

[115] R. Paige and R. E. Tarjan. Three Partition Refinement Algorithms. SIAM Journal of Computing,
16(6):973–989, 1987.

RR n° 8708

54 H. Garavel, F. Lang, and R. Mateescu

[116] D. Park. Concurrency and Automata on Infinite Sequences. In Theoretical Computer Science, volume
104 of Lecture Notes in Computer Science, pages 167–183. Springer, 1981.

[117] D. Peled. All from One, One for All: on Model Checking Using Representatives. In Proceedings
of Computer Aided Verification CAV’93, volume 697 of Lecture Notes in Computer Science, pages
409–423. Springer, 1993.

[118] G. D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19, Computer
Science Department, Aarhus University, 1981.

[119] G. D. Plotkin. A Structural Approach to Operational Semantics. Journal of Logic and Algebraic
Programming, 60–61:17–139, 2004.

[120] G. D. Plotkin. The Origins of Structural Operational Semantics. Journal of Logic and Algebraic
Programming, 60–61:3–15, 2004.

[121] A. Pnueli. The Temporal Logic of Programs. In Proceedings of Foundations of Computer Science,
pages 46–57. IEEE, 1977.

[122] A. Pnueli. A Temporal Logic of Concurrent Programs. Theoretical Computer Science, 13:45–60, 1981.

[123] J.-P. Queille and J. Sifakis. Fairness and Related Properties in Transition Systems — A Temporal
Logic to Deal with Fairness. Acta Informatica, 19:195–220, 1983.

[124] J. Rathke and M. Hennessy. Local Model Checking for a Value-Based Modal µ-Calculus. Report 5/96,
School of Cognitive and Computing Sciences, University of Sussex, 1996.

[125] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

[126] K. K. Sabnani, A. M. Lapone, and M. U. Uyar. An Algorithmic Procedure for Checking Safety
Properties of Protocols. IEEE Transactions on Communications, 37(9):940–948, 1989.

[127] R. Streett. Propositional Dynamic Logic of Looping and Converse. Information and Control, (54):121–
141, 1982.

[128] K. C. Tai and V. Koppol. Hierarchy-Based Incremental Reachability Analysis of Communication
Protocols. In Proceedings of Network Protocols, pages 318–325. IEEE, 1993.

[129] K. C. Tai and V. Koppol. An Incremental Approach to Reachability Analysis of Distributed Programs.
In Proceedings of Software Specification and Design, pages 141–150. IEEE Press, 1993.

[130] D. Thivolle. Langages modernes pour la vérification des systèmes asynchrones. Thèse de Doctorat,
Université Joseph Fourier (Grenoble, France) and Universitatea Politehnica din Bucuresti (Bucharest,
Romania), 2011.

[131] W. Thomas. Computation Tree Logic and Regular ω-Languages. In Linear time, branching time and
partial order in logics and models of concurrency, volume 354 of Lecture Notes in Computer Science,
pages 690–713. 1989.

[132] F. Tronel, F. Lang, and H. Garavel. Compositional Verification Using CADP of the ScalAgent De-
ployment Protocol for Software Components. In Proceedings of Formal Methods for Open Object-based
Distributed Systems FMOODS’2003, volume 2884 of Lecture Notes in Computer Science, pages 244–
260. Springer, 2003.

[133] A. Valmari. A Stubborn Attack on State Explosion. In Proceedings of Computer-Aided Verification
CAV’90, volume 3 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 25–42. AMS-ACM, 1990.

[134] A. Valmari. Compositional State Space Generation. In Proceedings of Advances in Petri Nets, volume
674 of Lecture Notes in Computer Science, pages 427–457. Springer, 1993.

INRIA

Compositional Verification using CADP 55

[135] R. J. van Glabbeek. The Linear Time – Branching Time Spectrum I. The Semantics of Concrete,
Sequential Processes. In Handbook of Process Algebra, chapter 1, pages 3–99. North-Holland, 2001.

[136] R. J. van Glabbeek and W. P. Weijland. Branching-Time and Abstraction in Bisimulation Semantics
(extended abstract). CS R8911, Centrum voor Wiskunde en Informatica, 1989.

[137] R. J. van Glabbeek and W. P. Weijland. Branching-Time and Abstraction in Bisimulation Semantics.
Journal of the ACM, 43(3):555–600, 1996.

