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Figure 1: We present (a) the Toric space, a novel and compact representation for intuitive and efficient virtual camera control. We demonstrate
the potential of this representation by proposing (b) an efficient automated viewpoint computation technique, (c) a novel and intuitive screen-
space manipulation tool, and (d) an effective viewpoint interpolation technique.

Abstract

A large range of computer graphics applications such as data visu-
alization or virtual movie production require users to position and
move viewpoints in 3D scenes to effectively convey visual infor-
mation or tell stories. The desired viewpoints and camera paths are
required to satisfy a number of visual properties (e.g. size, vantage
angle, visibility, and on-screen position of targets). Yet, existing
camera manipulation tools only provide limited interaction meth-
ods and automated techniques remain computationally expensive.

In this work, we introduce the Toric space, a novel and compact
representation for intuitive and efficient virtual camera control. We
first show how visual properties are expressed in this Toric space
and propose an efficient interval-based search technique for auto-
mated viewpoint computation. We then derive a novel screen-space
manipulation technique that provides intuitive and real-time control
of visual properties. Finally, we propose an effective viewpoint in-
terpolation technique which ensures the continuity of visual proper-
ties along the generated paths. The proposed approach (i) performs
better than existing automated viewpoint computation techniques
in terms of speed and precision, (ii) provides a screen-space manip-
ulation tool that is more efficient than classical manipulators and
easier to use for beginners, and (iii) enables the creation of com-
plex camera motions such as long takes in a very short time and in
a controllable way. As a result, the approach should quickly find its
place in a number of applications that require interactive or auto-
mated camera control such as 3D modelers, navigation tools or 3D
games.
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1 Introduction

Virtual camera control is an essential component of many computer
graphics applications. The virtual camera – as a window on 3D
contents – conveys information, sense of aesthetics, and emotion.
The proper selection of viewpoints and the proper design of cam-
era paths are therefore of prime importance to precisely convey in-
tended effects. Furthermore, the increased availability of realistic
real-time rendering workstations as well as mobile devices and their
growing usage in our everyday tasks, both call for interactive and
automated techniques that would simplify the creation of effective
viewpoints and speed up the overall design process.

To address this task, modeling and animation software propose dif-
ferent camera manipulation tools. However, most tools rely on the
underlying mathematical representations of cameras and camera
paths. A camera is therefore manipulated through a sequence of
translation and rotation operations like any other node of the scene
graph, and a camera path is constructed through a sequence of man-
ually controlled spline-interpolated key-frames. While some visual
widgets may assist the users, the precise control of a viewpoint re-
mains a complex task, especially for beginners.

In the literature, a number of techniques have been proposed to ease
the control of virtual cameras through contributions such as screen-
space manipulations, automated viewpoint computation from visual
properties, or automated path-planning techniques. See [Christie
et al. 2008] for a detailed overview. However most contributions ad-
dress a single aspect at a time (viewpoint computation, camera ma-
nipulation or path-planning). Furthermore, the problem of placing
and moving virtual cameras has essentially been addressed through



optimization techniques by expressing properties as cost functions
over the degrees of freedom of the camera, generally resulting in
significant computational costs. An ongoing challenge in the field
is therefore to propose an approach that is expressive (in its capacity
to model visual properties), computationally efficient and provides
interactive control on the cameras.

Furthermore, as reported by [Sudarsanam et al. 2009], most cam-
era control tools are based on the photographer’s approach where
the user or the system manipulates the camera as if it were in their
hands. In contrast, artists are more interested in the qualitative fea-
tures of the image, i.e. the visual layout of the elements composing
the viewpoint including features such as position, size, vantage an-
gle, or foreground and background contents.

In this work, we propose a novel and compact representation for vir-
tual camera control called the Toric space (see Figure 1). We show
how to use this representation to address three important challenges
in the field: (i) the efficient computation of viewpoints from visual
properties, (ii) the intuitive control of viewpoints through screen-
space manipulation of visual properties and (iii) the effective com-
putation of camera paths that preserve visual properties between
viewpoints.

The Toric space is a generalization of the Toric manifold represen-
tation, introduced by Lino and Christie [2012], to a 3-dimensional
search space (α, θ, ϕ). This representation can actually be viewed
as a generalization of the arcball camera principle [Shoemake 1992]
to two targets. Where a normal arcball camera is defined in polar
coordinates, locally to one target and always pointing to the cen-
ter of the target, the Toric space defines three parameters such that
every triplet (α, θ, ϕ) represents a single camera position, with a
camera orientation that automatically ensures a specified on-screen
composition of its two targets.

A key benefit of this representation is that classical visual properties
related to camera control (position, size and vantage angle of tar-
gets) can be easily expressed in the Toric space: whole regions that
do not satisfy a visual property can be characterized and pruned.
We rely on this pruning to propose a novel interval-based search al-
gorithm that automatically computes the best viewpoint satisfying
a user-defined set of properties, and compare our technique with re-
cent results that use stochastic optimization (see Section 4). We
then present two applications to camera control that rely on the
Toric space: an intuitive screen-space manipulation technique (see
Section 5) and a novel viewpoint interpolation technique (see Sec-
tion 6).

The contributions of this work are:

• A novel representation for camera control that provides a
compact search space in which viewpoint optimization prob-
lems can be efficiently addressed. This representation reduces
a number of camera optimization problems from a 7-DOF
search (position, orientation and field of view) to a 4-DOF
search (position and field of view), for the class of problems
that involve at least two targets on the screen. Our approach
shows to be more efficient than recent stochastic-based tech-
niques [Ranon and Urli 2014] and more precise.

• A novel interaction metaphor that offers intuitive screen-space
manipulations through the interactive control of visual proper-
ties (such as size, vantage angle or location of targets), while
maintaining constraints on others. As a result, the task of
composing the layout of a viewpoint in a 3D environment is
made simpler and more intuitive. This contribution is illus-
trated by a user evaluation comparing classical camera ma-
nipulation techniques available in 3D modelers with our tech-
nique.

• A novel interpolation technique between viewpoints which
ensures the maintenance of visual properties along the gen-
erated path. The technique enables the rapid prototyping of
effective and complex camera sequences such as long-takes,
with very few operations.

