Laplacian-Regularized MAP-MRI: Improving Axonal Caliber Estimation

Abstract : In diffusion MRI, the accurate description of the entire diffusion signal from sparse measurements is essential to enable the recovery of microstructural information of the white matter. The recent Mean Apparent Propagator (MAP)-MRI basis is especially well suited for this task, but the basis fitting becomes unreliable in the presence of noise. As a solution we propose a fast and robust analytic Laplacian regularization for MAP-MRI. Using both synthetic diffusion data and human data from the Human Connectome Project we show that (1) MAP-MRI has more accurate microstructure recovery compared to classical techniques, (2) regularized MAP-MRI has lower signal fitting errors compared to the unregularized approach and a positivity constraint on the EAP and (3) that our regularization improves axon radius recovery on human data.
Type de document :
Communication dans un congrès
International Symposium on BIOMEDICAL IMAGING: From Nano to Macro, Apr 2015, Brooklyn, New York City, United States
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01140021
Contributeur : Rutger Fick <>
Soumis le : mardi 7 avril 2015 - 15:21:07
Dernière modification le : jeudi 11 janvier 2018 - 16:48:39
Document(s) archivé(s) le : mardi 18 avril 2017 - 12:42:40

Fichier

ISBI2015a.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01140021, version 1

Collections

Citation

Rutger Fick, Demian Wassermann, Gonzalo Sanguinetti, Rachid Deriche. Laplacian-Regularized MAP-MRI: Improving Axonal Caliber Estimation. International Symposium on BIOMEDICAL IMAGING: From Nano to Macro, Apr 2015, Brooklyn, New York City, United States. 〈hal-01140021〉

Partager

Métriques

Consultations de la notice

266

Téléchargements de fichiers

153