[138] P. Wolper. Temporal Logic Can Be More Expressive. Information and Control, 56(1/2):72–99, 1983.

[139] W. J. Yeh. Controlling State Explosion in Reachability Analysis. PhD thesis, Software Engineering
Research Center (SERC) Laboratory, Purdue University, 1993. Technical Report SERC-TR-147-P.

[140] W. J. Yeh and M. Young. Compositional Reachability Analysis Using Process Algebra. In Proceedings
of Testing, Analysis, and Verification SIGSOFT’91, pages 49–59. ACM Press, 1991.

A Temporal logic specifications for the TFTP case study

This appendix presents the temporal logic specifications used in this paper for the TFTP case study. Prop-
erties A01 to A28 were taken from [130]. Property A29 was taken from [88]. The 29 properties are given
here using the SVL property notation. In the formula part (i.e., between symbols “|=” and “;”), double
quotes enclose character strings denoting a label (or part of a label), such as "REINIT A" in property
A06; single quotes enclose regular expressions denoting a label, such as ′RECEIVE A.∗

′
in property A06;

and braces enclose typed expression tuples denoting a label by specifying its various components, such as
{RECEIVE A !"ACK" ?N : Nat} in property A14.

The following constants are stored in a file named macros.mcl, which is automatically included in all
the properties below.

macro FILE SIZE A () = 2 of Nat end macro

macro FILE SIZE B () = 2 of Nat end macro

macro MAX RETRIES A () = 2 of Nat end macro

macro MAX RETRIES B () = 4 of Nat end macro

macro MIN RETRIES AB () = 2 of Nat end macro

property A01
The TFTP automaton has two output ports, ARM TIMER and
STOP TIMER, that respectively start and stop the timer used to decide
when an incoming message should be considered as lost. The following for-
mula ensures that between two consecutive STOP TIMER actions, there
must be an ARM TIMER action. Otherwise said, it states that, from ev-
ery reachable state (i.e., after firing any sequence true

∗ of transitions from
the initial state), there exists no sequence of transitions containing two
STOP TIMER actions with no ARM TIMER action in between.

is

"SCENARIO.bcg" |=
[

true
∗ .

"STOP TIMER A" .
not ("ARM TIMER A")∗ .
"STOP TIMER A"

] false;
expected true

end property

RR n° 8708

56 H. Garavel, F. Lang, and R. Mateescu

property A02
Between two consecutive ARM TIMER actions, there must be a
STOP TIMER action, a timeout, or a reception. The following formula
ensures this by guaranteeing that there exists no sequence of transitions
containing two ARM TIMER actions without a STOP TIMER, a time-
out, or a reception in between.

is

"SCENARIO.bcg" |=
[

true
∗ .

"ARM TIMER A" .
not ("STOP TIMER A" or "TIMEOUT A" or ′RECEIVE A.∗′)∗.
"ARM TIMER A"

] false;
expected true

end property

property A03
The timer cannot be active between two transfers. The following formula
ensures there is no ACTIVE TIMER BETWEEN TRANSFERS action
reachable.

is

"SCENARIO.bcg" |=
[true

∗ . "ACTIVE TIMER BETWEEN TRANSFERS A"] false;
expected true

end property

property A04
A timeout cannot occur between a STOP TIMER action and an
ARM TIMER action. The following formula states that there is no se-
quence of transitions in which a timeout can follow a STOP TIMER action
without an ARM TIMER action in between.

is

"SCENARIO.bcg" |=
[

true
∗ .

"STOP TIMER A" .
not ("ARM TIMER A")∗ .
"TIMEOUT A"

] false;
expected true

end property

property A05
A timeout cannot occur before the first message is sent. The following
formula ensures that there is no sequence of transitions in which a timeout
occurs before the first send action.

is

"SCENARIO.bcg" |=
[not (′SEND A.∗′)∗ . "TIMEOUT A"] false;

expected true

end property

property A06

INRIA

Compositional Verification using CADP 57

An internal error must cause the transfer to abort. The following formula
ensures that there is no sequence of transitions in which a reception or a
transmission can occur after an internal error but before a reinitialisation
and/or the transmission of an error.

is

"SCENARIO.bcg" |=
[

true
∗ .

