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Estimation du temps moyen de résidence dans des cellules
entourées de membranes semi-perméables

par une méthode de Monte Carlo
Résumé : The rapport vise à valider un algorithme de Monte Carlo pour simuler le comportement
d’une particule qui diffuse dans un milieu avec des barrières perméables vues comme des approxi-
mations de problèmes de couche mince. En suivant une approche d’homogénéisation pour résoudre
un problème d’imagerie cérébrale en utilisant la technique dite de diffusion MRI, nous estimons le
temps moyen passé par la particule dans une cellule dans un milieu périodique uni-dimensionel, et
nous comparons la valeur trouvée avec celle calculée par résolution d’un problème de valeur propre.
Les deux valeurs sont proches, sauf lorsque la force de la membrane est trop forte.

Mots-clés : imagerie cérébrale, technique diffusion MRI, test numérique de performance, prob-
lème de couche mince, estimation de la première valeur propre, méthode de Monte Carlo, temps de
résidence moyen



Computing the mean-residence time by a Monte Carlo method 3

1 Introduction
Interface conditions are ubiquitous in diffusion models, such as the Fick or the Darcy law. Such
interfaces represents discontinuities of the diffusion coefficients, or the presence of semi-permeable
or permeable membranes. While the Monte Carlo simulation of diffusion in media with permeable
membranes have recently attracted a lot of interest (See the references in [16]), this is not the case
for semi-permeable membranes for which fewer work exist despite its practical applications [1, 5, 6].
Motivated by a brain imaging problem, we propose a benchmark test which we apply to the simulation
technique proposed in [12].
This reports focuses on a problem arising the diffusion Magnetic Resonance Imaging (dMRI), in
which the mean square displacement of water submitted to a diffusive behavior is recorded through
an image of contrast produced by the magnetization of water’s proton subject to an external signal
(See e.g [3, 9, 11]). The diffusive behavior of the water is not free as the water particles interact
with membranes, tissues, fibers, ... The details of the macroscopic architecture of the fiber may be
found by solving an inverse problem involving the resolution of the Bloch-Torrey equation for the
magnetization. This equation involves a diffusion coefficient to be found and that depends on the
media, as well as source term that depends on the magnetic signal.
Monte Carlo methods arise then naturally as a way to solve such a problem by simulating the dis-
placement of a free particles in the media. Yet the dynamics of the particles should be precisely taken
into account for a right estimation. In free space, the particles moves according to a Brownian motion,
which means that their displacement follow a Gaussian distribution for small time steps. However,
this is no longer true in presence of interfaces which should be properly taken into account.
Here, we consider the problem of water reaching the membrane separating inter and extra-cellular
compartment [5, 8]. Being a thin layer, the model for this membrane can be simplified as a semi-
permeable barrier. In [12], we have proposed a way to simulate exactly the particle close to this
interface with a given time step.
This report aims at testing and validating this Monte Carlo method by estimating the mean-residence
time for a periodic one-dimensional media. This macroscropic quantity governs the rate of conver-
gence toward the equilibrium. It is then of fundamental importance to understand the large-scale
behavior of the water, and to simplify the Bloch-Torrey by homogenization techniques, giving rise to
the Kärger equations [9], and ordinary equations of similar kind relying on change of scale techniques
[2, 21, 22].
The dynamic of the particle being only locally influenced by the interface, there is no restriction to
consider only the simplest possible model to perform validation.
In our case, the mean residence time is related to the first non-negative eigenvalue of the associated
PDE, which could be estimated numerically by a root finding procedure. Also, the mean residence
time is estimated on the tail of the probability of presence of the particles in the intra-cellular com-
partment.
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4 A. Lejay

2 The interface problems
Following the Fick law, the diffusion of water is modeled using a Laplace operator with diffusivity D.
The space is divided by the intra-cellular compartment and the extra-cellular compartment, which are
separated by membranes. The difficulties lies in the modeling and simulating the behavior of water
particles at the interface. We present first a one-dimensional model for the water displacement and
we study an approximation of this model.
The residence time characterizes the time spend by the water in the cell [8]. We will show that it is
related to a first eigenvalue problem.

2.1 The residence time

Let us consider a model where the concentration is periodic over some interval [0, L] and is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
∂tC(t, x) = ∇(D(x)∇C(t, x)),
C(t, L) = C(t, 0) (periodic boundary condition),
C(t, z) satisfies some interface condition at some given points z ∈ ℐ,
C(0, x) is given

(1)

The diffusivity D may be heterogeneous. Let ℒ = −∇(D(x)∇ · ) (note the minus sign for convenience)
be the corresponding operator with a domain Dom(ℒ) such that the solution to (1) belongs to the
domain. In our cases, there are two interface conditions that we consider. For a function f in the
domain Dom(ℒ) of ℒ and a point z ∈ ℐ at which there is an interface, either

D(z+) = D(z−), ∇ f (z+) = ∇ f (z−) and κ( f (z+) − f (z−)) = D(z)∇ f (z) (?)

for some κ > 0, or

f (z+) = f (z−) and D(z+)∇ f (z+) = D(z−)∇ f (z−). (??)