Furthermore, all the contributions have been implemented as a plu-
gin in the Autodesk MotionBuilder R© tool 1 and this plugin has
been used to run all the user evaluations and build the footage for
the companion video.

2 Related Work

There is a large literature related to the control of cameras in vir-
tual environments (see [Christie et al. 2008]). In the following sec-
tion, we restrict the study to the approaches directly related with
our work, namely automated viewpoint computation, screen-space
manipulation for camera control, and viewpoint interpolation.

2.1 Automated viewpoint computation

The problem of automated viewpoint computation is expressed in
a very elegant way by referring to the notion of viewpoint en-
tropy [Vázquez et al. 2001]. Viewpoint entropy refers to the amount
of information contained in a scene that is actually conveyed by
a given viewpoint of the scene. Automated computation then
searches for viewpoints maximizing this entropy. A measure of
entropy can be defined through the aggregation of a number of vi-
sual descriptors such as an object’s projected surface on the screen,
it’s saliency, curvature, or silhouette. Interestingly, descriptors may
also include more aesthetic properties related to photographic com-
position such as the quality of the layout on the screen, the visual
weights of the targets or diagonal dominance.

A related problem is the one of computing a viewpoint that needs
to satisfy a number of visual features (size of a target, position, ori-
entation, or visibility). The early work of Blinn [1988] proposes an
iterative formulation to positioning two targets on the screen, one
of them at a specified distance to the camera and the other with a
given orientation. Lately the technique was improved using an ef-
ficient algebraic formulation [Lino and Christie 2012]. However,
both methods target very specific problems relying on the assump-
tion of an exact two-target onscreen positioning task, and lack so-
lutions for more complex problems.

Our work generalizes [Lino and Christie 2012] in that it removes
the assumption on exact on-screen positioning; in our model, tar-
gets can be constrained to regions of the screen and it supports
interaction for one or two targets. It also offers more expressive
properties by defining ranges of accepted values for vantage angle,
target size and framing. It finally includes a novel and more general
search process.

When more properties are involved, or those properties cannot
be expressed as algebraic relations (e.g. visibility), it is neces-
sary to switch to optimization techniques. There is an extensive
body of literature on optimization approaches which spans from
Drucker [1994] to Ranon [2014]. Languages have been specified to
define visual properties [Olivier et al. 1999; Ranon et al. 2010], and
to express these properties in general purpose solvers [Drucker and
Zeltzer 1994; Olivier et al. 1999] or dedicated solvers [Bares et al.
2000; Christie and Normand 2005; Ranon and Urli 2014]. While
computational costs have been for a long time a central issue, re-
cent techniques based on stochastic approaches (particle swarm op-
timization [Ranon and Urli 2014]) offer close to real-time perfor-

1Autodesk MotionBuilder R© 2014, http://www.autodesk.com/
products/motionbuilder/overview
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mance. However, they rely on sampling the space of locally satis-
fying regions for each property. The costs related to the satisfaction
of visual properties are also generally aggregated into a single cost
function using a linear weighted combination. Most solving tech-
niques therefore fail at detecting inconsistencies in the properties
and cannot distinguish a solution where all properties are half satis-
fied, from a solution where half of the properties only are satisfied.

In comparison, the technique we propose allows sampling the space
of globally satisfying regions, by pruning non-satisfactory regions.
It is consequently more efficient than existing techniques, is deter-
ministic, and reports failure when the problem contains inconsis-
tencies, or has no solution for a given precision.

2.2 Screen-space manipulation for camera control

The principle of screen-space manipulation for camera control is to
offer indirect control of camera parameters by directly manipulating
properties of the on-screen content.

Shoemake [1992] proposed the Arcball manipulation that enables
intuitive rotations around the center of a target object by using a
simple algebraic formulation. Through the manipulation, the cam-
era moves on the surface of a sphere around the object while main-
taining the look-at vector pointed at the target. This arcball manip-
ulation has been generalized to perform navigation over the surface
of objects through techniques such as Hovercam [Khan et al. 2005],
Isocam [Marton et al. 2014] or Shellcam [Boubekeur 2014].

These techniques however do not address the specific problem
of composing shots. A sophisticated screen-space manipulation
technique was proposed by Gleicher and Witkin [1992] with their
Through-The-Lens camera control approach. By directly manip-
ulating the objects’ locations on the screen (i.e. the projected po-
sitions of 3D points), the technique proposes to automatically re-
compute the camera parameters that satisfy the desired on-screen
locations. The problem is expressed by minimizing an energy func-
tion between the actual and desired on-screen locations of objects.
However when controlling two points on the screen, the problem
is under-constrained; with three points, the problem only has two
exact solutions – it is known as the P3P problem [Fischler and
Bolles 1981]; and from four points, the problem is over-constrained
and looks at minimizing the on-screen error. Though intuitive, the
manipulation is difficult to use in practice for viewpoint manipu-
lation tasks, since the problem is often over or under-constrained.
Furthermore, the technique is limited to the manipulation of on-
screen points only, an aspect later addressed by Courty and Marc-
hand [2003] who expressed properties such as occlusion of targets,
tracking of secondary objects or enforcement of textbook cinemato-
graphic trajectories.

Through the design of on-screen interactive widgets, multiple tech-
niques have been proposed to ease the manipulation of the camera
parameters. The IBar technique [Singh et al. 2004] proposes a per-
spective widget representation in which all the camera parameters
can be controlled, and some of them in a simultaneous way. The in-
teractions encompass camera-centric operations (pan, spin, zoom,
dolly, rotate, center of projection) and object-centric operations that
provides means for intuitive interactions such as changing the hori-
zon, or changing the vanishing points. The approach has been fur-
ther enhanced in the Cubecam interface [Sudarsanam et al. 2009].
While the level of control and possibilities of interaction are im-
pressive, the control is only performed on the widget itself (not on
the scene) and the interface appears complex.

Despite the range of tools to achieve manipulation tasks for cam-
era control, few offer intuitive screen-space manipulation tools.
Our contribution offers the advantage of through-the-lens manipu-

lation [Gleicher and Witkin 1992], the simultaneous control of cam-
era parameters, the expressiveness of Cubecam [Sudarsanam et al.
2009], and the possibility to manipulate visual properties [Courty
et al. 2003] while constraining others.

