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On conditions of robust synchronization for
multistable systems

Hafiz Ahmed, Rosane Ushirobira, Denis Efimov and Wilfrid Perruquetti

Abstract—This paper deals with a robust synchronization
problem for multistable systems evolving on manifolds in the
context of Input-to-State Stability (ISS) framework. Based on
a recent generalization of classical ISS theory to multistable
systems (may have unstable equilibrium), a robust synchroniza-
tion protocol is designed with respect to a compact invariant
set of the unperturbed system. The invariant set is assumed to
admit a decomposition without cycles (basically no homoclinic
nor heteroclinic orbits may exist). Numerical simulation examples
illustrate our theoretical results.

I. INTRODUCTION

The first scientific observation regarding a synchronization
event can be dated back to seventeenth century by a Dutch
scientist C. Huygens, who observed a synchronous behavior in
coupled pendulums [1]. This type of behavior can be seen in a
variety of systems in various domains, for example biological,
chemical, mechanical, etc. [2], [3], [4], [5]. Synchronization
of complex dynamical systems and/or network of systems
has attracted a lot of attention from multidisciplinary research
communities over the last decades because of their pervasive
presence in nature, technology and human society. A collective
behavior arises from the interconnection of dynamical systems
and it has various potential application domains. For example,
transient stability in power network [6], cooperative multitask-
ing and formation control [7]. The core of synchronization
is the collective objective of agents in a network to reach a
consensus about certain variables of interest.

The existing literature on the synchronization problem is
very vast and covers many areas. In [8], the problem of for-
mation control is investigated in swarms within the framework
of output regulation in nonlinear systems. Detailed study re-
garding the control and synchronization of chaos can be found
in [9]. The paper [10] extends optimal control and adaptive
control design methods to multi-agent nonlinear systems on
communication graphs. Recent advances in various aspects of
cooperative control of multi-agent systems can be found in
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[11]. The theoretical framework for design and analysis of
distributed flocking algorithms can be found in [12].

In this work, we consider the synchronization problem for
multistable systems based on the framework of ISS. This is a
very well established technique for the study of stability and
robustness of nonlinear systems. The ISS property provides a
natural framework of stability analysis with respect to input
perturbations (see [13] and references therein). The classical
definition allows stability properties with respect to arbitrary
compact invariant sets (and not simply equilibria) to be for-
mulated and characterized. However, the implicit requirement
that these sets should be simultaneously Lyapunov stable and
globally attractive, makes the basic theory not applicable for
a global analysis of many dynamical behaviors of interest,
having multistability [14], [15], [16], periodic oscillations
[17] or hidden attractors [18], just to name a few, and only
local analysis remains possible [19]. Attempts were made to
overcome such limitations by introducing the notions of almost
global stability [20] and almost input-to-state stability [21],
etc.

Recently, the authors in [22] have proposed that the most
natural way of relaxing ISS condition for systems with
multiple invariant sets is equivalent to relax the Lyapunov
stability requirement [23] (rather than the global nature of
the attractivity property). Using this relatively mild condition,
the authors [22] have generalized the ISS theory as well as,
the related literature on time invariant autonomous dynamical
systems on compact spaces [24] for multistable systems. In
our current work, the results presented in [22] are extended
to provide sufficient conditions for the existence of robust
synchronization for multistable systems.

The rest of the paper is organized as follows. Section II
introduces some preliminaries about decomposable sets and
the notions of robustness with respect to ISS. Our main results
and the family of nonlinear systems being considered can be
found in section III. Numerical simulation examples are given
to illustrate these results in section IV. The paper closes with
some concluding remarks in section V.