It is easily checked that with these interfaces conditions, there exists a choice of Dom(ℒ) such that
(ℒ,Dom(ℒ)) is a self-adjoint operator. Besides, it has a compact resolvent. Hence, there exists a
family λk > 0 of eigenvalues for which there exist some functions φk not identically vanishing such
that ℒφk = −λkφk. Using for φk a normalization such that

∫︀ L

0
|φk(x)|2 dx = 1, the set {φk}k∈N form an

orthonormal basis of the space L2
per([0, L]) of square-integrable periodic functions over [0, L].

The concentration C(t, x) solution to (1) may be expressed as

C(t, x) =

∫︁
[0,L]

p(t, x, y)C(0, y) dy,

where for each y, p(t, x, y) is solution to (1) with p(t, x, y) = δy(x). This function is the fundamental
solution. It is well known that it may be expressed as

p(t, x, y) =

+∞∑︁
k=0

e−λktφk(x)φk(y). (2)

Inria



Computing the mean-residence time by a Monte Carlo method 5

By convention, we assume that 0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ · · · .
Remark that λ0 = 0 and the corresponding eigenvalues are the constant functions. Using the orthogo-
nality of the eigenvalues, we then obtain that

1
L

∫︁
[0,L]

p(t, x, y) dy = 1, ∀t > 0.

From the conservation of mass, if C(0, x) ≥ 0, then C(t, x) ≥ 0. One could see p(t, x, y) as the density
at time t > 0 of a large number of particles with total mass equal to 1 initially released at position x.
Now, let us consider that the “periodic cell” [0, L] is decomposed as the intra-cellular part Ωi and the
extra-cellular part Ωe. At time 1, we inject some particles with a total mass equal to 1 at the point x.
At time t, the mass of the particles in Ωi and Ωe are given by

ui(t, x) =

∫︁
Ωi

p(t, x, y) dy and ue(t, x) =

∫︁
Ωe

p(t, x, y) dy.

We rewrite (2) as

p(t, x, y) =
1
L

+ e−λ1tφ1(x)φ1(y) + o(e−λ1t),

where φ1 is the eigenfunction associated to λ1, with
∫︀

[0,L]
φ1(x)2 dx = 1.

If vi = |Ωi|/L (resp. ve = |Ωe|/L) the fraction of the volume of the interior (resp. exterior) part,

ui(t, x) = vi + e−λ1tφ1(x)
∫︁

Ωi
φ1(y) dy + o(e−λ1t), (3)

ue(t, x) = ve + e−λ1tφ1(x)
∫︁

Ωi
φ1(y) dy + o(e−λ1t). (4)

Note that we have
ui(t, x) + ue(t, x) = 1 and vi + ve = 1.

This way,

ui(t, x) − vi

ve
ue(t, x) = 1 −

(︃
1 +

vi

ve

)︃
ue(t, x)

= 1 −
(︃
1 +

vi

ve

)︃
(ve + e−λ1tc(x) + o(e−λ1t)) = −

(︃
1 +

vi

ve

)︃
c(x)e−λ1t + o(e−λ1t) (5)

with c(x) = φ1(x)
∫︀

Ωe φ1(y) dy > 0.
The intra-cellular residence time is given by (See [2, 10])

1
τ

= lim
t→∞

∂ue(t, x)
∂t

ui(t, x) − vi

ve
ue(t, x)

. (6)
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6 A. Lejay

Hence, for t large enough,
∂ue(t, x)
∂t

≈ −λ1e−λ1tc(x).

It follows from (5) and (6) that

1
τ
≈ λ1

1 +
vi

ve

= veλ1. (7)

2.2 A semi-permeable membrane

The media is assumed to be one-dimensional and periodic. Hence, we consider an interval [0, L]
which is decomposed into an intra-cellular domain [0, L1] and an extra-cellular domain [L1, L] with
L1 ∈ (0, L).
Our model implies a diffusivity coefficient D0 which is equal in the intra- and the extra-cellular com-
partments, and a parameter κ relating the jump of the concentration to the flux at the interfaces.
The density of water is then model by the following equation with two interfaces at 0 (this point is
identified to L due to the periodicity) and at L1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C(t, x)
∂t

= ∇(D0∇C(t, x)), x ∈ [0, L],

κ(C(t, 0+) −C(t, L−)) = D0∇C(t, 0),
D0∇C(t, 0) = D0∇C(t, L), (continuity of the flux at the endpoints),
κ(C(t, L1+) −C(t, L1−)) = D0∇C(t, L1),
D0∇C(t, L1+) = D0∇C(t, L1−), (continuity of the flux at L1).