2.3 Camera path planning

The planning of camera paths naturally owes a lot to contributions
in robotics. For example, Nieuwenhuisen and Overmars [2004] rely
on probabilistic roadmaps [Kavraki, LE Lydia and Svestka, Petr and
Latombe, Jean-Claude C and Overmars, Mark H. 1996] to construct
rough camera paths joining an initial camera position to a final cam-
era position. Their technique then smooths out the computed path
and adds anticipation in the camera’s orientation during sharp turns.
Probabilistic roadmaps have also been used to track virtual charac-
ters in 3D environments as in [Li and Cheng 2008]. Interestingly,
the sampling process and the construction of the roadmap are per-
formed in the local basis of the moving character, which ensures
that the camera properly follows the target. The nodes and arcs in
the roadmap are dynamically updated when collision with the envi-
ronment occurs. Assa et al. [2008] propose an offline method based
on the maximization, through a simulated annealing algorithm, of
a viewpoint entropy (measuring how much of a single target’s mo-
tion project onto the screen) along time while ensuring the camera
path smoothness in terms of speed, acceleration and change in ori-
entation. Yeh et al. [2011] improve the viewpoint entropy, and the
search efficiency by using multiple A*-based searches and a back-
tracking mechanism.

In addressing tasks such as tracking objects and performing tran-
sitions between viewpoints, Oskam et al. [2009] rely on a static
sampling of the free space in a 3D environment using fixed-sized
spheres in order to (i) precompute a visibility graph between every
pairs of spheres and (ii) compute a roadmap by creating edges be-
tween connecting spheres. At runtime, the algorithm relies on the
roadmap to select the viewpoint which offers the best visibility on
a moving target, or to compute transitions between two targets by
maximizing the visibility of one of them along the computed path.

In the specific context of virtual cinematography (see [Yeh et al.
2012]), Lino et al. [2010] proposes a technique based on the
dynamic computation of spatial partitions around moving targets.
Spatial partitions are tagged with semantic information from film
textbooks including shot size (e.g. medium close up, medium shot,
long shot) and shot angle (e.g. internal, external, apex). A roadmap
is then constructed by connecting the spatial partitions.

In contrast, we propose an efficient viewpoint interpolation tech-
nique that maintains multiple visual properties along the path, and
offers an intuitive control on how to perform this transition (in [Os-
kam et al. 2009; Lino et al. 2010] the process is fully automated).

3 The Toric space

The Toric space is an generalization of the 2D manifold representa-
tion [Lino and Christie 2012] to a 3-dimensional space represented
as a triplet of Euler angles (α, θ, ϕ). One manifold corresponds to
a 3D surface, generated by a constant angle α between a pair of
targets (A,B) and the camera; such a surface is also parametrized
by a pair of Euler angles (θ, ϕ) defining horizontal and vertical an-
gles around targets. A target represents any 3D object for which we
know its center position in 3D. The manifold is defined in a way that
every camera positioned on this surface can view the center of tar-
gets A and B at user-defined proofread(exact) on-screen locations.
However, this representation abstracts target objects as points and
cannot address more evolved visual properties.
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Figure 2: In the Toric space representation, a viewpoint is
parametrized with a triplet of Euler angles (α, θ, ϕ) defined around
a pair of targets; α defines the angle between the camera and both
targets –it generates a manifold surface on which to position the
camera–, θ defines an horizontal angle around the targets and ϕ
defines a vertical angle around the targets.

Our Toric space represents the whole set of manifolds that may be
generated around a pair of targets (A,B) without knowing their
exact on-screen locations. This space is locally defined with rela-
tion to these targets (see Figure 2). Using such a representation, the
conversion from a camera in its Toric representation T (α, θ, ϕ) to
its Cartesian representation C(x, y, z) is defined by the following
algebraic relation:

C = A+ (qϕ · qθ ·AB). sin (α+ θ/2)

where qϕ is the quaternion representing the rotation angle ϕ around
vector AB, qθ is the quaternion representing the rotation angle θ/2
around a vector t orthogonal to vector AB (t is defined as pointing
up as much as possible so that viewpoints verifying ϕ = 0 are as
close as possible to the eye-level of both targets). The last part of
the equation represents the distance between the camera and the
target A.

This representation can be used in tasks such as automated view-
point computation; it reduces the search space from 7D (a standard
camera is represented by its 3D position, 3D rotation and field of
view) to 4D (3D vector in the Toric space and field of view) for
all classes of problems that involve viewing at least two targets on
the screen (considering that different parts of a single object can be
considered as different targets).

More importantly, the key visual properties in camera control such
as a target’s on-screen positioning, on-screen size, vantage angle, or
distance to camera can be expressed directly in the Toric space. We
here provide an overview of how these properties are expressed in
the Toric Space, as 1D or 2D solution sets. Note that more details
on the computations can also be found in [Lino 2013].

3.1 On-screen positioning

One central problem is, given a field of view angle, to find the set
of camera settings (position and orientation) satisfying a given on-
screen positioning of targets. In contrast with [Lino and Christie
2012], we propose to use a soft definition of the framing of two
targets (A and B), through their desired on-screen positions (pA
and pB) and their accepted deviations from these positions (sA and
sB) referred to as frames. In a practical way, each frame is defined
as a 2D polygonal convex shape on the screen, within which the
target should be projected. We first express the range of solution
camera positions, then show how an appropriate camera orientation
can be computed.

0 2πθ

0

π

α

αmin

αmax

Figure 3: Constraining the projection of targets A and B in on-
screen convex shapes sA and sB reduces the domain of variable
α in the Toric space. The set of cameras which satisfy the fram-
ing constraint (white area) is then given by a horizontal strip
α ∈ [αmin, αmax] in the plane (θ, α).

(a) Distance to A (b) Distance to B

Figure 4: Solution sets (in white) corresponding to all camera po-
sitions within a range of distances to targets A and B. (a) Solution
pairs (α, θ) for a distance toA within [5, 10]; each red curve corre-
sponds to a bounding value of the interval of distance. (b) Solution
pairs (α, θ) for a distance to B within [4, 8]; each green curve cor-
responds to a bounding value of the interval of distance.