II. PRELIMINARIES

For an n-dimensional C2 connected and orientable Rieman-
nian manifold M without a boundary, let the map f(x, d) :
M × Rm → TxM be of class C1, and consider a nonlinear
system of the following form:

ẋ(t) = f(x(t), d(t)) (1)

where the state x ∈ M and d(t) ∈ Rm (the input d(·) is a
locally essentially bounded and measurable signal) for t ≥ 0.
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We denote by X(t, x; d(·)) the uniquely defined solution of
(1) at time t fulfilling X(0, x; d(·)) = x. Together with (1) we
will analyze its unperturbed version:

ẋ(t) = f(x(t), 0). (2)

A set S ⊂ M is invariant for the unperturbed system (2) if
X(t, x; 0) ∈ S for all t ∈ R and for all x ∈ S. For a set
S ⊂ M define the distance to the set |x|S = mina∈S δ(x, a)
from a point x ∈M , where the symbol δ(x1, x2) denotes the
Riemannian distance between x1 and x2 in M , |x| = |x|{0}
for x ∈ M or the usual Euclidean norm of a vector x ∈ Rn.
For a signal d : R → Rm the essential supremum norm is
defined as ‖d‖∞ = ess supt≥0 |d(t)|.

A function α : R+ → R+ is said to belong to class K, i.e.,
α ∈ K, if it is continuous, strictly increasing and α(0) = 0.
Furthermore, α ∈ K∞ if α ∈ K and it is unbounded, i.e.
lims→∞ α(s) =∞.

For any points x, y ∈ M , the α and ω- limit sets for (2)
can be defined as follows:
α(x) := {y | y = limn→−∞X(x, tn) where tn ↘ −∞}
ω(x) := {y | y = limn→∞X(x, tn) where tn ↗∞} .

A. Decomposable sets

Let Λ ⊂M be a compact invariant set for (2).

Definition 1. [24] A decomposition of Λ is a finite and disjoint
family of compact invariant sets Λ1, . . . ,Λk such that

Λ =

k⋃
i=1

Λi.

For an invariant set Λ, its attracting and repulsing subsets
are defined as follows:

W s(Λ) = {x ∈M : |X(t, x, 0)|Λ → 0 as t→ +∞},

Wu(Λ) = {x ∈M : |X(t, x, 0)|Λ → 0 as t→ −∞}.

Define a relation on the family of invariants sets of M
: for W ⊂ M and D ⊂ M , we write W ≺ D if
W s(W) ∩Wu(D) 6= �.

Definition 2. [24] Let Λ1, . . . ,Λk be a decomposition of Λ,
then

1. An r-cycle (r ≥ 2) is an ordered r-tuple of distinct
indices i1, . . . , ir such that Λi1 ≺ . . . ≺ Λir ≺ Λi1 .

2. A 1-cycle is an index i such that [Wu(Λi)∩W s(Λi)]−
Λi 6= �.

3. A filtration ordering is a numbering of the Λi so that
Λi ≺ Λj ⇒ i ≤ j.

As we can conclude from Definition 2, the existence of an r-
cycle with r ≥ 2 is equivalent to the existence of a heteroclinic
cycle for (2) [25]. And the existence of a 1-cycle implies the
existence of a homoclinic cycle for (2) [25].

Let a compact set W ⊂M be containing all α and ω limit
sets of (2).

Definition 3. The set W is called decomposable if it admits a
finite decomposition without cycles, W =

⋃k
i=1Wi, for some

non-empty disjoint compact sets Wi, which form a filtration
ordering of W , as detailed in definitions 1 and 2.

B. Robustness notions

The following robustness notions for systems in (1) have
been introduced in [22].

Definition 4. We say that the system (1) has the practical
asymptotic gain (pAG) property if there exist η ∈ K∞ and a
non-negative real q such that for all x ∈M and all measurable
essentially bounded inputs d(·) the solutions are defined for
all t ≥ 0 and the following holds:

lim sup
t→+∞

|X(t, x; d)|W ≤ η(‖d‖∞) + q. (3)

If q = 0, then we say that the asymptotic gain (AG) property
holds.

