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Abstract. We propose a novel framework to simultaneously represent
the di�usion-weighted MRI (dMRI) signal over di�usion times, gradient
strengths and gradient directions. Current frameworks such as the 3D
Simple Harmonic Oscillator Reconstruction and Estimation basis (3D-
SHORE) only represent the signal over the spatial domain, leaving the
temporal dependency as a �xed parameter. However, microstructure-
focused techniques such as Axcaliber and ActiveAx provide evidence of
the importance of sampling the dMRI space over di�usion time. Up to
now there exists no generalized framework that simultaneously models
the dependence of the dMRI signal in space and time. We use a func-
tional basis to �t the 3D+t spatio-temporal dMRI signal, similarly to the
3D-SHORE basis in three dimensional ’q-space’. The lowest order term
in this expansion contains an isotropic di�usion tensor that characterizes
the Gaussian displacement distribution, multiplied by a negative expo-
nential. We regularize the signal �tting by minimizing the norm of the
analytic Laplacian of the basis, and validate our technique on synthetic
data generated using the theoretical model proposed by Callaghan et
al. We show that our method is robust to noise and can accurately de-
scribe the restricted spatio-temporal signal decay originating from tissue
models such as cylindrical pores. From the �tting we can then estimate
the axon radius distribution parameters along any direction using ap-
proaches similar to AxCaliber. We also apply our method on real data
from an ActiveAx acquisition. Overall, our approach allows one to rep-
resent the complete 3D+t dMRI signal, which should prove helpful in
understanding normal and pathologic nervous tissue.

1 Introduction

One of the unsolved quests of di�usion-weighted imaging (DW-MRI) is the recon-
struction of the complete four-dimensional ensemble average propagator (EAP)
describing the di�usion process of water molecules over three-dimensional space
and di�usion time (3D+t) in biological tissues. To the best of our knowledge,
most recent imaging techniques focus on reconstructing the three-dimensional
(3D) EAP using a �xed di�usion time. However, methods like Axcaliber [1] show
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the added value of incorporating di�erent di�usion times when estimating the
axon diameter in white matter tissue. Thus, a 3D+t representation of the EAP
may provide means to infer di�usion contrasts sensitive to axon diameters and
other tissue characteristics. To our knowledge, no such representation has been
proposed. We therefore propose an analytic model that enables the reconstruc-
tion of the complete 3D+t EAP.

To relate the observed di�usion signal to the underlying tissue microstruc-
ture, we need to understand how the di�usion signal is inuenced by the tissue
geometry and properties. Starting from the concept of a single particle moving
by Brownian motion, the movements of this particle over time are obstructed by
surrounding tissue structures such as cell walls. Then considering a large group
(ensemble) of particles, the average propagation of these particles will, depend-
ing on the length of the di�usion time, be more or less restricted by surrounding
tissues. This ensemble average propagator (EAP) is denoted as P (R; �) with R
the real displacement vector and � the di�usion time.

In DW-MRI the EAP is estimated by obtaining di�usion-weighted images
(DWIs). A DWI is obtained by applying two sensitizing di�usion gradients of
pulse length � to the tissue, separated by separation time �. The resulting
signal is ’weighted’ by the average particle movements in the direction of the
applied gradient. When these gradients are considered in�nitely short (� � 0),
the relation between the measured signal S(q; �) and the EAP P (r; �) is given
by an inverse Fourier transform (IFT) [2] as

P (R; �) =
Z

R3
E(q; �)e�2�iq�rdq with q =

�G
2�

(1)

where E(q; �) = S(q; �)=S0 is the normalized signal attenuation measured at
position q, and S0 is the baseline image acquired without di�usion sensitization
(q = 0). We denote � = (�� �=3), q = jqj, q = qu and R = Rr, where u and r
are 3D unit vectors and q, R 2 R+. The wave vector q on the right side of Eq.
(1) is related to pulse length �, nuclear gyromagnetic ratio  and the applied
di�usion gradient vector G. Furthermore, the clinically used b-value is related
to q as b = 4�2q2� . In accordance with the Fourier theory, measuring E(q; �) at
higher q makes one sensitive to more precise details in P (R; �), while measuring
at longer � makes the recovered EAP more speci�c to the white matter structure.