Camera positions. We build upon the solution of a simpler prob-
lem which considers two exact screen positions of A and B be-
longing to frames sA and sB respectively. This yields a specific
angle between the camera and the targets A and B (i.e. a specific
value αi for variable α) which defines a specific 2D manifold sur-
face in the Toric space. We then use the pairwise combination
of all edges from sA and sB to compute a set of accepted values
αi. We finally prune the domain of variable α to a domain in-
terval rα = [αmin, αmax] representing the hull enclosing all com-
puted values of αi. The expression of this framing constraint then
corresponds to a horizontal strip in the plane (θ, α), as shown in
Figure 3. This solution interval on α does not depend on the values
of parameters θ and ϕ.

Camera orientation. Given the range of accepted camera posi-
tions, we now compute a proper camera orientation for a given
position. The method we propose enforces a user-defined camera
roll angle ψ while maintaining as much as possible the desired on-
screen positioning of targets. If the roll is left free, canted angle
shots (shots for which the horizon is oblique) are generated, which
cause unease and disorientation. Instead, the user can specify the
angle he desires in order to enforce canted shots or keep the roll
at zero. Our computation is a 3-step process. First, we define a
“look-at” camera orientation as a quaternion qlook computed from
the pair of targets. Similar to the classical look-at definition, qlook
is computed as a mean direction l from the camera position C to
each target: l = 1

2

[
CA
‖CA‖ +

CB
‖CB‖

]
Second, we compute a transformation rotation qtrans to apply to the
camera; this aims at placing the screen projections of A and B as
close as possible to their desired positions pA and pB , respectively
at the center of the regions sA and sB . To do so, we define two
points pO(0, 0) the origin of the screen and pM (xM , yM ) the center
point between pA and pB . We then build two 3D vectors p3O and



p3M which represent the set of points projecting respectively at pO
and pM on the screen. These vectors are expressed in the local basis
of the camera

p3O(0, 0, 1) and p3M

(
xM
Sx

,
yM
Sy

, 1

)
scaled to unit length

where Sx = [tan(φx/2)]
−1 and Sy = [tan(φy/2)]

−1. Values
φx, φy are the horizontal and vertical camera field of view an-
gles respectively. We then define qtrans as the rotation of angle
(p3O, p

3
M ) around the axis m = p3M × p3O .

Third, we define a rotation qψ , of angle ψ around the camera’s front
direction; this represents the application of the desired roll angle ψ
to the camera. The final camera orientation q is then expressed by

q = qψ · qlook · (qtrans)−1 (1)

As a result, our method can be viewed as a generalization of the
standard look-at operator, which integrates the on-screen position-
ing of targets. Knowing a given camera position C in the Toric
space, the computation of the corresponding orientation is (i) alge-
braic – hence fast and deterministic–, and (ii) allows the enforce-
ment of an input camera roll angle ψ. This stands in contrast with
previous techniques in automated viewpoint computation that con-
sider searching over the camera orientation parameters when trying
to minimize the on-screen errors [Olivier et al. 1999; Ranon and
Urli 2014].

3.2 Distance

The distance property represents the distance to ensure between a
target and the camera. We consider that this distance is specified
using an interval of accepted values [dmin; dmax]. Our objective
is thus to derive the subset of camera positions in the Toric space
that satisfy this constraint. This problem can be expressed as a 2D
solution set in the plane (θ, α). We detail the resolution for an
exact distance to a target and we extend it to consider an interval of
distances.

Exact distance to A. Assuming that the distance to the target A
must be exactly dA, a camera position satisfies this constraint iff it
verifies the equation

α = acos

(
dA − ‖AB‖ · cos(θ/2)√

d2A + ‖AB‖2 − 2 · ‖AB‖ · dA · cos(θ/2)

)
(2)

The corresponding set of camera positions is displayed in red on
Figure 4(a) for two distances dA respectively defined at 5 and 10.

Exact distance to B. Assuming that the distance to the target B
must be exactly dB , there are here two possible cases: either dB ≤
‖AB‖ or dB > ‖AB‖. When dB ≤ ‖AB‖, the camera position

should verify θ ∈
]
0, 2 asin

(
dB
‖AB‖

)]
(NB: in the particular case

dB = ‖AB‖ the upper bound, i.e. π, is excluded). The camera
position should also verify the equation

α =
π

2
± acos

[
‖AB‖
dB

sin

(
θ

2

)]
(3)

Similarly, when dB > ‖AB‖, the camera position should verify
the equation

α =
π

2
− acos

[
‖AB‖
dB

sin

(
θ

2

)]
(4)

The corresponding set of camera positions is displayed in green on
Figure 4(b) for two distances dB respectively defined at 5 and 10.

Interval of accepted distance to A. To extend the distance spec-
ification to an interval [dAmin, d

A
max], we define the solution set as a

function returning an interval on α for every value of θ:

IAα (θ) = [αAmax(θ), α
A
min(θ)]\{0, π}

where αAmin(θ) (respectively αAmax(θ)) is determined by replacing
dAmin (respectively dAmax) in Equation 2.

Interval of accepted distance to B. In a way similar to A, to
consider an interval of distance [dBmin, d

B
max], we define the solution

set as the function:

IBα (θ) = IBα,max(θ)− IBα,min(θ)

where IBα,min(θ) (respectively IBα,max(θ)) is determined by replac-
ing dBmin (respectively dBmax) in Equation 3 or 4.

Thus, when constraining the camera with intervals of distances
to both A and B, the set of solution positions is computed as
the intersection of both intervals on α, for every value of θ and
ϕ
(
i.e. Iα(θ) = IAα (θ) ∩ IBα (θ)

)
. Interestingly, this computation

does not depend on the value of the variable ϕ.

3.3 Projected Size

The visual property related to projected size is defined as an inter-
val [smin, smax] of accepted screen areas (in terms of a percent-
age of the screen). The property can be easily expressed in the
Toric space by rewriting the size constraint as a distance constraint.
The drawback is that the target needs to be approximated by an
enclosing sphere S of radius r (a solution used in a number of ap-
proaches [Christie and Languénou 2003; Olivier et al. 1999]).