(8)

Here, an interface has been considered at 0 in order to simplify the computations.
We are interested in the eigenvalues of (ℒ,Dom(ℒ)) with ℒ = −∇(D0∇ · ). For this, we have to find
values of λ > 0 such that the following system has a solution which is not identically equal to zero:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇(D0∇C(t, x)) = −λφ(x), x ∈ [0, L],
κ(φ(0+) − φ(L−)) = D0∇φ(0),
D0∇φ(0) = D0∇φ(L),
κ(φ(L1+) − φ(L1−)) = D0∇φ(L1),
D0∇φ(L1+) = D0∇φ(L1−).

Let us already note that λ = 0 is an eigenvalue. The corresponding eigenfunctions are constants on
[0, L]. Introducing

µ =

√︂
λ

D0
,

we seek φ with the form

φ(x) =

⎧⎪⎪⎨⎪⎪⎩α cos(µx) + β sin(µx), x ∈ [0, L1],
γ cos(µx) + δ sin(µx), x ∈ [L1, L].

Inria



Computing the mean-residence time by a Monte Carlo method 7

L3L3 δδ L1

D0D0 D1D1 D0

Periodic b.c

intra-cellular compartment

Figure 1: The domain using thin layers to model membranes.

The interface condition at L yields:[︃
κ −D0µ
0 1

]︃ [︃
α
β

]︃
=

[︃
κ cos(µL) κ sin(µL)
− sin(µL) cos(µL)

]︃ [︃
γ
δ

]︃
,

which we may rewrite as [︃
cos(µL) −κ−1D0µ cos(µL) − sin(µL)
sin(µL) −κ−1D0µ sin(µL) + cos(µL)

]︃ [︃
α
β

]︃
=

[︃
γ
δ

]︃
. (9)

The interface condition at L1 yields[︃
κ cos(µL1) + D0µ sin(µL1) κ sin(µL1) − D0µ cos(µL1)

− sin(µL1) cos(µL1)

]︃ [︃
γ
δ

]︃
=

[︃
κ cos(µL1) κ sin(µL1)
− sin(µL1) cos(µL1)

]︃ [︃
α
β

]︃
. (10)

Unless µ = 0, the involved matrices are all invertible. Combining (9) and (10) when λ , 0, we then
obtain that there exists a matrix A(λ) such that

(A(λ) − Id)
[︃
α
β

]︃
= 0. (11)

The function φwill be an eigenfunction if there exists a non-zero solution to (11) and then if det(A(λ)−
Id) = 0. The problem is easily studied through a numerical procedure.

2.3 The thin layers approximation

The semi-permeable model, in which condition (?) is used, is derived as an approximation of the thin
layer model which involved two close permeable membranes modelled by (??) ([24, Chap. 13]).
Hence, we will also solve the first eigenvalue problem with this condition, to show that both models,
for our range of parameters, show the same rate of convergence toward equilibrium.
Between the intra- and extra-cellular compartments, we consider a layer with a small width δ and a
diffusivity D1 such that D1/δ = κ. The concentration is assumed to be continuous over the domain as
well as the flux.
Here, we consider that a intra-cellular compartment of length L1 lies in the middle of [0, L + δ] and
we then use the decomposition of Figure 1.

RR n° 8709



8 A. Lejay

Here, we assume that δ ≪ L1 and δ ≪ L2 and we set

L = L2 + L1 + 2δ, L3 =
L2

2
,

D(x) =

⎧⎪⎪⎨⎪⎪⎩D1 if x ∈ [L3, L3 + δ] ∪ [L3 + L1 + δ, L3 + L1 + 2δ],
D0 otherwise.

The concentration C(t, x) of the water is then equal to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C(t, x)
∂t

= ∇(D(x)∇C(t, x)), x ∈ [0, L],

D0∇C(t, z) = D1∇C(t, z) for z = L3, L3 + δ + L1,

D1∇C(t, z) = D0∇C(t, z) for z = L3 + δ, L3 + 2δ + L1,

C(t, z) = C(t, z) for z = L3, L3 + δ, L3 + L1 + δ, L3 + L1 + 2δ,
C(t, L) = C(t, 0) (periodic boundary condition).