"INTERNAL ERROR A" .
not ("REINIT A" or "SEND A !ERROR")∗ .
′RECEIVE A.∗′ or (′SEND A.∗′ and not "SEND A !ERROR")

] false;
expected true

end property

property A07
An invalid packet must cause the transfer to abort. The following formula
ensures that there is no sequence of transitions in which a reception or a
transmission can occur after an invalid packet was received but before a
reinitialisation and/or the transmission of an error.

is

"SCENARIO.bcg" |=
[

true
∗ .

"INVALID PACKET A" .
not ("REINIT A" or "SEND A !ERROR")∗ .
′RECEIVE A.∗′ or (′SEND A.∗′ and not "SEND A !ERROR")

] false;
expected true

end property

property A08
When a TFTP protocol entity receives an error, it must abort the cur-
rent transfer. The original formula ensured that receiving an error cannot
be followed by sending an error. It stated that there exists no sequence
of transitions in which TFTP entity A can send an error after receiving
one, without performing any other action in between. Actually, we used a
simpler formula (given below) which, in the TFTP verification setting, is
equivalent to the former.

is

"SCENARIO.bcg" |=
[true

∗ . "RECEIVE A !ERROR" . "SEND A !ERROR"] false;
expected true

end property

property A09a
If both protocol entities initiate a transfer at the same time, they must
abort upon receiving the other protocol entity’s request, in particular, when
a transfer request (either read or write) is received after sending a read
request. The following formula ensures that there exists no sequence of
transitions in which sending a read request and receiving a request can be
followed by the transmission of a message until there has been a reinitiali-
sation (transfer succeeded or aborted).

is

"SCENARIO.bcg" |=
[

RR n° 8708

58 H. Garavel, F. Lang, and R. Mateescu

true
∗ .

′SEND A !RRQ.∗′ .
true . (* ARM TIMER A *)
′RECEIVE A !RRQ.∗′ or ′RECEIVE A !WRQ.∗′ .
not ("REINIT A")∗ .
′SEND A.∗′)

] false;
expected true

end property

property A09b
If both protocol entities initiate a transfer at the same time, they must
abort upon receiving the other protocol entity’s request, in particular, when
a transfer request (either read or write) is received after sending a write
request. The following formula ensures that there exists no sequence of
transitions in which sending a read request and receiving a request can be
followed by the transmission of a message until there has been a reinitiali-
sation (transfer succeeded or aborted).

is

"SCENARIO.bcg" |=
[

true
∗ .

′SEND A !WRQ.∗′ .
true . (* ARM TIMER A *)
′RECEIVE A !RRQ.∗′ or ′RECEIVE A !WRQ.∗′ .
not ("REINIT A")∗ .
′SEND A.∗′)

] false;
expected true

end property

property A10
A process cannot switch from sending data fragments to sending acknowl-
edgements without having received a write request or sent a read request.
The following formula ensures that there is no sequence of transitions in
which sending a data fragment can be followed by sending an acknowledge-
ment without first either sending a read request or receiving a write request
in between.

is

"SCENARIO.bcg" |=
[

true
∗ .

′SEND A !DATA.∗′ .
not (′SEND A !RRQ.∗′ or ′RECEIVE A !WRQ.∗′)∗ .
′SEND A !ACK.∗′

] false;
expected true

end property

property A11
A process cannot switch from sending acknowledgements to sending data
fragments without having received a read request or sent a write request.
The following formula ensures that there is no sequence of transitions in
which sending an acknowledgement can be followed by sending a data frag-
ment without first either sending a write request or receiving a read request
in between.

INRIA

Compositional Verification using CADP 59

is

"SCENARIO.bcg" |=
[

true
∗ .

′SEND A !ACK.∗′ .
not (′SEND A !WRQ.∗′ or ′RECEIVE A !RRQ.∗′)∗ .
′SEND A !DATA.∗′

] false;
expected true

end property

property A12
In the case where TFTP protocol entity A is transferring a file, it must be
possible for its transfer to finish.

is

"SCENARIO.bcg" |=
〈 true

∗ . "SUCCESS A" 〉 true;
expected true

end property

property A13
During the dallying phase, it is possible to begin a new transfer upon re-
ceiving a read or write request. The following formula states that for each
of the two phases (corresponding to waiting for two timeouts to occur after
sending the final acknowledgement), the reception of a request before the
timeout occurs can be answered.

is

"SCENARIO.bcg" |=
forall X : Nat among {0 . . . 1} .