The relation between the EAP and white matter tissue is often modeled
by representing di�erent compartments as pores [10]. Examples of these are
parallel cylinders for aligned axon bundles and spherical pores for cell bodies
and astrocytes. Several techniques exist to infer the properties of these pores
such as their orientation or radius. Of these techniques many sample the 3D
di�usion signal exclusively in q-space with one preset di�usion time [3][4][5].
Among the most used methods is di�usion tensor imaging (DTI) [3]. However,
DTI is limited by its assumption that the signal decay is purely Gaussian over
q and purely exponential over � . These assumptions cannot account for in-vivo
observed phenomena such as restriction, heterogeneity or anomalous di�usion.
Approaches that overcome the Gaussian decay assumption over q include the



use of functional bases to represent the 3D EAP [4][5]. These bases reconstruct
the radial and angular properties of the EAP by �tting the signal to a linear
combination of orthogonal basis functions E(q) =

P
i ci�i(q) with c the �tted

coe�cients. In the case of [5], these basis functions are eigenfunctions of the
Fourier transform, allowing for the directly reconstruction of the EAP as P (R) =P
i ci	(R), where 	 = IFT(�). However, these approaches are not designed

to include multiple di�usion times, and therefore cannot accurately model the
complete 3D+t signal.

The 3D EAP can be related to the mean pore (axon) sizes, e.g. mean volume,
diameter and cross-sectional area, by assuming the q-space signal was acquired
at a long di�usion time. In this case the di�using particles have fully explored
the tissue structure and thus the shape of the EAP is indicative of the shape
of the tissue. This concept was proven in 1D-NMR [7][8][9] and extended to 3D
with the 3D Simple Harmonic Oscillator Reconstruction and Estimation (3D-
SHORE) and Mean Apparent Propagator (MAP)-MRI [5] basis. However, this
long di�usion time requirement is hard to ful�ll in practice as the scanner noise
begins to dominate the signal at higher di�usion times.

In contrast, in 1D+t space, Axcaliber [1] samples both over q and � to es-
timate axon radius distribution. This allows it to overcome the long di�usion
time constraint. However, though a 3D-Axcaliber was briey proposed [6], it is
essentially a 1D technique that needs to �t a parametric model to a signal that
is sampled exactly perpendicular to the axon direction. While this limits its ap-
plicability in clinical settings, this method thickly underlines the importance of
including � in the estimation of axon diameter properties.

Our main contribution in this paper is the generalization of the 3D-SHORE
model to include di�usion times. Our new model allows us to obtain analytic
representations of the complete 3D+t di�usion space from sparse samples of
the di�usion signal attenuation E(q; �). In other words, our representation si-
multaneously represents the 3D+t signal and EAP for any interpolated di�usion
time. This allows the time-dependent computation of the orientation distribution
function (ODF) previously proposed scalar measures such as the return-to-origin
probability (RTOP) and return-to-axis probability (RTAP) [5].

While our new 3D+t framework opens the door to many new ideas, in this
work we consider an initial application of this framework by implementing the
Axcaliber model to be used in 3D. In our procedure we �rst �t our model to a
sparsely sampled synthetic 3D+t data set consisting of cylinders with Gamma
distributed radii. We then sample an Axcaliber data set from the 3D+t rep-
resentation perpendicular to the cylinder direction and �t Axcaliber to the re-
sampled data. We compare this method with a previously proposed version of
3D-Axcaliber [6] that uses the composite and hindered restricted model of dif-
fusion (CHARMED) model to interpolate the data points in 3D+t space.

All contributions from this paper are publicly available on the Di�usion Imag-
ing in Python (DiPy) toolkit [20]. http://nipy.org/dipy/.

http://nipy.org/dipy/


2 Theory

We propose an appropriate basis with respect to the dMRI signal by studying
its theoretical shape over di�usion time � . The e�ect of di�usion time on the
dMRI signal for di�erent pore shapes has been extensively studies by Callaghan
et al. [10]. In general, the equations for restricted signals in planar, cylindrical
and spherical compartments can be formulated as:

E(q; �) =
X

k

�ke��k� � fk(q) (2)

where �k and �k depend on the order of the expansion. Here fk(q) is a function
that depends on the expansion order and value of q. The exact formulations
can be found in equations (9), (13) and (17) in [10]. As Eq. (2) shows, every
expansion order is given as a product of two functions: A negative exponential
on � with some order dependent scaling and a function fk(q) depending only on
q. Therefore, an appropriate basis to �t the signal described in Eq. (2) should be
a similar product of an exponential basis over � and another spatial basis over
q. We provide the formulation of our basis in the next section.