(12)

Let us seek an eigenvalue λ with an eigenfunction φ in the form

φ(x) = α(x) cos(
√︀
λ/D(x)x) + β(x) cos(

√︀
λ/D(x)x),

where α(x) and β(x) are constant on each interval on which D(x) is constant.
The conditions at an interface at point z yield

B(z−)
[︃
α(z−)
β(z−)

]︃
= B(z+)

[︃
α(z+)
β(z+)

]︃
with

B(x) =

[︃
cos(
√
λ/D(x)x) sin(

√
λ/D(x))x

−√λD(x) sin(
√
λ/D(x)x)

√
λD(x) cos(

√
λ/D(x)x)

]︃
.

Let us note that
det(B(x)) =

√︀
λD(x),

so that B(x) is invertible unless λ = 0.
With the domain described in Figure 1,

[︃
α(x)
β(x)

]︃
=

[︃
αi

βi

]︃
with i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if x ∈ [0, L3],
2 if x ∈ [L3, L3 + δ],
3 if x ∈ [L3 + δ, L3 + δ + L1],
4 if x ∈ [L3 + δ + L1, L3 + 2δ + L1],
5 if x ∈ [L3 + 2δ + L1, L].

Hence, [︃
α1

β1

]︃
= B(L3−)−1B(L3+)

[︃
α2

β2

]︃
Inria



Computing the mean-residence time by a Monte Carlo method 9

and then[︃
α1

β1

]︃
= B(L3−)−1B(L3+)B((L3 + δ)−)−1B((L3 + δ)+)

× B((L3 + δ + L1)−)−1B((L3 + δ + L1)+)

B((L3 + 2δ + L1)−)−1B((L3 + 2δ + L1)+)
[︃
α5

β5

]︃
.

On the other hand, the periodic boundary condition yields[︃
1 0
0
√
λ/D0

]︃ [︃
α1

β1

]︃
= B(L)

[︃
α5

β5

]︃
or equivalently [︃

α1

β1

]︃
=

[︃
cos(
√
λ/D0L) sin(

√
λ/D0L)

− sin(
√
λ/D0L) cos(

√
λ/D0L)

]︃ [︃
α5

β5

]︃
which could be written [︃

α5

β5

]︃
=

[︃
cos(
√
λ/D0L) − sin(

√
λ/D0L)

sin(
√
λ/D0L) cos(

√
λ/D0L)

]︃ [︃
α1

β1

]︃
.

Combining this systems, we may write as previously that for a matrix A′(λ), an eigenvalue exists
when

(A′(λ) − Id)
[︃
α1

β1

]︃
= 0 (13)

has a non-zero solution. Hence, we are interested in solving det(A′(λ) − Id) = 0.

3 Monte Carlo estimation of the smallest non-negative eigenvalue
Thanks to (3), we have related the smallest non-negative eigenvalue to the exponential rate of conver-
gence of ui(t, x) toward vi.

3.1 Estimation of the first eigenvalue from the proportion of particles in the intra-cellular
compartment

If p(t, x, y) is the density transition function of a stochastic process Xt, then ui(t, x) is the probability
that Xt ∈ Ωi when X0 = x. We select a starting point x and drop any reference to it.
Provided that one knows how to simulate the process X, it is then possible to simulate many inde-
pendent realizations X(1), . . . , X(N) of the path of X and counting for a given set of times t1, . . . , tm the
empirical proportions

vN(t j) =
1
N

N∑︁
i=1

1X(i)
t j
∈Ωi
.

RR n° 8709



10 A. Lejay

From the law of large numbers, it holds that

vN(t j) ≈N→∞ ui(t j, x0).

Hence, vN(t) converges to vi, at some exponential rate λ as t converges to infinity.
With (3),

vN(t j) = vi + ce−λ1t j + εa(t j) + εMC(t j,N), (14)

where εa(t) = o(e−λ1t) contains the higher order terms in the development of u(t, x), and εMC(t,N) is
the Monte Carlo error in the approximation of ui(t, x). For large N, the random variable εMC(t,N) is
approximately Gaussian with

Var εMC(t,N) ≈ ui(t, x)(1 − ui(t, x))
N

.

Hence, it is possible to estimate λ1 from the vN(t j), by noting that however
• For t small enough, εa(t j) is not negligible in front of ce−λ1t, so one should take t j large enough.
• For t large, ce−λ1t is negligible in front of εMC(t j,N), which means that the Monte Carlo error

dominates the estimation.
Hence, the difficulty consists in finding two times T− and T+ such that the term ce−λ1t dominates εa(t)
and εMC(t).
Hence, to estimate λ1, (14) is rewritten after expanding the logarithm as

log |vN(t j) − vi| = log |c| − λ1t j + |c|−1eλ1t(εa(t j) + εMC(t j,N)), t j ∈ [T−,T+]. (15)

We stop our simulation algorithm at a time TMC when |vN(TMC) − vi| ≤ 3
√

vi(1 − vi)/N. However, a
time T+ might be smaller that TMC.
We explain our procedure in the next Section.