〈
true

∗ .
{RECEIVE A !"DATA" ?N : Nat ?any !TRUE} .
not ({SEND A !"ACK" !N})∗ .
{SEND A !"ACK" !N} .
(not (TIMEOUT A or REINIT A)∗ . TIMEOUT A) {X} .
not (TIMEOUT A or REINIT A)∗

〉
(

〈
{RECEIVE A !"WRQ" ?any} .
not {RECEIVE A . . .}∗ .
{SEND A !"ACK" !0 of Nat}

〉 true

or

〈
{RECEIVE A !"RRQ" ?any} .
not {RECEIVE A . . .}∗ .
{SEND A !"DATA" !1 of Nat . . .}

〉 true

);
expected true

end property

property A14

RR n° 8708

60 H. Garavel, F. Lang, and R. Mateescu

In order to avoid the Sorcerer’s Apprentice bug, all resent acknowledge-
ments must be ignored. The following formula ensures that there exists
no sequence of transitions in which the same acknowledgement is answered
twice without an intervening reinitialisation.

is

"SCENARIO.bcg" |=
[

true
∗ .

{RECEIVE A !"ACK" ?N : Nat} .
{SEND A !"DATA" !N + 1 . . .} .
not (REINIT A or {RECEIVE A !"ACK" !N})∗ .
{RECEIVE A !"ACK" !N} .
{SEND A !"DATA" !N + 1 . . .}

] false;
expected true

end property

property A15
Re-sent data fragment can be acknowledged, to the limit set by the value
of the maximum number of retries. The following formula states that
after a data fragment is received, it can be received and acknowledged
again (only ARM TIMER A and STOP TIMER A actions can be per-
formed by TFTP entity A in the meantime) up to MIN RETRIES AB
times (where MIN RETRIES AB is the minimum of MAX RETRIES A
and MAX RETRIES B).

is

"SCENARIO.bcg" |=
forall N : Nat among {1 . . . FILE SIZE A()} .

〈
true

∗ .
{RECEIVE A !"DATA" !N . . .} .
(not (′.∗ A.∗′) or ′.∗TIMER A.∗′)∗ .
{SEND A !"ACK" !N} .
(

(not (′.∗ A.∗′) or ′.∗TIMER A.∗′)∗ .
{RECEIVE A !"DATA" !N . . .} .
(not (′.∗ A.∗′) or ′.∗TIMER A.∗′)∗ .
{SEND A !"ACK" !N}

) {MIN RETRIES AB()}
〉 true;

expected true

end property

property A16
Every resent read request must be answered, to the limit set by the value of
the maximum number of retries. The following formula states that after a
read request is received for the first time, it can be received and answered
again up to MIN RETRIES AB times.

is

"SCENARIO.bcg" |=
[

not {RECEIVE A !"RRQ" . . .}∗ .
{RECEIVE A !"RRQ" ?N : Nat} .
not {RECEIVE A . . .}∗ .
{SEND A !"DATA" !1 of Nat . . .}

]
〈

INRIA

Compositional Verification using CADP 61

(
not (REINIT A or {RECEIVE A !"RRQ" !N})∗ .
{RECEIVE A !"RRQ" !N} .
{SEND A !"DATA" !1 of Nat . . .}

) {MIN RETRIES AB()}
〉 true;

expected true

end property

property A17
Every write request must be acknowledged, to the limit set by the value of
the maximum number of retries. The following formula states that after a
write request is received for the first time, it can be received and answered
again up to MIN RETRIES AB times.

is

"SCENARIO.bcg" |=
[

not {RECEIVE A !"WRQ" . . .}∗ .
{RECEIVE A !"WRQ" ?N : Nat} .
not ({RECEIVE A . . .})∗ .
{SEND A !"ACK" !0 of Nat}

]
〈

(
not (REINIT A or {RECEIVE A !"WRQ" !N})∗ .
{RECEIVE A !"WRQ" !N} .
{SEND A !"ACK" !0 of Nat}

) {MIN RETRIES AB()}
〉 true;

expected true

end property

property A18
An acknowledgement can be resent as many times as allowed by the value of
the maximum number of retries. The following formula states that after an
acknowledgement is sent for the first time, it can be sent again (regardless
of the reason) up to MAX RETRIES A times within the same transfer.

is

"SCENARIO.bcg" |=
forall N : Nat among {0 . . . FILE SIZE A()} .