2.1 Speci�c Formulation of the 3D+t Basis

In accordance with the theoretical model presented in Section 2 we �t the 3D+t
space with a functional basis that is both separable and orthogonal over both
q and � . For the temporal aspect of the signal we choose to use an exponential
modulated by a Laguerre polynomial, which together form an orthogonal basis
over � . Then, following the separability of the signal, we are free to choose any
previously proposed spatial basis to complete our 3D+t functional basis. We
choose to use the well-known 3D-SHORE basis [5] as it robustly recovers both
the radial and angular features from sparse measurements [11]. Our combined
basis �nally describes the 3D+t di�usion signal as

E(q; �) =
NmaxX

fjlmg

OmaxX

o=0

cjlmo Sjlm(q)To(�) (3)

where To(�) is our temporal basis with basis order o and Sjlm(q) is the 3D-
SHORE basis with basis orders jlm. Here Nmax and Omax are the maximum
spatial and temporal order of the bases, which can be chosen independently. We
formulate the bases themselves as

Sjlm(q; us) =
p

4�i�l(2�2u2
sq

2)l=2e�2�2u2
sq

2
Ll+1=2
j�1 (4�2u2

sq
2)Y ml (u) (4)

To(�; ut) = exp(�ut�=2)Lo(ut�)

where us and ut are the spatial and temporal scaling factors. Here q = qu, L(�)
n

is a generalized Laguerre polynomial and Y ml is the real spherical harmonics
basis [12]. Here j, l and m are the radial order, angular order and angular



moment of the 3D-SHORE basis which are related as 2j + l = N + 2 with
N 2 f0; 2; 4 : : : Nmaxg [5].

Furthermore, we require data-dependent scaling factors us and ut to e�-
ciently �t the data. We calculate us by �tting a tensor e�2�2q2u2

s to the signal
values E(q; �) for all measured q. Similarly, we compute ut by �tting an expo-
nential e�ut� to E(�; �) for all measured � . Lastly, for a symmetric propagator in
our 3D+t basis (as is the case in dMRI) we give the total number of estimated
coe�cients Ncoef as

Ncoef = (Omax + 1)(Nmax=2 + 1)(Nmax=2 + 2)(4Nmax=2 + 3): (5)

For notation convenience, we use a linearized indexing of the basis functions in
the rest of the paper. We denote �i(q; �; us; ut) = Sjlm(i)(q; us)To(i)(�; ut) with
i 2 f1 : : : Ncoefg.

2.2 Signal Fitting and Regularization

As the measured signal always contains noise we need to regularize the coe�cient
estimation. Therefore, as our second contribution in this work, we provide the
analytic form of the Laplacian regularization of our basis.

Following Eq. (3), we �t our basis using regularized least squares by �rst
constructing a design matrix Q 2 RNdata�Ncoef with Qik = �k(qi; �i; us; ut). We
then �t the signal as

c = argmincky�Qck2 + �U(c) (6)

where y is the measured signal, c are the �tted coe�cients and � is the weight
for our Laplacian regularization U(c). We de�ne U(c) as

U(c) =
Z

R
kr2Ec(q; �)k2dqd� (7)

with r2Ec(q; �) =
P
i cir

2�i(q; �; us; ut) the Laplacian of the reconstructed
signal. U(c) can be rewritten in quadratic form as

Uik =
Z

R
r2�i(q; �; us; ut) � r2�k(q; �; us; ut)dqd� (8)

where the subscript ik indicates the ikth position in the regularization matrix.
We use the orthogonality of the basis functions to compute the values of the
regularization matrix to a closed form depending only on the basis orders and
scale factors. For brevity here we give the formulation of U in the Appendix A.
We �nally estimate the coe�cients using regularized least squares

c = (QTQ + �U)�1QTy: (9)

We �nd the weight � through generalized cross-validation (GCV) [13]. We �t
our model on both synthetic data generated using the theoretical signal model
and real data. We describe the theoretical signal model in more detail in the
next section.



