F. Abas, Analysis of craquelure patterns for content-based retrieval, 2004.
DOI : 10.1109/icdsp.2002.1027828

URL : http://eprints.ecs.soton.ac.uk/archive/00007382/01/dsp2002.pdf

A. Agrachev, D. Barilari, and U. Boscain, Introduction to Riemannian and sub-Riemannian geometry (Lecture Notes)

A. Bellaïche, The tangent space in sub-Riemannian geometry, Sub-Riemannian geometry, pp.1-78, 1996.

M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, Image inpainting, Proc. of SIGGRAPH, pp.417-424, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00522652

A. Bohi, D. Prandi, V. Guis, F. Bouchara, and J. Gauthier, Fourier Descriptors Based on the Structure of the Human Primary Visual Cortex with Applications to Object Recognition, Journal of Mathematical Imaging and Vision, vol.21, issue.3, pp.117-133, 2017.
DOI : 10.1109/TC.1972.5008949

URL : https://hal.archives-ouvertes.fr/hal-01383846

U. Boscain, G. Charlot, and F. Rossi, Existence of planar curves minimizing length and curvature, Proceedings of the Steklov Institute of Mathematics, vol.145, issue.2, pp.43-56, 2010.
DOI : 10.2140/pjm.1990.145.367

URL : http://arxiv.org/pdf/0906.5290v1.pdf

U. Boscain, R. A. Chertovskih, J. Gauthier, and A. O. Remizov, Hypoelliptic Diffusion and Human Vision: A Semidiscrete New Twist, SIAM Journal on Imaging Sciences, vol.7, issue.2, pp.669-695, 2014.
DOI : 10.1137/130924731

URL : https://hal.archives-ouvertes.fr/hal-01097156

U. Boscain, R. Duits, F. Rossi, and Y. Sachkov, sub-Riemannian geometry, ESAIM: Control, Optimisation and Calculus of Variations, vol.20, issue.3, pp.748-770, 2014.
DOI : 10.1007/978-0-8176-8086-2

URL : https://hal.archives-ouvertes.fr/hal-00763141

U. Boscain, J. Duplaix, J. Gauthier, and F. Rossi, Anthropomorphic Image Reconstruction via Hypoelliptic Diffusion, SIAM Journal on Control and Optimization, vol.50, issue.3
DOI : 10.1137/11082405X

URL : http://arxiv.org/pdf/1006.3735

U. Boscain, J. Gauthier, D. Prandi, and A. Remizov, Image reconstruction via non-isotropic diffusion in Dubins/Reed-Shepp-like control systems, 53rd IEEE Conference on Decision and Control, pp.4278-4283, 2014.
DOI : 10.1109/CDC.2014.7040056

URL : https://hal.archives-ouvertes.fr/hal-01103516

A. Bugeau, M. Bertalmío, V. Caselles, and G. Sapiro, A Comprehensive Framework for Image Inpainting, IEEE Transactions on Image Processing, vol.19, issue.10, pp.2634-2679, 2010.
DOI : 10.1109/TIP.2010.2049240

URL : https://hal.archives-ouvertes.fr/hal-00522652

T. F. Chan, S. H. Kang, and J. Shen, Euler's elastica and curvature-based inpainting, SIAM J. Appl. Math, vol.63, issue.2, pp.564-592, 2002.

G. Citti, B. Franceschiello, G. Sanguinetti, and A. Sarti, Sub-Riemannian Mean Curvature Flow for Image Processing, SIAM Journal on Imaging Sciences, vol.9, issue.1, pp.212-237, 2016.
DOI : 10.1137/15M1013572

URL : http://arxiv.org/pdf/1504.03710

G. Citti and A. Sarti, A Cortical Based Model of Perceptual Completion in the Roto-Translation Space, Journal of Mathematical Imaging and Vision, vol.11, issue.3, pp.307-326, 2006.
DOI : 10.1007/978-1-4612-1126-6

B. Cornelis, T. Ru?i?, E. Gezels, A. Dooms, A. Pi?urica et al., Crack detection and inpainting for virtual restoration of paintings: The case of the Ghent Altarpiece, Signal Processing, vol.93, issue.3, pp.93605-619, 2013.
DOI : 10.1016/j.sigpro.2012.07.022

R. Duits, U. Boscain, F. Rossi, and Y. Sachkov, Association Fields via Cuspless Sub-Riemannian Geodesics in SE(2), Journal of Mathematical Imaging and Vision, vol.73, issue.1, pp.384-417, 2014.
DOI : 10.1016/j.spl.2005.02.013

URL : https://hal.archives-ouvertes.fr/hal-00924469

R. Duits and E. Franken, Left-invariant parabolic evolutions on $SE(2)$ and contour enhancement via invertible orientation scores Part I: Linear left-invariant diffusion equations on $SE(2)$, Quarterly of Applied Mathematics, vol.68, issue.2, pp.255-292, 2010.
DOI : 10.1090/S0033-569X-10-01172-0

URL : http://www.ams.org/qam/2010-68-02/S0033-569X-10-01172-0/S0033-569X-10-01172-0.pdf

R. Duits and E. Franken, Left-invariant parabolic evolutions on $SE(2)$ and contour enhancement via invertible orientation scores Part II: Nonlinear left-invariant diffusions on invertible orientation scores, Quarterly of Applied Mathematics, vol.68, issue.2, pp.293-331, 2010.
DOI : 10.1090/S0033-569X-10-01173-3