[
not ({SEND A !"ACK" !N})∗ .
{SEND A !"ACK" !N}

]
〈

(
not (′.∗[WR]RQ.∗

′

or {SEND A !"ACK" !N})∗ .
{SEND A !"ACK" !N}

) {MAX RETRIES A()}
〉 true;

expected true

end property

property A19

RR n° 8708

62 H. Garavel, F. Lang, and R. Mateescu

An acknowledgement cannot be resent more times than allowed by the value
of the maximum number of retries. The following formula states that there
is no sequence of transitions in which sending the same acknowledgement
can occur more than MAX RETRIES A times within the same transfer.

is

"SCENARIO.bcg" |=
forall N : Nat among {0 . . . FILE SIZE A()} .

[
true

∗ .
{SEND A !"ACK" !N} .
(

not (′.∗[WR]RQ.∗
′

or {SEND A !"ACK" !N})∗ .
{SEND A !"ACK" !N}

) {MAX RETRIES A() + 1}
] false;

expected true

end property

property A20
A data fragment can be resent as many times as allowed by the value of
the maximum number of retries. The following formula states that after a
data fragment is sent for the first time, it can be sent again (regardless of
the reason) up to MAX RETRIES A times within the same transfer.

is

"SCENARIO.bcg" |=
forall N : Nat among {1 . . . FILE SIZE A()} .

[
not ({SEND A !"DATA" !N . . .})∗ .
{SEND A !"DATA" !N . . .}

]
〈

(
not (′.∗[WR]RQ.∗

′

or {SEND A !"DATA" !N . . .})∗ .
{SEND A !"DATA" !N . . .}

) {MAX RETRIES A()}
〉 true;

expected true

end property

property A21
A data fragment cannot be resent more times than allowed by the value of
the maximum number of retries. The following formula states that there
is no sequence of transitions in which sending the same data fragment can
occur more than MAX RETRIES A times within the same transfer.

is

"SCENARIO.bcg" |=
forall N : Nat among {1 . . . FILE SIZE A()} .

[
true

∗ .
{SEND A !"DATA" !N . . .} .
(

not (′.∗[WR]RQ.∗
′

or {SEND A !"DATA" !N . . .})∗ .
{SEND A !"DATA" !N . . .}

) {MAX RETRIES A() + 1}
] false;

expected true

end property

INRIA

Compositional Verification using CADP 63

property A22
A read request can be resent as many times as allowed by the value of the
maximum number of retries. The following formula states that after a read
request is sent for the first time, it can be sent again (regardless of the
reason) up to MAX RETRIES A times within the same transfer.

is

"SCENARIO.bcg" |=
[

not ({SEND A !"RRQ" . . .})∗ .
{SEND A !"RRQ" ?N : Nat}

]
〈

(
not (REINIT A or {SEND A !"RRQ" !N})∗ .
{SEND A !"RRQ" !N}

) {MAX RETRIES A()}
〉 true;

expected true

end property

property A23
A read request cannot be resent more times than allowed by the value of the
maximum number of retries. The following formula states that there is no
sequence of transitions in which sending the same read request can occur
more than MAX RETRIES A without a reinitialisation.

is

"SCENARIO.bcg" |=
[

true
∗ .

{SEND A !"RRQ" ?N : Nat} .
(

not (REINIT A or {SEND A !"RRQ" !N})∗ .
{SEND A !"RRQ" !N}

) {MAX RETRIES A() + 1}
] false;

expected true

end property

property A24
A write request can be resent as many times as allowed by the value of the
maximum retries. The following formula states that after a write request
is sent for the first time, it can be sent again (regardless of the reason) up
to MAX RETRIES A times within the same transfer.

is

"SCENARIO.bcg" |=
[not ({SEND A !"WRQ" . . .})∗ . {SEND A !"WRQ" ?N : Nat}]

〈
(

not (REINIT A or {SEND A !"WRQ" !N})∗ .
{SEND A !"WRQ" !N}

) {MAX RETRIES A()}
〉 true;

expected true

end property

property A25

RR n° 8708

64 H. Garavel, F. Lang, and R. Mateescu

A write request cannot be resent more times than allowed by the value of
the maximum number of retries. The following formula states that there
is no sequence of transitions in which sending the same write request can
occur more than MAX RETRIES A without a reinitialisation.

is

"SCENARIO.bcg" |=
[

true
∗ .