3.2 Statistical estimation of the smallest non-negative eigenvalue

Our estimator λMC is constructed by performing a least square procedure on (15). This means that we
compute (αMC, λMC) as the values for which the residual sum of squares

RSS =
∑︁

j s.t. t j∈[T−,T+]

(log |vN(t j) − vi| − α + λt j)2

is minimal. This is equivalent to solve a linear regression problem by assuming that the terms Z j =

|c|−1eλ1t(εa(t j) + εMC(t j,N)) follow a Gaussian distribution each with the same variance σ and mean 0.
Solving a least square procedure is routine, but the choice of T− and T+ is crucial and should be done
to balance the effect of the Monte Carlo error and the weight of the second positive eigenvalue which
is unknown. Along with the choice of T− and T+ comes the number of times t j used for the estimation.
In previous works, we have set up procedures to select T− and T+.

Inria



Computing the mean-residence time by a Monte Carlo method 11

In this report, we propose a new procedure which is based on the Akaike Information Criterion (AIC),
a model selection criteria which balance the likelihood and the number of parameters (See e.g. [23,
Example 13.6, p. 179].
If log |vN(t j) − vi| ∼ 𝒩(α + λt j, σ), then σ is estimated by σMC = RSS /n, and the maximized log-
likelihood when n points are used is

log Llh(αMC, λMC, σMC) = −n
2

log(2πσ2
MC) − n

2
.

and is the AIC is
AIC = n log(2πσ2

MC) + n + 2p,

with p = 2, the number of parameters to estimate (here, α and λ). We use the customary simplified
form

AIC = n log(σ2
MC) + 2p = n log(RSS) − n log n + 4.

We randomly sample values of T− and T+, which impact the number n of samples, and we choose the
regression coefficients over the window [T−,T+] which provides the lowest AIC coefficients.
In Figure 2, we represent the evolution of vN(t j) with the time.
In particular, T0 should be large enough so that the term in exp(−λt) dominates the effect of all the
other eigenvalues.
On the other hand, T1 should not be too large in order to keep a good accuracy because of the statistical
fluctuations of vN around vi when the steady state is reached. Let us fix the ideas that t is large enough
so that the distribution of Xt is uniform over the media. Then 1{Xt∈Ωi} is a Bernoulli random variable,
with variance vi(1 − vi). From the Central Limit Theorem, for a fixed t, vN(t) may be approximated
by vi + Zt, where Zt is a normal random variable with variance vi(1 − vi)/N. This means that the
fluctuations of vN(t) around vi have an order of magnitude of log(

√
vi(1 − vi)/N), which is roughly

equal to − log(N)/2 for N large enough. Such fluctuations could be seen in Figure 2. On the other
hand, we estimate the coefficient λ in a function of type vi + ce−λt. It is then clear that an accurate
estimation of λ from the vN(t) could be performed only if e−λt ≫ Zt and then if t ≪ log(N)/2λ.

4 Numerical comparisons of the smallest eigenvalues
We now compare the eigenvalues of the two models. For this, we use a realistic range of parameters
given in Table 1.

Value From To

κ =
D1

δ
10−6 𝜇m/𝜇s 10−4 𝜇m/𝜇s

D0 2 × 10−3 𝜇m2/𝜇s 3 × 10−3 𝜇m2/𝜇s
L1 5 𝜇m 20 𝜇m
L2 ≈ L1/10
T 20,000 𝜇s 50,000 𝜇s

Table 1: A realistic range of parameters.
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Figure 2: Evolution of the concentration in the intra-cellular domain and estimation of the smallest
non-negative eigenvalue.

Inria



Computing the mean-residence time by a Monte Carlo method 13

10−10 10−8 10−6 10−4 10−2

−10

−5

0

λ

lo
g
|d

et
(A

(λ
)−

Id
)|

10−10 10−8 10−6 10−4 10−2

0

2

4

de
t(

A
(λ

)−
Id

)

λ

κ = 10−2, D0 = 2 × 10−3, δ = 10−2, Lintra = 10, Lextra = 2

10−10 10−8 10−6 10−4 10−2

0

10

λ

lo
g
|d

et
(A

(λ
)−

Id
)|

10−10 10−8 10−6 10−4 10−2

0

107

de
t(

A
(λ

)−
Id

)

λ

κ = 10−6, D0 = 2 × 10−3, δ = 10−2, Lintra = 10, Lextra = 2

Figure 3: Evolution of det(A(λ) − Id) in logarithmic (left) and natural scale (right) for Lextra = 2 for
the semi-permeable membrane.

