S. S. Andrews, Accurate particle-based simulation of adsorption, desorption and partial transmission, Physical Biology, vol.6, issue.4, p.46015, 2009.
DOI : 10.1088/1478-3975/6/4/046015

J. Coatléven, H. Haddar, and J. Li, A Macroscopic Model Including Membrane Exchange for Diffusion MRI, SIAM Journal on Applied Mathematics, vol.74, issue.2, pp.516-546, 2014.
DOI : 10.1137/130914255

P. T. Callaghan, Principles of nuclear magnetic resonance microscopy, 1993.

L. Devroye, Non-Uniform Random Variate Generation, 1986.
DOI : 10.1007/978-1-4613-8643-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.333.8896

E. Fieremans, D. Novikov, J. H. Jensen, and J. A. Helpern, Monte Carlo study of a two-compartment exchange model of diffusion, NMR in Biomedicine, vol.436, issue.7, pp.711-724, 2010.
DOI : 10.1002/nbm.1577

R. Erban and S. J. Chapman, Reactive boundary conditions for stochastic simulations of reaction???diffusion processes, Physical Biology, vol.4, issue.1, pp.16-28, 2007.
DOI : 10.1088/1478-3975/4/1/003

D. Grebenkov, NMR survey of reflected Brownian motion, Reviews of Modern Physics, vol.79, issue.3, pp.1077-1137, 2007.
DOI : 10.1103/RevModPhys.79.1077

S. Denis, D. Grebenkov, J. Van-nguyen, and . Li, Exploring diffusion across permeable barriers at high gradients. I. Narrow pulse approximation, Journal of Magnetic Resonance, vol.248, issue.C, pp.153-163, 2014.

J. Kärger, H. Pfeifer, and W. Heink, Principles and Application of Self-Diffusion Measurements by Nuclear Magnetic Resonance, pp.1-89, 1988.
DOI : 10.1016/B978-0-12-025512-2.50004-X

J. Li, C. Poupon, and D. Lebihan, ODE models of diffusion MRI signal attenuation and signal inversion, 2011.

D. Le-bihan, Looking into the functional architecture of the brain with diffusion MRI, Nature Reviews Neuroscience, vol.4, issue.6, pp.469-480, 2003.
DOI : 10.1038/nrn1119

URL : https://hal.archives-ouvertes.fr/hal-00349696

A. Lejay, The snapping out Brownian motion (2015), To appear in Ann, Appl. Probab, p.781447

A. Lejay and S. Maire, Computing the principal eigenvalue of the Laplace operator by a stochastic method, Mathematics and Computers in Simulation, vol.73, issue.6, pp.351-363, 2007.
DOI : 10.1016/j.matcom.2006.06.011

URL : https://hal.archives-ouvertes.fr/inria-00092408

A. Lejay and G. Pichot, Simulating diffusion processes in discontinuous media: Benchmark tests, Preprint, p.1003853, 2014.
DOI : 10.1016/j.jcp.2016.03.003

URL : https://hal.archives-ouvertes.fr/hal-01003853

A. Lejay and G. Pichot, Simulating diffusion processes in discontinuous media: A numerical scheme with constant time steps, Journal of Computational Physics, vol.231, issue.21, pp.7299-7314, 2012.
DOI : 10.1016/j.jcp.2012.07.011

URL : https://hal.archives-ouvertes.fr/hal-00649170

D. Lépingle, Un schéma d'Euler pour équations différentielles stochastiques réfléchies, C. R. Acad. Sci. Paris Sér. I Math, vol.316, issue.6, pp.601-605, 1993.

S. Maire, Réduction de variance pour l'intégration numérique et pour le calcul critique en transport neutronique, 2001.

J. R. Michael, W. R. Shucany, and R. W. Haas, Generating Random Variates Using Transformations with Multiple Roots, The American Statistician, vol.29, issue.2, pp.88-90, 1976.
DOI : 10.1080/01621459.1968.10480942

H. T. Nguyen, Numerical Investigations of some Mathematical Models of the Diffusion MRI Signal, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01124248

H. T. Nguyen, J. R. Li, D. S. Grebenkov, D. L. Bihan, and C. Poupon, Parameters estimation from the diffusion MRI signal using a macroscopic model, Journal of Physics: Conference Series, vol.490, p.12117, 2014.
DOI : 10.1088/1742-6596/490/1/012117

E. Sánchez-palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Phys, vol.127, 1980.

Z. Schuss, Brownian dynamics at boundaries and interfaces: In physics, chemistry, and biology, Applied Mathematical Sciences, vol.186
DOI : 10.1007/978-1-4614-7687-0