Lets first assume we have pre-computed a camera position and ori-
entation for which the target is centered at the origin of the screen.
In such a case, the on-screen projection of the target’s bounding
sphere S is an ellipse which parameters a and b are computed as

a =
r · Sx
d

and b =
r · Sy
d

Here d represents the distance between the camera and the target.
Given a target size s to reach, we can then determine the appropriate
distance d to the camera:

d = r

√
π · Sx · Sy

4s
(5)

Given a set of target sizes in the range [smin, smax] we can then
compute the corresponding distances dmin and dmax, which corre-
spond respectively to sizes smax and smin, and rely on Equation 5
to determine the solution set in the Toric space.

3.4 Vantage angle

A vantage property corresponds to a relative angle around a target.
For instance, if we want to see a target from the front with a high
angle, one can express it as a desired direction vector from the tar-
get. The solutions to this exact constraint is therefore a half-line
whose origin is the target and whose direction is the vector v. By
considering a possible deviation angle γ to this reference direction,
the solution set corresponds to a vantage cone of directrix v and
half-angle γ. Solution cameras then belong to this cone. The in-
tersection of this cone with the Toric space is in fact complex to
compute. We can however derive this computation by computing
the intersection of the cone with a Toric manifold surface (i.e. a



Figure 5: Computation of the vantage function in the space (β, ϕ)
in the case of an ellipse. The resolution is done through the in-
tersection of the ellipse with a circle of radius r = tan(β). This
resolution is similar in case of a parabola or a hyperbola.

surface generated for a specific value of angle α). We use this com-
putation to show that this vantage constraint can be expressed as a
2D solution set into the plane (θ, ϕ).

Let’s first introduce two additional angles: β, β′ ∈ [0, π]. β is the
angle between the vector AB and the vector va whose origin is the
target A and destination is the camera C. In the same way, β′ is the
angle between the vector BA and the vector vb whose origin is the
targetB and destination is the camera C. Using the inscribed angle
theorem, there is the following algebraic relationship between the
Toric representation (α, θ, ϕ) and these two angles:

θ = 2β = 2(π − α− β′) (6)

The solution set is computed in a 2-stage process. Assuming that
the constraint is on the target A, we first cast the vantage problem
as a resolution on the plane (β, ϕ). We then express the resulting
solution set into the plane (θ, ϕ) by using the Equation 6. This
process is the same for a constraint on target B, replacing β with
β′ in the formulas below.

Resolution method for targetA. To determine the set of solutions
for a vantage angle on A, we first introduce three planes Pβ<π/2,
Pβ=π/2 and Pβ>π/2. Each of them is a plane whose normal is the
vectorAB, and for which the signed distance toA is respectively 1,
0, and−1. Each plane is built such that for a given vector v starting
from the targetA, the half-line of direction v will intersect only one
of these planes: Pβ<π/2 if the angle β = (AB, v) is lower than
π/2, Pβ=π/2 if β equals exactly π/2, and Pβ>π/2 if β is greater
than π/2.

We now tackle the problem of computing the intersection of a van-
tage cone of directrix v and the set of Toric manifolds. To do so,
we build upon the intersection of the vantage cone and of the three
planes we introduced. Remember that the intersection of a cone and
a plane is a conic section C. Consequently, we detect, then use, the
appropriate equation of conic section to express the bounds of this
intersection. Note that the intersection of the half-line of direction
v with the plane can be expressed in polar coordinates as a point
p(ρ, ϕ) with ρ = tan(β). Next, for each possible value of the pa-
rameter ϕ, we compute the interval of solution values for parameter
β (i.e. the set of points p which belong to the conic section). This
resolution is illustrated for the case of an ellipse in Figure 5.

To compute the bounds of this interval, we first use the intersec-
tion(s) I(x, y) (in Cartesian coordinates) of the conic section C
(e.g. an ellipse) with a circle of radius r = tan(β). The up-
per and lower bounds of the solution interval Iβ(ϕ) are calculated

0 2π

φ

-π

+π

θ 0

φ

-π

+π

θ 2π

γ ≤ π/6 γ ≤ π/3

Figure 6: Solution range of a vantage angle, for a given view di-
rection (vantage vector) and an accepted angular deviation γ. In
these examples, the angle between the line (AB) and the vantage
vector is π

4
. In each case, the white area represents the set of pairs

(θ, ϕ) satisfying the vantage angle constraint.

by using the formula β = atan
(√

x2 + y2
)

We finally cast the

computed interval Iβ(ϕ) into an appropriate interval Iθ(ϕ). In the
case of a vantage angle property on A, we obtain [θmin; θmax] =
[2βmin; 2βmax]. Examples of solutions, for various accepted devi-
ations, are given in Figure 6.

4 Efficient viewpoint computation

Though no closed form solution has been found to date, the dif-
ferent visual properties we have defined present the benefit of effi-
ciently pruning the Toric space. Relying on this feature, we propose
a novel interval-based search algorithm which addresses the view-
point computation problem (or virtual camera composition prob-
lem as defined in [Ranon and Urli 2014]). It consists in searching
for the best viewpoint that satisfies a set of visual properties. Our
algorithm incrementally prunes the domains of variables (α, θ, ϕ)
from the visual properties, and the resulting intersection determines
the area of consistent solutions. We compare the efficiency of our
technique in terms of precision and computational cost with recent
stochastic techniques.

4.1 Combining Constraints

Our pruning algorithm is comprised of four consecutive steps. In
the first three steps, we sample the ranges of possible values on
successively the variables ϕ, θ, and α (to prune inconsistent view-
points regarding the visual properties); these steps allow computing
triplets (αk, θj , ϕi), all satisfying the specified visual properties.
The last step consists in checking the targets’ visibility (to prune
viewpoints with insufficient visibility) for each computed triplet.
This sampling-based technique therefore computes a representative
set of solution viewpoints.

