L. Barreda, A. Gannoun, and J. Saracco, Some extensions of multivariate sliced inverse regression, Journal of Statistical Computation and Simulation, vol.15, issue.1, pp.1-17, 2007.
DOI : 10.1080/10629360600687840

M. P. Barrios and S. Velilla, A bootstrap method for assessing the dimension of a general regression problem, Statistics & Probability Letters, vol.77, issue.3, pp.247-255, 2007.
DOI : 10.1016/j.spl.2006.07.020

C. Bernard-michel, S. Douté, M. Fauvel, L. Gardes, and S. Girard, Retrieval of Mars surface physical properties from OMEGA hyperspectral images using regularized sliced inverse regression, Journal of Geophysical Research, vol.20, issue.2, p.6005, 2009.
DOI : 10.1029/2008JE003171

URL : https://hal.archives-ouvertes.fr/inria-00276116

C. Bernard-michel, L. Gardes, and S. Girard, Gaussian Regularized Sliced Inverse Regression, Statistics and Computing, vol.5, issue.22, pp.85-98, 2009.
DOI : 10.1007/s11222-008-9073-z

URL : https://hal.archives-ouvertes.fr/inria-00180458

M. Chavent, V. Kuentz, B. Liquet, and J. Saracco, A Sliced Inverse Regression Approach for a Stratified Population, Communications in statistics -Theory and methods, pp.1-22, 2011.
DOI : 10.1214/aos/1032526955

M. Chavent, S. Girard, V. Kuentz, B. Liquet, T. M. Nguyen et al., Régression inverse par tranches sur flux de données, 44èmes Journées de Statistique (SFdS), 2012.

C. Chen and K. Li, Can SIR be as popular as multiple linear regression?, Statistica Sinica, vol.8, issue.2, pp.289-316, 1998.

R. D. Cook, Fisher Lecture: Dimension Reduction in Regression, Statistical Science, vol.22, issue.1, pp.1-26, 2007.
DOI : 10.1214/088342306000000682

S. Douté, B. Schmitt, Y. Langevin, J. Bibring, F. Altieri et al., South Pole of Mars: Nature and composition of the icy terrains from Mars Express OMEGA observations, Planetary and Space Science, vol.55, issue.1-2, pp.113-133, 2007.
DOI : 10.1016/j.pss.2006.05.035

N. Duan and K. C. Li, Slicing Regression: A Link-Free Regression Method, The Annals of Statistics, vol.19, issue.2, pp.505-530, 1991.
DOI : 10.1214/aos/1176348109

L. Ferré, Determining the dimension in sliced inverse regression and related methods, J, 1998.

P. Hall and K. C. Li, On almost linearity of low dimensional projections from high dimensional data. The Annals of Statistics, pp.867-889, 1993.

D. A. Harville, Matrix Algebra From a Statistician's Perspective, 1999.

K. C. Li, Sliced Inverse Regression for Dimension Reduction, Journal of the American Statistical Association, vol.13, issue.414, pp.316-342, 1991.
DOI : 10.1214/aos/1176345514

B. Liquet and J. Saracco, Method, Communications in Statistics - Simulation and Computation, vol.5, issue.6, pp.1198-1218, 2008.
DOI : 10.1214/aos/1032526955

URL : https://hal.archives-ouvertes.fr/hal-00646593

B. Liquet and J. Saracco, A graphical tool for selecting the number of slices and the dimension of the model in SIR and SAVE approaches, Computational Statistics, vol.98, issue.1, pp.103-125, 2012.
DOI : 10.1007/s00180-011-0241-9

URL : https://hal.archives-ouvertes.fr/hal-00938090

H. Lue, Sliced inverse regression for multivariate response regression, Journal of Statistical Planning and Inference, vol.139, issue.8, pp.2656-2664, 2009.
DOI : 10.1016/j.jspi.2008.12.006

J. Saracco, An asymptotic theory for sliced inverse regression, Communications in Statistics - Theory and Methods, vol.5, issue.9, pp.2141-2171, 1997.
DOI : 10.1214/aos/1176345514

J. Saracco, Asymptotics for pooled marginal slicing estimator based on <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mrow><mml:mi>SIR</mml:mi></mml:mrow><mml:mrow><mml:mi>??</mml:mi></mml:mrow></mml:msub></mml:math> approach, Journal of Multivariate Analysis, vol.96, issue.1, pp.117-135, 2005.
DOI : 10.1016/j.jmva.2004.10.003

F. Schmidt, S. Douté, and B. Schmitt, Wavanglet: An efficient supervised classifier for hyperspectral images. Geoscience and Remote Sensing, IEEE Transactions, vol.45, issue.5, pp.1374-1385, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00325458

J. R. Schott, Determining the Dimensionality in Sliced Inverse Regression, Journal of the American Statistical Association, vol.16, issue.425, pp.141-148, 1994.
DOI : 10.1214/aos/1176345514

L. Scrucca, Class prediction and gene selection for DNA microarrays using regularized sliced inverse regression, Computational Statistics & Data Analysis, vol.52, issue.1, pp.438-451, 2007.
DOI : 10.1016/j.csda.2007.02.005

Y. Shao, R. D. Cook, and S. Weisberg, Partial central subspace and sliced average variance estimation, Journal of Statistical Planning and Inference, vol.139, issue.3, pp.952-961, 2009.
DOI : 10.1016/j.jspi.2008.06.002

D. E. Tyler, Asymptotic Inference for Eigenvectors, The Annals of Statistics, vol.9, issue.4, pp.725-736, 1981.
DOI : 10.1214/aos/1176345514

W. Zhong, P. Zeng, P. Ma, J. S. Liu, and Y. Zhu, RSIR: regularized sliced inverse regression for motif discovery, Bioinformatics, vol.21, issue.22, pp.4169-4175, 2005.
DOI : 10.1093/bioinformatics/bti680

L. X. Zhu, M. Ohtaki, and Y. Li, On hybrid methods of inverse regression-based algorithms, Computational Statistics & Data Analysis, vol.51, issue.5, pp.2621-2635, 2007.
DOI : 10.1016/j.csda.2006.01.005