Definition 5. We say that the system (1) has the limit property
(LIM) with respect to W if there exists µ ∈ K∞ such that for
all x ∈M and all measurable essentially bounded inputs d(·)
the solutions are defined for all t ≥ 0 and the following holds:

inf
t≥0
|X(t, x; d)|W ≤ µ(‖d‖∞).

Definition 6. We say that the system (1) has the practical
global stability (pGS) property with respect toW if there exist
β ∈ K∞ and q ≥ 0 such that for all x ∈M and all measurable
essentially bounded inputs d(·) the following holds for all t ≥
0:

|X(t, x; d)|W ≤ q + β(max{|x|W , ‖d‖∞}).

It has been shown in [22] that to characterize (3) in terms
of Lyapunov functions the following notion is appropriate:

Definition 7. We say that a C1 function V : M → R is a
practical ISS-Lyapunov function for (1) if there exists K∞
functions α1, α2, α and γ, and scalars q ≥ 0 and c ≥ 0 such
that

α1(|x|W) ≤ V (x) ≤ α2(|x|W + c),

the function V is constant on each Wi and the dissipation
inequality below holds:

DV (x)f(x, d) ≤ −α(|x|W) + γ(|d|) + q.

If the dissipation inequality holds for q = 0, then V is said
to be an ISS-Lyapunov function.

Notice that existence of α2 and c follows (without any
additional assumptions) by standard continuity arguments.

The main result of [22] connecting these robust stability
properties is states below:

Theorem 8. Consider a nonlinear system as in (1) and let a
compact invariant set containing all α and ω limit sets of (2)
W be decomposable (in the sense of Definition 3). Then the
following facts are equivalent.

1. The system admits an ISS Lyapunov function.
2. The system enjoys the AG property.
3. The system admits a practical ISS Lyapunov function.
4. The system enjoys the pAG property.
5. The system enjoys the LIM property and the pGS.

A system (1) for which this list of equivalent properties is
satisfied, is called ISS with respect to the set W [22].
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III. SYNCHRONIZATION OF MULTISTABLE SYSTEMS

In this section we will consider the following family of
nonlinear systems:

ẋi(t) = fi (xi(t), ui(t), di(t)) , i = 1, . . . , N, N > 1, (4)

where the state xi ∈ Mi and Mi is an ni-dimensional
C2 connected and orientable Riemannian manifold without a
boundary, the control ui(t) ∈ Rmi and the external disturbance
di(t) ∈ Rpi (ui(·) and di(·) are locally essentially bounded
and measurable signals) for t ≥ 0, the map fi(xi, ui, di) :
Mi × Rmi × Rpi → TxMi is C1, fi(0, 0, 0) = 0. Denote
the common state vector of (4) as x = [xT1 , . . . , x

T
N ]T ∈

M =
∏N

i=1Mi (M is the corresponding Riemannian manifold
of dimension n =

∑N
i=1 ni where the family (4) behaves),

d = [dT1 , . . . , d
T
N ]T ∈ Rp with p =

∑N
i=1 pi is the total

exogenous input.

Assumption 1. For all i = 1, . . . , N , each system in (4) has
a compact invariant set Wi containing all α and ω limit sets
of ẋi(t) = fi (xi(t), 0, 0), Wi is decomposable in the sense
of Definition 3, and the system enjoys the AG property with
respect to inputs ui and di as in Definition 4.

In this case, from Theorem 8, there exist C1 ISS-Lyapunov
functions Vi : Mi → R with K∞ functions α1i, α2i, α3i, γui
and γdi such that

α1i(|xi|Wi
) ≤ Vi(xi) ≤ α2i(|xi|Wi

+ ci), ci ≥ 0, (5)
DVi(xi)fi(xi, ui, di) ≤ −α3i(|xi|Wi

) + γui(|ui|) + γdi(|di|)

for all i = 1, . . . , N . For a future reference, define also the
invariant set of disconnected and unperturbed (ui = di = 0)
family W =