To define the sampling rate, we use a predefined numberN of sam-
ples which we translate, at each step of the process, into a progres-
sive sampling density computed to follow a uniform distribution of
samples within the Toric space bounds (NB: the total volume of the
Toric space is 2π3):

dϕ = 2
3

√
N

2
, dθ = 4

3

√
N

2

2

and dα = N

These densities lead to a regular sampling distributed over all the
intervals that are to be computed respectively in the first, second,
and third step. The predefined number of samples can then be used
to control the execution time of the solving process in situations
where the time budget is limited (for instance, in Table 1(a), we



Time window Method Search Satisfaction
(ms) time (ms) mean std. dev.

5 Ranon & Urli 5 85% 4.8
Toric space 3 89% 0

10 Ranon & Urli 10 88% 2.5
Toric space 6 89% 0

20 Ranon & Urli 18 90% 1.6
Toric space 13 90% 0

40 Ranon & Urli 35 90% 1.2
Toric space 26 90% 0

100 Ranon & Urli 86 91% 0.9
Toric space 51 90% 0

200 Ranon & Urli 169 91% 0.5
Toric space 137 90% 0

Time window Method Search Satisfaction
(ms) time (ms) mean std. dev.

5 Ranon & Urli 5 9% 0
Toric space 3 75% 0

10 Ranon & Urli 10 12% 11.1
Toric space 3 75% 0

20 Ranon & Urli 20 10% 3.3
Toric space 19 93% 0

40 Ranon & Urli 40 18% 18.2
Toric space 29 96% 0

100 Ranon & Urli 99 24% 21.4
Toric space 77 100% 0

200 Ranon & Urli 199 30% 25.5
Toric space 77 100% 0

(a) Problems defined by Ranon and Urli [2014] (b) Precise framing

Table 1: Comparison of our technique with Ranon and Urli in measuring time and satisfaction of visual properties: (a) average values for
five viewpoint computation problems defined by Ranon and Urli (b) average values for a single viewpoint computation problem with a precise
framing property (see Section 4.2).

used around 60 and 380 samples to solve problems within a 5ms
and 40ms time window respectively).

In the first step, the range Iϕ of possible values on the variable ϕ is
computed as

Iϕ = IAϕ ∩ IBϕ
Practically, IAϕ and IBϕ represent the intervals related to possible
vantage properties respectively defined on targets A and B. By
default, i.e. when no vantage property is formulated, these intervals
are set to [−π; +π]. We regularly sample the interval Iϕ; this yields
a number of values ϕi, used as inputs to the next step.

In the second step, the range Iθ(ϕi) of possible values on the vari-
able θ is computed as

Iθ(ϕi) = IAθ (ϕi) ∩ IBθ (ϕi)

Practically, Iθ(ϕi) is computed using the solution sets of the van-
tage angle properties, IAθ (ϕi) and IBθ (ϕi) respectively. We reg-
ularly sample the range Iθ(ϕi); this yields a number of pairs
(ϕi, θj), used as inputs to the next step.

In the third step, the range Iα(θj , ϕi) of possible values on the
variable α is computed as follows. We first compute 3 ranges:

• IOSPα , which corresponds to the satisfaction of the on-screen
positioning of both subjects (see Section 3.1);

• IDISTα (θj), which corresponds to the satisfaction of distance
properties for both subjects (see Section 3.2);

• IV ANTα (θj , ϕi), which corresponds to the satisfaction of van-
tage angles of both subjects (see Section 3.4).

From this, we compute the range Iα(θj , ϕi), which corresponds to
the satisfaction of all the properties, as

Iα(θj , ϕi) = IOSPα ∩ IDISTα (θj) ∩ IV ANTα (ϕi, θj)

Then, we regularly sample the range Iα(θj , ϕi).

Therefore, the preceding steps provide a general way of computing
solution triplets (αk, θj , ϕi), for which we can evaluate the vis-
ibility of targets. In addition, our algorithm provides a mean to
check inconsistencies in each step of the application of the proper-
ties (e.g. unsolvable constraints, or conflicts between two or more
constraints) that occur whenever the domain of a variable is empty
(either through the pruning or the intersection process). We thus
benefit from an effective way of providing feedback to the user

when no satisfactory viewpoint can be computed, and providing
a means of backtracking to address solvable sub-sets of constraints.

In the last step, for all triplets (αk, θj , ϕi), we compute the corre-
sponding 7DOF camera configuration. Then, the visibility of each
subject is evaluated by using a ray casting technique over an object-
oriented bounding box representing the subject (we cast rays to the
8 corners and the center of the bounding box following recommen-
dations in [Ranon and Urli 2014]). We finally either accept or dis-
card the camera viewpoint depending on its satisfaction, which is
defined with an interval of accepted visibility ratios on each sub-
ject (e.g. visibility set to [80%, 100%]). Note that in this step, one
might use any other computation method, leaving the choice to use
more accurate queries (though being expensive as demonstrated in
[Ranon and Urli 2014]).

4.2 Comparison with existing techniques

We compare our technique with a recent contribution by Ranon and
Urli [2014] that relies on Particle Swarm Optimization to compute
viewpoints. Their paper provides a thorough comparison of dif-
ferent solving techniques as well as efficient heuristics, and repre-
sents to date the most advanced and general viewpoint computation
technique. Our respective approaches are compared against three
criteria: total computation time, degree of satisfaction of the visual
properties, and variability in the satisfaction. This was greatly facil-
itated by the authors of [Ranon and Urli 2014] who made available
their problem descriptions, software framework, and results.

To compare our methods in a thorough way, we considered the ex-
act same descriptions of the problems (our viewpoint computation
algorithm was integrated in their software framework). We then
used the same time windows for both methods. In our case, we had
to run a pre-computation step to determine the appropriate number
N of samples to use during our resolution that would best fit the
allowed time window. We also used the same satisfaction functions
to evaluate and select the best camera viewpoints (through a direct
call to their library).