The matrices A(λ) and A′(λ) appearing in (11) and (13) are easily computed from the numerical point
of view (See Figures 3 and 4). The peaks of the curves of log | det(A(λ) − Id)| give hints about the
values of λ at which A(λ) − Id is not invertible.
We see that for δ = 10−2 or δ = 10−3, the curves are close and give then similar eigenvalues. For
δ = 10−1, some difference may exist.
Hence, for estimating the first eigenvalue, which is related to the residence time, using the model
with thin layers given by (12) instead of the model (8) seems to be an acceptable choice when the
parameters are in the range given by Table 1.
We also note (See Figures 3 and 4) that the distance between the two smallest non-zero eigenvalues
seems to increase when κ decrease.

5 Monte Carlo simulations
We now perform some tests on Monte Carlo simulations in order to estimate the first non-zero eigen-
value, which is related to the residence time through (7).
For this, we use 100,000 particles. We estimate the first eigenvalue λMC with the procedure described
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Figure 5: Deterministic and probabilistic estimation of the first eigenvalue for several values of κ.

in Section 3.2, which we compare with λdet which is obtained by a root-finding procedure as shown
in Section 4.
The width of the layer is δ = 10−2. The time step of the scheme for moving the particles is δt = 10−2.
The estimator tends to overestimate the value of the smallest non-zero eigenvalue when κ decreases,
and then to underestimate the value of the residence time.
Using the method presented in [16], we could have simulated the process in the media with the thin
layer. It led to similar numerical results. Yet the width of the layer implies to take a very small time
step. This leads to a much more higher computational cost.

6 Change of scale and reduction to the snapping out Brownian motion
To estimate the rate of convergence toward the steady-state regime, we simulate the process X gen-
erated by −ℒ = ∇(D0∇ · ) with the semi-permeable interface condition prescribed by (8) at 0. The
density transition function of X is solution to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂t p(t, x, y) = D0∂
2
xx p(t, x, y) for x ∈ [0, L] ∖ {x1, x2},

κ(p(t, xi+, y) − p(t, xi−, y)) = D0∂x p(t, xi, y), i = 1, 2,
p(t, 0, y) = p(t, L, y) (periodic conditions),

for any y, where ℐ = {x1, x2} are the positions of the semi-permeable membranes.
Actually, the simulation will be done by a change of scale technique. For a position variable z, set
z′ = z

√
2D0. Set

q(t, x, y) = p
(︁
t, x

√︀
2D0, y

√︀
2D0

)︁ √︀
2D0,

so that
∫︀ Ľ

0
q(t, x, y) dy =

∫︀ L

0
p(t, x, y) dy = 1 with Ľ = L/

√
2D0. Then

∂tq(t, x, y) = ∂t p
(︁
t, x

√︀
2D0, y

√︀
2D0

)︁ √︀
2D0 with ∂2

xxq(t, x, y) = (2D0)3/2∂2
xx p(t, x

√︀
2D0, y

√︀
2D0).
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κ D0 δ L1 L2 λMC λsnob
det λthin