{SEND A !"WRQ" ?N : Nat} .
(

not (REINIT A or {SEND A !"WRQ" !N})∗ .
{SEND A !"WRQ" !N}

) {MAX RETRIES A() + 1}
] false;

expected true

end property

property A26
Data fragments must be sent in proper order. The following formula states
that any data fragment numbered X cannot be followed by a data fragment
numbered Y , where Y < X, unless there has been a reinitialisation in
between.

is

"SCENARIO.bcg" |=
[

true
∗ .

{SEND A !"DATA" ?X : Nat . . .} .
not (REINIT A)∗ .
{SEND A !"DATA" ?Y : Nat . . . where Y < X}

] false;
expected true

end property

property A27
Between the transmission of two successive data fragments, there must be
the reception of the corresponding acknowledgement. The following formula
states that there is no sequence of transitions in which the transmission of
a data fragment numbered X can be followed by the transmission of a data
fragment numbered X + 1 without the reception of the acknowledgement
numbered X in between.

is

"SCENARIO.bcg" |=
[

true
∗ .

{SEND A !"DATA" ?X : Nat ?any !FALSE} .
not ({RECEIVE A !"ACK" !X})∗ .
{SEND A !"DATA" !X + 1 . . .}

] false;
expected true

end property

property A28

INRIA

Compositional Verification using CADP 65

Between the transmission of two successive acknowledgements, there must
be the reception of the corresponding data fragment. The following formula
states that there is no sequence of transitions in which the transmission
of an acknowledgement numbered X can be followed by the transmission
of an acknowledgement numbered X + 1 without the reception of the data
fragment numbered X + 1 in between.

is

"SCENARIO.bcg" |=
[

true
∗ .

{SEND A !"ACK" ?X : Nat} .
not ({RECEIVE A !"DATA" !X + 1 . . .})∗ .
{SEND A !"ACK" !X + 1}

] false;
expected true

end property

property A29
There exists a cycle of transitions satisfying the regular expression written
in between angles below.

is

"SCENARIO.bcg" |=
〈

true
∗ .

"STOP TIMER A" .
not ("STOP TIMER A" or "ARM TIMER A")∗ .
"TIMEOUT A" .
not ("STOP TIMER A")∗ .
"ARM TIMER A"

〉 @;
expected false

end property

RR n° 8708

Centre de recherche INRIA Grenoble – Rhône-Alpes
Inovallée, 655, avenue de l’Europe, Montbonnot - 38334 Saint Ismier Cedex (France)

Centre de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes, 4, rue Jacques Monod - Bât. G - 91893 Orsay Cedex (France)
Centre de recherche INRIA Nancy – Grand Est : 615, rue du Jardin Botanique - 54600 Villers-lès-Nancy (France)

Centre de recherche INRIA Rennes – Bretagne Atlantique : Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

	Introduction
	Definitions
	Vector notations
	Labelled Transition Systems
	Networks of LTSs
	Composition expressions
	LTS Equivalences
	Congruence results

	Property-independent compositional approaches
	Basic compositional LTS generation
	Interfaces and projections
	Automatic generation of interfaces

	Property-dependent compositional approaches
	Temporal logics
	Model checking
	Property-dependent reductions
	Partial model checking

	High-level strategies and smart reduction
	Pre-defined strategies based on component hierarchy
	Heuristic-based strategy: Smart reduction
	Combining smart reduction and partial model checking

	Implementation in the CADP toolbox
	Labelled transition systems and their generation
	Equivalence checking: Minimization and comparison of labelled transition systems
	Semi-composition and interfaces
	Model checking: Local and partial evaluation
	The SVL language for compositional verification

	Applications and experimental results
	Generation of minimized LTS
	Model checking

	Conclusion
	Temporal logic specifications for the TFTP case study