Table 1(a) shows the results on the 5 problems the authors defined
with one and two targets (RoomsA, RoomsC, RoomsD, PapersOf-
fice and CityC). The table shows that, for composition problems,
our method obtains satisfactions similar to theirs, but offers a fair
improvement over their technique in terms of computation time
– the difference in performance ranging from 20% to 40%. Ta-
ble 1(b) shows the results obtained on a more precise framing prob-
lem we defined: the two targets Giovanni and Matteo were framed



in smaller screen regions and with smaller sizes (representing less
than 10% of the screen) than all the other problems defined by Ra-
non and Urli [2014]. This case shows that as more and more precise
on-screen positioning is requested, their approach fails to precisely
satisfy the constraints. Our method outperforms their technique
both in terms of satisfaction and search time. It also shows that our
technique is not only efficient but also fairly robust since its out-
put is deterministic in obvious contrast with stochastic techniques.
The standard deviation in the satisfaction of properties obtained by
Ranon and Urli [2014] is much higher when targeting precise com-
positions. This is due to the ability of our technique to precisely
focus the search in areas that satisfy the constraints, rather than ex-
ploring larger regions of the search space where properties may not
be satisfied.

As a result, our computation in the Toric space yields realtime
results and, equally important, camera compositions of consistent
quality.

5 Intuitive Image-space manipulation

Despite advances, the task of interactively manipulating viewpoints
still faces a central challenge: operating the appropriate balance be-
tween freedom in control and user constraints. To address this chal-
lenge, we propose novel and intuitive camera manipulation tools,
and demonstrate their benefits with a user study.

5.1 Screen-space manipulators

Our method takes advantage of our Toric space representation. We
provide four screen-space manipulators: (i) Position (ii) Size, (iii)
Vantage, and (iv) Vertigo manipulators. Starting from an initial
camera location (αi, θi, ϕi) around a pair of targets, the camera
is interactively repositioned at a new position (α′i, θ

′
i, ϕ
′
i) to reflect

the user’s on-screen manipulations (see Figure 7).

Position manipulator: the user manipulates one target’s on-screen
position while the other target’s position is maintained (see Fig-
ure 7(a)). To re-position the camera, we first determine the new
manifold surface on which to position the camera, i.e. the appro-
priate new parameter α′i, from the new pair of targets’ screen posi-
tions; we do so by using the original formula proposed in [Lino and
Christie 2012]. We then search for a new position (θ′i, ϕ

′
i) on this

manifold surface that satisfies both (i) the new targets’ on-screen
positions and (ii) a user specified roll angle ψ to generate horizon-
tal or canted shots (see Equation 1). The search is performed over
both 2D manifold parameters, by minimizing a cost related to the
on-screen positioning error made on targets, and is expressed as:

min
(θ,ϕ)

(
pA − p′A

)2
+
(
pB − p′B

)2
where pA, pB are the desired targets’ on-screen positions and
p′A, p

′
B the on-screen positions obtained from position (θ′i, ϕ

′
i) on

the new manifold.

Size manipulator: the user manipulates one target’s on-screen
size, while the on-screen positions of both targets are maintained
(see Figure 7(b)). To re-position the camera, we first extract the
current target screen size (see Section 3.3). This extracted value
is increased or decreased depending on the dragging direction, and
converted to an appropriate distance d between the target and the
camera (see Section 3.2). We then search for a new camera posi-
tion (θ′i, ϕ

′
i) on the same manifold surface (i.e. α′i = αi, since the

on-screen positions do not changed). We compute the value of θ′i
by using the following formula:

θ′i = π ± 2 acos
(
d
sinα′i
‖AB‖

)

There may exist two solution values for θ′i (cf. [Lino and Christie
2012]); in that case, we select the value closest to the initial one
θi (i.e. before the manipulation). Similar to the position manipula-
tor, we search on the variable ϕ over the current manifold surface,
to reach a camera position (θ′i, ϕ

′
i) which enforces the targets’ on-

screen positions.

Vantage angle manipulator: the user manipulates the vantage an-
gle on a target, while both targets’ on-screen positions are main-
tained as much as possible (see Figure 7(c)). To re-position the
camera, we first compute the initial vantage direction v from the
target to the camera. This direction is decomposed into two com-
ponents: a horizontal view angle and a vertical view angle. The
user can then change this vantage direction through screen move-
ments which update the horizontal view angle and the vertical view
angle. From the user’s input manipulation, we recompute a new
vantage direction v′ by using the formula v′ = qV · qH · v, where
qH and qV are the two rotations corresponding to the horizontal and
the vertical changes in angle respectively. We then search the new
camera position on the same manifold (i.e. α′i = αi). We compute
the new camera position (θ′i, ϕ

′
i) as the intersection of the direc-

tion v′ with the current manifold surface. Note that the orientation
satisfying the desired targets’ on-screen positions does not always
strictly satisfy the user-defined roll angle ψ. By using our orienta-
tion computation method (see Equation 1), we thus minimize the
error made w.r.t. the desired targets’ on-screen positions while ap-
plying the desired camera roll.

Vertigo manipulator: the user manipulates the camera field of
view, while the targets’ on-screen positions are maintained (see
Figure 7(d)). To reposition the camera, in a way similar to the
Position manipulator, we first determine the new manifold surface
on which to position the camera, from the pair of targets’ screen
positions (that do not change) and the new field of view. We
then compute a new camera position (θ′i, ϕ

′
i) on this new manifold

in such a way that we get the smallest change between the pairs
(θi, ϕi) and (θ′i, ϕ

′
i). To so, we maintain the value onthe variable

ϕ (i.e. ϕ′i = ϕi) and, given that the value for variable θ is en-
closed within the interval ]0; 2(π − α)[, we update the correspond-
ing value using the formula

θ′i = θi

(
π − α′i
π − αi

)
As a result the camera maintains the on-screen positions of both
targets while its field of view angle evolves. This classical camera
motion is known as the Vertigo effect or dolly-zoom. While some
approaches have proposed ways to compute such effects [Hawkins
and Grimm 2007], the technique proposed here is straightforward
with the Toric space representation.

Note that similar manipulators can also be derived from our Toric
space representation to handle single-target cases, by carefully se-
lecting two points on the target.