det

1 × 10−2 2 × 10−3 10−2 10 2 5.20 × 10−4 5.22 × 10−4 5.22 × 10−4

7.5 × 10−3 2 × 10−3 10−2 10 2 4.65 × 10−4 5.14 × 10−4 5.14 × 10−4

5 × 10−3 2 × 10−3 10−2 10 2 5.24 × 10−4 5.30 × 10−4 5.28 × 10−4

2.5 × 10−3 2 × 10−3 10−2 10 2 4.62 × 10−4 4.62 × 10−4 4.72 × 10−4

1 × 10−3 2 × 10−3 10−2 10 2 3.57 × 10−4 3.89 × 10−4 3.89 × 10−4

7.5 × 10−4 2 × 10−3 10−2 10 2 3.20 × 10−4 3.63 × 10−4 3.64 × 10−4

5 × 10−4 2 × 10−3 10−2 10 2 2.52 × 10−4 3.28 × 10−4 3.27 × 10−4

2.5 × 10−4 2 × 10−3 10−2 10 2 1.51 × 10−4 2.30 × 10−4 2.29 × 10−4

1 × 10−4 2 × 10−3 10−2 10 2 8.54 × 10−5 1.08 × 10−4 1.08 × 10−4

7.5 × 10−5 2 × 10−3 10−2 10 2 7.04 × 10−5 8.33 × 10−5 8.31 × 10−5

5 × 10−5 2 × 10−3 10−2 10 2 5.88 × 10−5 5.70 × 10−5 5.69 × 10−5

1 × 10−5 2 × 10−3 10−2 10 2 3.53 × 10−5 1.18 × 10−5 1.19 × 10−5

1 × 10−6 2 × 10−3 10−2 10 2 3.04 × 10−5 1.20 × 10−6 1.20 × 10−6

1 × 10−2 2 × 10−3 10−2 10 1 5.92 × 10−4 6.11 × 10−4 6.12 × 10−4

7.5 × 10−3 2 × 10−3 10−2 10 1 6.45 × 10−4 6.00 × 10−4 6.00 × 10−4

5 × 10−3 2 × 10−3 10−2 10 1 6.04 × 10−4 5.77 × 10−4 5.77 × 10−4

2.5 × 10−3 2 × 10−3 10−2 10 1 6.03 × 10−4 5.21 × 10−4 5.21 × 10−4

1 × 10−3 2 × 10−3 10−2 10 1 4.84 × 10−4 4.18 × 10−4 4.18 × 10−4

7.5 × 10−4 2 × 10−3 10−2 10 1 5.25 × 10−4 3.85 × 10−4 3.85 × 10−4

5 × 10−4 2 × 10−3 10−2 10 1 4.12 × 10−4 3.41 × 10−4 3.40 × 10−4

2.5 × 10−4 2 × 10−3 10−2 10 1 2.76 × 10−4 2.81 × 10−4 2.81 × 10−4

1 × 10−4 2 × 10−3 10−2 10 1 1.53 × 10−4 1.97 × 10−4 1.97 × 10−4

7.5 × 10−5 2 × 10−3 10−2 10 1 1.37 × 10−4 1.52 × 10−4 1.52 × 10−4

5 × 10−5 2 × 10−3 10−2 10 1 1.08 × 10−4 1.05 × 10−4 1.04 × 10−4

1 × 10−5 2 × 10−3 10−2 10 1 5.97 × 10−5 2.16 × 10−5 2.17 × 10−5

1 × 10−6 2 × 10−3 10−2 10 1 5.75 × 10−5 2.18 × 10−6 2.19 × 10−6

Table 2: Monte Carlo estimation of the first non-zero eigenvalue using the SNOB. The units are the
same as the one of Table 1.
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Computing the mean-residence time by a Monte Carlo method 17

From this,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∂tq(t, x′, y′) =

1
2
∂2

x′x′q(t, x′, y′) for x′ ∈ [0, L′] ∖ {x′1, x′2},
κ√
2D0

(q(t, x′i+, y
′) − q(t, x′i−, y′)) = ∂x′q(t, x′i , y

′), i = 1, 2,

q(t, 0, y′) = q(t, L′, y′) (periodic conditions).

Finally, if Xt = Yt
√

2D0, then for z ∈ [0, L],∫︁ z

0
p(t, x, y) dy = Px[Xt ≤ z] = Px/

√
2D0

[︃
Yt ≤ z√

2D0

]︃
.

It follows that q is the density transition function of the process Y .
Hence, given Xt = x and a time step ∆t, one may simulate Xt+∆t by simulation Yt+∆t

√
2D0 with

Yt = x/
√

2D0.
Locally around each interface and using a translation for placing the interface at 0, this process is a
snapping out Brownian motion (SNOB) of parameter 2κ/

√
2D0 described in [12]. This is justified by

the fact that the q has Gaussian bounds and then q(t, x, y) decreases at exponential rate with |y − x|. It
means that for a time step ∆t small enough, we could neglect the probability that supt∈[0,∆t |Yt−x| ≥ 4∆t
(See e.g. [16] for a discussion).

6.1 The problem of small values of κ

However, let us note that for κ = 10−6 and D0 = 2 × 10−3, λ ≈ 1.6 × 10−5 while for κ = 1 × 10−4 and
D0 = 2 × 10−3, λ ≈ 1.5 × 10−3.
For a time step δt between 1 × 10−4 and 100, the mean value of the local time Lt of the Brownian
motion (hence of Y) ranges from 0.38 to 6.26. When it hits the interface at a time t between 0 and
∆t, then the probability it crosses the interface is (1 − exp(−2λLt))/2. We then see that for our range
of values of κ and D0, we see that the probability to cross the interface is approximately equal to λLt

and is then very small. Again, without a variance reduction technique, our method is not able to catch
effectively the value of the first eigenvalue.