2.3 Synthetic Data Generation and Axcaliber Model

To validate our method we generate synthetic data using the Callaghan model
[10]. In the case of a cylindrical (axonal) compartment this model simulates the
restricted component perpendicular to the cylinder walls as:

Er(q; �) =
X

k

4 exp(��2
0kD�=a

2)�

�
(2�qa)J

0

0(2�qa)
�2

((2�qa)2 � �2
0k)2

+
X

nk

8 exp(��2
nkD�=a

2)�
�2
nk

(�2
nk � n2)

�

�
(2�qa)J

0

n(2�qa)
�2

((2�qa)2 � �2
nk)2

(10)

where J
0

n are the derivatives of the nth-order Bessel function, �nk are the argu-
ments that result in zero-crossings and the cylinders are of radius a. As Eq. (10)
models di�usion for a single �ber population, this expression is extended as in
Axcaliber to include contributions from a Gamma distribution of �ber diame-
ters [1]. In fact, Eq. (10) is exactly the model that is �tted to the 1D+t signal
in Axcaliber. Following Eq. (3) in [17] we complete the model for a cylindrical
compartment by adding a free di�usion component as

E(q; �) = Er(q?; �) � Efree(qk; �): (11)

where qk = hq; f i with h�i the inner product and f the orientation of the cylinder.
Using the free water di�usivity D = 3 � 10�9m=s2, the parallel compartment is
given as

Efree(qk; �) = e�4�2q2D� : (12)

3 Experiments

In this section we �rst validate our method using synthetic data generated using
the theoretical Callaghan model [10]. We then apply our method on real data
acquired for ActiveAx [15].

3.1 Synthetic Data Experiments

Using the theoretical model outlined in Section 2.3 we generate two axon popula-
tions with Gamma distributed radii. We choose the shape and scale parameters
of the Gamma distribution similar to the optic nerve and sciatic nerve distribu-
tions presented in the Axcaliber paper [1]. We show the shapes of the Gamma
distributions and corresponding restricted signal attenuations in Figure 1.

We sample Eq. (11) in q-points distributed according to [18]. For every di�u-
sion time � we sample di�erent q-space shells at q = f0; 2; 5; 10; 30; 50; 70gmm�1.
Each shell is sampled with f3; 10; 10; 10; 20; 20; 20g samples, respectively. This
acquisition is repeated for every di�usion time � = f10; 20; 40; 60gms, leading
to a total of 372 samples. We compute this data for both Gamma distributions
for the signal �tting and Axcaliber experiments in the next sections.



(a) Gamma Distributions (b) Signal Optic Nerve (c) Signal Sciatic Nerve

Fig. 1: Signals generated using the Callaghan model.

3.2 Signal �tting and E�ect of Regularization

In our �rst experiment we test how many spatial or temporal basis functions we
need to �t a 3D+t di�usion signal. We choose to study in the case of restricted
di�usion in a cylindrical compartment, since this is a good model for white mat-
ter tissue in highly organized areas. We generate the noiseless signal as described
in Section 2.3 with the sampling scheme we described in Section 3.1. We then
�t the signal with increasing maximum order for the spatial and temporal basis.
We then compute the mean squared error (MSE) of the �tted signal compared
to the ground truth. We show a heat map of the results in Figure 2a where we
see that the signal �tting in this speci�c signal model only improves very little
after a spatial order of 6 and a temporal order of 5. Using Eq. (5) this means we
�t 300 coe�cients to accurately represent the 3D+t signal.

Using these settings for the maximum radial and temporal order we then
study the e�ectiveness of our proposed Laplacian regularization when we (1)
remove samples or (2) add noise to the data. In (1) we add a typical amount of
noise to the data such that SNR=20 and remove samples from the data in steps
of 12 samples. We then compare the MSE of the �tted signal with the noiseless
whole signal of 372 samples. We present the results in Figure 2b, where you can
see that the regularized 3D+t basis (in red) has signi�cantly lower MSE than
the unregularized basis. You can also see that the MSE error starts to increase
when the number of samples is reduced below 300. In (2) we set the number of
samples to 300 and increase the noise from SNR=5 to SNR=50. In Figure 2c
you can again see that our regularized basis has lower MSE values.

3.3 Three Dimensional Axcaliber from 3D+t

With this experiment we explore an application of our 3D+t basis by including
Axcaliber [1]. Axcaliber is a method that can estimate the parameters of the
Gamma distribution of the �ber radii by �tting the Gamma distributed ver-
sion of Eq. (10) to the signal over both q and � . However, it requires that the
data is sampled exactly perpendicular to the axon population, which makes it
impractical for clinical use.



(a) Di�erent Basis Orders (b) Reducing Samples (c) Increasing Noise

Fig. 2: (a) A heat map representing the mean squared error (MSE) of the basis
�tting for di�erent maximum radial and temporal orders. (b) The e�ect of re-
ducing the number of samples on the MSE. (c) The e�ect of increasing the noise
in the data on the MSE.