URL : http://www.ams.org/qam/2010-68-02/S0033-569X-10-01173-3/S0033-569X-10-01173-3.pdf

R. Duits and M. A. Van-almsick, The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2D Euclidean motion group, Quarterly of Applied Mathematics, vol.66, issue.1, pp.27-67, 2008.
DOI : 10.1090/S0033-569X-07-01066-0

G. Facciolo, P. Arias, V. Caselles, and G. Sapiro, Exemplarbased interpolation of sparsely sampled images, Energy Minimization Methods in Computer Vision and Pattern Recognition: 7th International Conference EMMCVPR 2009) Proceedings, pp.331-344, 2009.
DOI : 10.1007/978-3-642-03641-5_25

URL : http://repositori.upf.edu/bitstream/10230/16308/1/facciolo_emmcvpr.pdf

J. H. Ferziger and M. Peri?, Computational methods for fluid dynamics, 2002.

M. Gromov, Carnot-Carathéodory spaces seen from within In Sub-Riemannian geometry, Progr. Math, vol.144, pp.79-323, 1996.
DOI : 10.1007/978-3-0348-9210-0_2

R. K. Hladky and S. D. Pauls, Minimal Surfaces in the Roto-Translation Group with??Applications to a Neuro-Biological Image Completion Model, Journal of Mathematical Imaging and Vision, vol.5, issue.8, pp.1-27, 2010.
DOI : 10.1007/BF02922137

L. Hörmander, Hypoelliptic second order differential equations, Acta Mathematica, vol.119, issue.0, pp.147-171, 1967.
DOI : 10.1007/BF02392081

D. H. Hubel and T. N. , Receptive fields of single neurones in the cat's striate cortex, The Journal of Physiology, vol.148, issue.3, pp.574-591, 1959.
DOI : 10.1113/jphysiol.1959.sp006308

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1959.sp006308/pdf

D. Marr and E. Hildreth, Theory of Edge Detection, Proceedings of the Royal Society B: Biological Sciences, vol.207, issue.1167, pp.187-217, 1167.
DOI : 10.1098/rspb.1980.0020

S. Masnou, Disocclusion: a variational approach using level lines, IEEE Transactions on Image Processing, vol.11, issue.2, pp.68-76, 2002.
DOI : 10.1109/83.982815

S. Masnou and J. Morel, Level lines based disocclusion, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269), pp.259-263, 1998.
DOI : 10.1109/ICIP.1998.999016

R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, volume 91 of Mathematical Surveys and Monographs, 2002.

L. Peichl and H. Wässle, Size, scatter and coverage of ganglion cell receptive field centres in the cat retina., The Journal of Physiology, vol.291, issue.1, pp.117-141, 1979.
DOI : 10.1113/jphysiol.1979.sp012803

J. Petitot, The neurogeometry of pinwheels as a sub-Riemannian contact structure, Journal of Physiology-Paris, vol.97, issue.2-3, pp.265-309, 2003.
DOI : 10.1016/j.jphysparis.2003.10.010

J. Petitot, Neurogéométrie de la vision -Modèles mathématiques et physiques des architectures fonctionnelles. Les Éditions de l'École Polytechnique, 2008.

N. Ponomarenko, L. Jin, V. Lukin, and K. Egiazarian, Selfsimilarity measure for assessment of image visual quality, Proceedings of the 13th International Conference on Advanced Concepts for Intelligent Vision Systems, pp.459-470, 2011.

D. Prandi, U. Boscain, and J. Gauthier, Image Processing in the Semidiscrete Group of Rototranslations, Geometric science of information, pp.627-634, 2015.
DOI : 10.1007/978-3-319-25040-3_67

URL : https://hal.archives-ouvertes.fr/hal-01721740

D. Prandi and J. Gauthier, A semidiscrete version of the Petitot model as a plausible model for anthropomorphic image reconstruction and pattern recognition, SpringerBriefs in Mathematics
URL : https://hal.archives-ouvertes.fr/hal-01681234

G. Sanguinetti, G. Citti, and A. Sarti, Image completion using a diffusion driven mean curvature flow in a sub- Riemannian space, Proceedings of the 3rd International Conference on Computer Vision Theory and Applications, pp.46-53, 2008.

R. S. Strichartz, Sub-Riemannian geometry, Journal of Differential Geometry, vol.24, issue.2, pp.221-263, 1986.
DOI : 10.4310/jdg/1214440436

R. S. Strichartz, Corrections to: ``Sub-Riemannian geometry'', Journal of Differential Geometry, vol.30, issue.2, pp.221-263, 1986.
DOI : 10.4310/jdg/1214443604

V. V. Voronin, V. A. Frantc, V. I. Marchuk, A. I. Sherstobitov, and K. Egiazarian, No-reference visual quality assessment for image inpainting, Proc. SPIE 9399, Image Processing: Algorithms and Systems XIII, pp.93990-93990, 2015.
DOI : 10.1117/12.2076507

M. Wang, B. Yan, and K. N. Ngan, An efficient framework for image/video inpainting. Signal Process, Image Commun, vol.28, issue.7, pp.753-762, 2013.
DOI : 10.1016/j.image.2013.03.002

F. Zhang, S. Li, L. Ma, and K. N. Ngan, Limitation and challenges of image quality measurement, Visual Communications and Image Processing 2010, pp.774402-774402, 2010.
DOI : 10.1117/12.863083