7 Conclusion
In this report, we have studied the use of the snapping out Brownian motion [12] to simulate the
stochastic process that simulate a diffusive particle in a medium with semi-permeable membranes.
In view of solving a dMRI problem, we have computed the mean residence time in a cell, a macro-
scopic parameter, using a Monte Carlo in order to compare it with its analytic value obtained both the
thin layer problem, or its approximation, the semi-permeable membrane. The mean-residence time is
related to the first eigenvalue of the diffusion problem.
The statistical estimation shows a good agreement with the theory, unless the strength of the mem-
brane is too strong, in which case variance reduction techniques should probably be used.
Since the mean-residence time is estimated from the exponential rate at which the proportion of
particles are in the cell tend toward equilibrium, we have refined the approaches proposed in [13, 14,
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19] using the Akaike Information Criteria to select the best time interval on which estimating this rate
to avoid statistical fluctuations in the steady state regime and the influence of the second eigenvalue
in short time.
This report completes then a recent stream of researches concerning the Monte Carlo simulation of
particles in media with interfaces or complex geometries, a subject with many domains of applications
(See e.g. the references in [7, 16, 25]).

A Simulation of the snapping out Brownian motion
Steps of the snapping out Brownian Motion may be simulated in an exact manner, using the strong
Markov property. For this, we use two ingredients: the simulation of the first passage time of the
Brownian bridge, and a simple formula for the simulation of the joint law of the local time and the
reflected Brownian motion.
We fix a time step ∆, and we simulate the successive positions X0, X∆, X2∆, ... of the SNOB. Thanks to
the Markov property, the position X(k+1)∆ at time (k + 1)∆ depends only on the position of Xk∆ = x for
some integer k.
In this section, we assume that σ = 1. Otherwise, we use the scaling property as seen in Section 6.
Actually, we only use the algorithm when the particle is “close” enough to the interface. Actually, the
probability of crossing the interface decreases exponentially with the variance. We thus use a standard
normal step yf x +𝒩(0,∆)

A.1 Simulation of the first passage time of the Brownian bridge

A Brownian bridge is a process with the distribution of the Brownian motion with X0 = x and X∆ = y
given.
If the signs of x and y differ, then the Brownian bridge has passed through 0. Otherwise, there is a
probability exp(−2|xy|/∆) that it has crossed 0.
In both cases, the random time τ at which it crosses 0 is τ = ∆ζ/(1 + ζ) where ζ follows an inverse
Gaussian distribution ℐ𝒢(µ, λ) with density

r(x) =
λ

2πx3 exp
(︃−λ(x − µ)2

2µ2x

)︃
with

⎧⎪⎪⎨⎪⎪⎩µ = −|x|
|y| ,

λ = x2

2∆
.

Random variate with inverse Gaussian distribution are easily simulated using the algorithm given in
[4, p. 148] following a method proposed in [20].
However, to deal with the snapping out Brownian motion, the SNOB we simulate stops at 0+ or 0−
if it hits 0 before the time ∆, depending on the sign of X0.
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A.2 Simulation of the local time and a reflected Brownian motion

For a Brownian motion (Bt)t≥0 with symmetric local time (Lt)t≥0 at 0, the following equality in distri-
bution holds [17, 18]:

(L∆, |B∆|) dist
= (`, ` − H) with

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
` = 1

2 (H +
√

H2 + V2),
H ∼ 𝒩(0,∆),
V ∼ exp(1/2∆).

A.3 Representation of the semi-group of the snapping out Brownian motion

For a Brownian motion (Bt)t≥0 with its symmetric local time (Lt)t≥0 at 0, the semi-group of the SNOB
(Xt)t≥0 has the following representation

Ex[ f (Xt)] = Ex

[︃
1 + e−κLt

2
f (sgn(x)|Bt|)

]︃
+ Ex

[︃
1 − e−κLt

2
f (− sgn(x)|Bt|)

]︃
,

where f is any measurable and bounded function.
Hence, if U ∼ 𝒰(0, 1) is uniform random variable independent from (Bt)t≥0, then

Ex[ f (Xt)] = Ex
[︀
1e−κLt≥2U−1 f (sgn(x)|Bt|)]︀ + Ex

[︀
1e−κLt≤2U−1 f (− sgn(x)|Bt|)]︀ ,

since P[e−κLt ≥ 2U − 1] = (e−κLt + 1)/2. Thus, Xt is simulated from (Lt, |Bt|), when x = 0+ or x = 0−,
as Xt = η sgn(x)|Bt| with η = 1 if e−κLt ≥ 2U − 1 and η = −1 otherwise.
In the simulation algorithm, we let the SNOB start from 0+ or 0−, depending on the sign of x.

A.4 The simulation algorithm

The simulation algorithm of X∆ when X0 = x and the time step ∆ are known and which combines the
previous considerations of Sections A.1-A.3 is given in Figure 1.
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Input data:
Initial position 𝑋0 “ 𝑥

Time step ∆ ą 0

First guess for the position
𝑦 ø 𝑥 ` 𝒩 p0,∆q

probability of crossing
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