An advantage of our model is that we can apply Axcaliber in any direction
by �rst �tting the entire 3D+t signal with Eq. (9) and then sampling the data
again perpendicular to the observed �ber direction. We compare our approach
with a similar proposal [6] previously made using the composite and hindered
restricted model of di�usion (CHARMED) model [16]. In contrast to our method,
which assumes no a-priori shape on the EAP, the CHARMED model �ts speci�c
hindered and restricted compartments to the signal [17].

In this experiment we simulate 300 signal samples at SNR=20 using Eq. (11)
for both Gamma distributions presented in Figure 1. In this experiment we, with-
out loss of generality, �x the axon direction along the z-axis and only consider
the intra-axonal signal (i.e. no hindered compartment). We then �t our model
with a radial order of 6 and temporal order of 5. We �t CHARMED using 3 re-
stricted compartments. Then, as the signal in a cylindrical compartment should
be axially symmetric, we sample 10 di�erent directions on the plane perpendic-
ular to z and average the signals to reduce the e�ects of noise. The Axcaliber
data set consists of q = f0; 10; 20; 30; 40; 50; 60; 70g at � = f10; 20; 30; 40; 50; 60g,
resulting in 42 samples. We repeat the experiment 100 times.

Figure 3 shows box plots of the recovered shape and scale parameters � and
� from the optic and sciatic nerve data sets for both our 3D+t method and
CHARMED. The blue box contains values that are within the �rst and third
quartile of the obtained values, while the horizontal line in the middle is the
median value. On the right we also show the estimated mean radius, which can
be directly estimated from the gamma distribution as hRi = ��. The green
line represents the ground truth. It can be seen that the ground truth is always
within the �rst and third quartile for our method, while CHARMED typically
overestimates � and underestimates �.

3.4 Axon Diameter from Monkey Data

As a real data experiment we apply our model to an ActiveAx data set [15][19]
of an ex-vivo monkey brain. The data set consists of four shells with 93 samples



(a) � optic nerve (b) � optic nerve (c) hRi optic nerve (�m)

(d) � sciatic nerve (e) � sciatic nerve (f) hRi sciatic nerve (�m)

Fig. 3: The recovered shape �, scale � and average axon radius hRi for the optic
nerve (top row) and sciatic nerve (bottom row) data sets. The green line is the
ground truth.

each, and uses gradient strengths G = f:14; :14; :14; :13gT/m, separation times
� = f35:78; 16:7; 16:7; 45:9gms and pulse lengths � = f17:74; 10:15; 10:17; 7:17gms,
respectively. As you can see the pulse lengths � are comparable to � and di�er
between acquisition shells, which makes it not ideal for our method. However, it
is the only data set publicly available that has di�erent measurements in �.

We use the provided mask of the corpus callosum [15] and �t Eq. (9) to
the data using a radial order of 6 and a temporal order of 3. We then use the
approach in Section 3.3 and compute the mean axon radii. We present these
results in Figure 4. We can see that, while the results are somewhat noisy, we
�nd smaller radii near the splenium and genu (around 2-3 �m) and bigger near
the midbody (around 3-4 �m). This trend roughly follows what was found in
[15], showing that our method obtains reasonable results even in this data.

Fig. 4: A fractional anisotropy (FA) map of the ex-vivo monkey brain (left) and
the estimated axon radii in the corpus callosum (right).



4 Discussion and Conclusions

Our main contribution in this work is a novel framework to simultaneously rep-
resent the di�usion-weighted MRI (dMRI) signal over di�usion times, gradient
strengths and gradient directions. Our framework is based on the theoretical
model of restricted di�usion by Callaghan et al. [10] and uses an orthogonal
functional basis to �t the spatio-temporal di�usion signal over q-space and dif-
fusion times, which together we call 3D+t space. To the best of our knowledge,
we are the �rst to propose a method to represent the 3D+t space using a func-
tional basis. In accordance with the separability of our functional basis, we can
choose our spatial and temporal basis independently. We proposed to �t the
temporal signal using a basis of negative exponentials modulated by Laguerre
polynomials, while we chose to �t the spatial signal using the 3D-SHORE basis.
One theoretical limitation of this choice of basis is that it does not directly model
free water di�usion. However, the free water di�usion signal with the parameters
found in WM dMRI is well-represented by our basis, hence the theoretical limi-
tation does not seem to represent a major issue in our dMRI applications. More
importantly, this formulation retains all properties of the 3D-SHORE basis, but
with the added information over di�usion time. These bene�ts include a time-
dependent analytic representation of the dMRI signal and di�usion propagator.