∏N
i=1Wi ⊂ M (0 ∈ W). Then, by definition,

there exist functions ν1, ν2 ∈ K∞ such that

ν1(|x|W) ≤
N∑
i=1

|xi|Wi
≤ ν2(|x|W) (6)

for all x ∈ M . Since the set W is compact, then there are
functions ν3, ν4 ∈ K∞ and a scalar c0 ≥ 0 such that for all
x ∈M ,

|x| ≤ ν3(|x|W) + c0, |x|W ≤ ν4(|x|). (7)

Thus, in this work we will consider the family (4) under As-
sumption 1, i.e. a family of robustly stable nonlinear systems.
In general, the sets Wi include equilibrium (at the origin, for
instance) and limit cycles of agents in (4). There exist many
works devoted to synchronization and design of consensus
protocols for such a family or oscillatory network [26], [27],
[28]. The goal of this study is to find a condition under which
the existence of a global synchronization/consensus protocol
for d = 0 implies robust synchronization in (4) for a bounded
d 6= 0.

Let a C1 function y(x) : M → Rq , y(0) = 0 be a
synchronization measure for (4). We say that the family (4) is
synchronized (or reached the consensus) if y(x(t)) ≡ 0 for all
t ≥ 0 on the solutions of the network under properly designed
control actions

ui(t) = ϕi[y(x(t))] (8)

(ϕi : Rq → Rmi is a C1 function, ϕi(0) = 0) for d(t) ≡ 0,
t ≥ 0. In this case the set A = {x ∈ W : y(x) = 0} contains
the synchronous solutions of the unperturbed family in (4)
and the problem of synchronization of “natural” trajectories
is considered since A ⊂ W . In fact, due to the condition
ϕi(0) = 0 the convergence of y (synchronization/consensus)
implies that the solutions of the interconnection belong to W ,
the conditions of convergence of the synchronizing/consensus
output y can be found in [26], [27], [28]. Therefore, it is
assumed that the controls ϕi(y) ensure the network global
synchronization, while decomposability in general follows
from Assumption 1. We are going to show that in the setup
as above, by selecting the shapes of ϕi, it is possible to
guarantee robust synchronization of (4) for any measurable
and essentially bounded input d.

To this end, by continuity arguments there exist functions
η1, η2, µi ∈ K∞ with a scalar η0 ≥ 0 such that for all x ∈M :

|y(x)| ≤ η0 + η1(|x|W), |y(x)| ≤ η2(|x|), (9)
|ϕi(y)| ≤ µi(|y|)

(note that the first two inequalities are related through (7)).
Then the following intermediate result can be established
under Assumption 1 for (4), (8).

In this paper proofs are omitted due to space limitation.

Proposition 9. Let Assumption 1 be satisfied for (4). Then
there exist ϕi, i = 1, . . . , N in (8) such that the interconnec-
tion (4), (8) has pGS property with respect to the set W .

To proof the above proposition, we need the following
restriction to satisfy:

µi(s) ≤ γ−1
ui

[
N−1α4 ◦ η−1

1 (0.5s)
]
. (10)

Assumption 2. For µi satisfying (10) and all ϕi : R+ → R+

that satisfy
|ϕi(y)| ≤ µi (|y|) ,∀y ∈ Rp,

the compact set A contains all α and ω limit sets of (4), (8)
for d = 0, and it is decomposable.

Note that by definition of the set A, |x(t)|W ≤ |x(t)|A ≤
|x(t)|W + z for a scalar z ≥ 0 for all x ∈ M , then the pGS
property with respect to the set A has also been proven.

Therefore, in the setup used in this work the boundedness of
trajectories (boundedness of |x(t)|W implies the same property
for |x(t)| according to (7)) follows by a proper selection of
the interconnection gain in (8), i.e. by decreasing the control
gain a certain robustness of (4), (8) is inherited after individual
systems as it is stated in Assumption 1.

Theorem 10. Let assumptions 1 and 2 be satisfied for (4),
(8). Then there exist ϕi, i = 1, . . . , N in (8) such that the
interconnection (4), (8) has AG property with respect to the
set A.