Our formulation also allows for the e�cient regularization of the basis in
the form of the minimization of the Laplacian. We provide the analytic solution
of this Laplacian regularization depending only on the basis order and scaling
factors, allowing for instant computation of the regularization matrix for any
combination of basis order. We show on synthetic data that it e�ectively regu-
larizes the basis �tting.

Furthermore, we explored a possible application of our 3D+t framework by
including Axcaliber [1]. We showed on synthetic data that by �rst �tting our
basis to a sparse 3D+t sampling, we can accurately interpolate an Axcaliber data
set along any direction. This allowed us to estimate the axon radius distribution
parameters despite not sampling directly perpendicular to the axon orientation.
We compared this approach with a similar proposal using CHARMED [16] and
we showed that our approach is more appropriate to �t the 3D+t signal.

In its current form our framework e�ectively represents the 3D+t di�usion
signal and allows us to freely interchange the spatial basis to any other basis
that more readily �ts anisotropic data. For instance, the MAP-MRI basis [5]
could be used, which can also be extended to include the analytic Laplacian
regularization. Therefore, the framework presented in this work is meant as an
original and important step towards complete 3D+t imaging in di�usion MRI,
and provides great potential to better understand the di�usion signal in normal
and pathologic nervous tissue.

Appendix A: Analytic Laplacian Regularization

Here we compute the analytic form of the Laplacian regularization matrix in Eq.
(8). As our basis is separable in q and � , we can separate the Laplacian over our



basis function �i in a the spatial and temporal Laplacian as

r2�i(q; �; us; ut) =
�
r2

qSi(q; us)
�
Ti(�; ut) + Si(q; us)

�
r2
�Ti(�; ut)

�
(13)

with r2
q and r2

� the Laplacian to either q or � . We then rewrite Eq. (8) as

Uik =

UI
ikz }| {Z

R
(r2

qSi)(r
2
qSk)dq

Z

R
TiTkd� +

UIIa
ikz }| {Z

R
(r2

qSi)Skdq
Z

R
Ti(r2

�Tk)d�

+
Z

R
Si(r2

qSk)dq
Z

R
(r2

�Ti)Tkd�
| {z }

UIIb
ik

+
Z

R
SiSkdq

Z

R
(r2

�Ti)(r
2
�Tk)d�

| {z }
UIII

ik

where UIIa
ik = UIIb

ki . In all cases the integrals over q and � can be calculated to
a closed form using the orthogonality of the spherical harmonics, and Laguerre
polynomials with respect to weighting function e�x. The closed form of UI is

UI
ik =

us
ut
�o(i)
o(k)�

l(i)
l(k)�

m(i)
m(k)

8
>>>>>>>><

>>>>>>>>:

�(j(i);j(k)+2)
22�l�2� ( 5

2 +j(k)+l)
� (j(k))

�(j(i);j(k)+1)
22�l�2(�3+4j(i)+2l)� ( 3

2 +j(k)+l)
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� (j(i))

where � is the Kronecker delta. Similarly computing UII
ik = UIIa

ik + UIIb
ki gives

UII
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where j � j is the absolute sign. We now denote the operator Mx2
x1

= min(x1; x2)
for the minimal value of x1; x2 and Hx the Heaviside step function with Hx =
1 i�x � 0. The last term UIII

ik evaluates to

UIII
ik =

u3
t
u3
s
�j(i)j(k)�

l(i)
l(k)�

m(i)
m(k)

2�(l+2)� (j(i) + l + 1=2)
�2� (j)

�

 
1
4
jo(i)� o(k)j+

1
16
�o(k)
o(i) +Mo(k)

o(i)

+
PMo(k)

o(i) +1
p=1 (o(i)� p)(o(k)� p)HMo(k)

o(i) �p
+Ho(i)�1Ho(k)�1

�
o(i) + o(k)� 2

+
PMo(k)�2

o(i)�1
p=0 p+

PMo(k)�1
o(i)�2

p=0 p+Mo(k)�1
o(i)�1 (jo(i)� o(k)j � 1)H(jo(i)�o(k)j�1)

�!

We �nally compute the complete 3D+t Laplacian regularization matrix as

U = UI + UII + UIII (14)
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