Roughly speaking this qualitative result says that if the
synchronized output y is related with |x|W as in (9) and each
system in the network is robustly stable as in Assumption 1,
then the system can be robustly synchronized by a sufficiently
small feedback proportional to y.
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IV. EXAMPLES AND SIMULATIONS

A. Application to nonlinear pendulums with friction

This example is taken from [27]. Consider a network of
nonlinear non-identical pendulums for i = 1, . . . , N , N > 1:

ẋ1i = x2i,
ẋ2i = −Ω2

i sin(x1i)− κx2i + di,
(11)

where the state xi = [x1i, x2i] takes values on the cylinder
Mi := S × R, the exogeneous disturbance di(t) ∈ R, κ is a
constant parameter and Ω2

i is the angular frequency of indi-
vidual pendulums.The unperturbed system has a Hamiltonian
H(xi) = 0.5x2

2i + Ω2
i (1 − cos(x1i)) and Ḣ = x2idi − κx2

2i.
Each unperturbed system has two equilibrium [0, 0] and [π, 0]
(the former is attractive and the later one is a saddle-point),
thus Wi = {[0, 0] ∪ [π, 0]} is a compact set and containing
all α- and ω-limit sets of (11) for di = 0. In addition, it is
straightforward to check thatWi is decomposable in the sense
of Definition 3.

Lemma 11. [29] For each i = 1, . . . , N , the systems in (11)
is ISS with respect to the set Wi.

Consequently, Assumption 1 is satisfied for (11) (since
admitting an ISS Lyapunov function is equivalent to enjoying
AG property according to Theorem 8) and we may select the
synchronization measure y for the network. Since, in [27],
authors have considered the first coordinate as synchronization
measure, we are going to follow the same idea. The synchro-
nization measure in this work is:

y = A sin(x1),

where x1 = [x11, . . . , x1N ]T and A ∈ RN×N is a Metzler
matrix as in the first example.

Since the global boundedness of trajectories of (11) for
bounded inputs is proven in Lemma 11, then a local analysis
around equilibria is sufficient to show the synchronization
measure convergence. It is straightforward to check that lin-
earized around equilibria dynamics has y = 0 as a stable and
attractive manifold. By this, the convergence of y is guaranteed
locally. Then by taking,

ϕi(y) = βyi, β > 0,

we may suppose that Assumption 2 is satisfied for some
sufficiently small β. The results of simulations confirm this
conclusion which can be seen in Fig. 1 where a) is the
disturbance free case and b) represents the simulation result
with disturbances. Zoomed view of case-b can be seen in
Fig. 2. The simulation parameters are N = 5, Ω2

i = 0.02i,
β = 0.1 and the disturbance inputs are [φ1, . . . , φ5]

T
=

[0.1 sin(t),−0.15 sin(t),−0.2 sin(t), 0.15 sin(t), 0.2 sin(t)]
T

and

A =


−3 1 1 0 1
1 −3 1 1 0
1 1 −3 1 0
0 1 1 −3 1
1 0 0 1 −2

 .
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Figure 1. The result of simulation for (11)
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Figure 2. Zoomed view of case b) of Fig. 1.

V. CONCLUSIONS

Based on an extension of the ISS framework to systems
with multiple invariant sets and evolving on (non-compact) a
manifold, sufficient conditions for robust synchronization were
derived. The condition imposed on the controller (ϕi(0) = 0)
made sure that the convergence of the synchronization measure
implies that the interconnection (system-controller) belongs to
the decomposable set W . Practical global stability analysis
of the interconnection was done with respect to W . The
asymptotic gain property of the interconnection with respect to
the set of synchronous solutions A (A ⊂ W) was also proved.

Numerical simulations proved the effectiveness of our
method to network of both identical and nonidentical nodes.
However, our results are applicable only to systems that allow
decomposition without cycles.
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