5.2 User evaluation

To evaluate the interest of our screen-space manipulators, we per-
formed a subjective experimentation on the ease of use and the
accuracy of our tool for reproducing viewpoints in a 3D context
(which is an extremely classical task in 3D modelers), compared
to the ease and accuracy when using a professional 3D modeler.
We used MotionBuilder for comparison. Our target viewpoints in-
volved composing two to five targets on the screen. After a train-
ing session (10 to 15 minutes distributed on both tools), subjects
were asked to reproduce three reference viewpoints – (i) through the
classical 3D interaction offered by Motion Builder and (ii) through



The other target's
position is enforced

Drag in any direction
changes the selected
target's position

Both targets' positions
are enforced

Shift-drag up/down
changes the size of
the selected target

targets' positions
are enforced 
as much as possible 

Control-drag up/down/left/right
changes the view angle
of the selected target

Both targets' positions
are enforced

Press key up/down
changes the camera's
field of view

(a) Position manipulator (b) Size manipulator (c) Vantage manipulator (d) Vertigo manipulator

Figure 7: Our screen-space manipulators. (a) the Position manipulator enables repositioning one target on the screen while the other target’s
on-screen position is maintained; (b) the Size manipulator enables resizing one target while both targets’ on-screen positions are maintained;
(c) the Vantage manipulator enables changing the view angle around one target, while targets’ on-screen positions are maintained as much
as possible; (d) the Vertigo manipulator enables changing the camera’s field of view while both targets’ on-screen positions are exactly
maintained.
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Figure 8: Evolution of the distance from the user’s manipulated viewpoint to a reference viewpoint, for a novice user and an expert user of
MotionBuilder (both displayed in red). The distance obtained using our tool is displayed in blue. The manipulation time is in seconds.
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Figure 9: Mean manipulation time (in seconds) required by the
participants to reproduce a viewpoint using our manipulators
(blue) compared to using the classical interaction of MotionBuilder
(red).

our screen-space manipulators. Each reference viewpoint was pro-
vided as a screenshot showing the desired camera view. The order
of viewpoints and tools was randomly chosen for each participant.
When the current user-manipulated viewpoint was sufficiently close
to the reference viewpoint or when the user was satisfied enough,
the manipulation was stopped and the history of the virtual cam-
era was saved. 18 participants, with different experiences on 3D
modeling tools, volunteered for this experiment. The distance of a
user-manipulated viewpoint C to the reference viewpoint Cr was
computed as a combination of the Euclidean distance on camera
positions and a distance metric on camera rotations (represented as
quaternions), using the formula

Dist (C) =

√(
‖Cr − C‖
‖Cr − Ci‖

)2

+

(
| acos (2.〈qr, q〉2 − 1) |

π

)2

where 〈q, q′〉 is the dot product of q and q′. Here Ci denotes the
initial camera position (i.e. at the beginning of the experiment); q
and qr denote the camera orientations of respectively C and Cr .

Figure 8 shows how the distance changes over time on the first
viewpoint manipulation task (out of three). We report changes in
distance for both a novice and an expert user of MotionBuilder. Our
evaluations have shown that novices completed the tasks faster by
using our manipulators rather than MotionBuilder camera manip-
ulators (see Figure 9). They found our manipulators rather simple
to understand and easy to use. In the case of the expert user, he
required a bit more time during the first manipulation task with our
manipulators (13 seconds with our tool vs. 11 seconds with Mo-
tionBuilder). However, on average he required approximately the
same amount of time to complete all the tasks.

The comparison with more evolved screen-space manipulation
techniques remains difficult. Typically, the interactions we pro-
pose such as pivoting around character or re-sizing cannot be eas-
ily expressed with through-the-lens [Gleicher and Witkin 1992] or
visual-servoing techniques [Courty et al. 2003]. And power graphi-
cal widgets like IBar [Singh et al. 2004] and Cubecam [Sudarsanam
et al. 2009] are rather complex to apprehend for beginners.

6 Effective Viewpoint Interpolation

A key challenge of viewpoint interpolation techniques is the ef-
fective control of the visual properties to be satisfied along the
path. We believe that an effective viewpoint interpolation tech-
nique should (i) minimize the changes occurring in the image space
and (ii) allow an easy control of both the camera motions and the
framing along time. Taking advantage of our Toric space represen-
tation, we propose an effective and intuitive method to interpolate
between key viewpoints, which takes inspiration from the classical



key-framing process.

In the following we show how we interpolate between two view-
points: a key viewpoint k0 (with position p0), framing a pair of
targets (A,B) at time t0, and a key viewpoint k1 (with position
p1), framing a pair of targets (A′, B′) at time t1 – pairs can be the
same, share one target or be completely different. Our process can
be repeated over successive key viewpoints to build a more complex
camera path. Figure 11 illustrates the overall interpolation pipeline.

Our method is founded on the idea that, to perform an effective
interpolation between two viewpoints, we need to (i) compute a
first trajectory which maximizes the visual properties over targets
(A,B) between p0 and p1, (ii) compute a second trajectory which
maximizes the visual properties over targets (A′, B′) between p0

and p1, and (iii) offer an effective way of controlling when and
how to perform an interpolation between these two trajectories, by
separating the process of interpolating camera positions and cam-
era orientations. Intuitively, we want to control, in position and in
orientation, how long we maintain the framing on the first pair of
targets, how long we maintain the framing on the second pair of
targets and how we interpolate in-between.

The first trajectory τ that links key-positions p0 and p1 is con-
structed by interpolating the respective visual properties related
to the pair of targets (A,B) between times t0 and t1 (i.e. how
these properties should evolve between both camera positions). To
do this, we express key-positions p0 and p1 as two Toric triplets
(α0, θ0, ϕ0) and (α1, θ1, ϕ1) defined around the pair of targets
(A,B). For each target i ∈ {A,B} and each position j ∈ {0, 1},
we extract a visual feature vector of the form (αj , vji , d

j
i ); v

j
i is the

unit vantage vector between the target i and camera position j, and
dji is the distance between the target i and camera position j. For
a given ratio x ∈ [0; 1], we interpolate each feature separately and
linearly with x. We then define a function F (x) providing an inter-
polated camera position around the pair of targets. Practically, F is
computed as follows. For each target i, we compute the intersection
point T xi (α

x, θxi , ϕ
x
i ) of its interpolated vantage vector vxi with the

manifold surface generated by the interpolated angle αx; we also
compute the distance dα,xi between this intersection point and the
target i. We then define F as a trade-off on camera positions which
reflects the interpolated visual features on both targets. Practically,
the interpolated position on the path is computed as

F(A,B)(x) =
1

2

A+B +
∑

i∈{A,B}

vxi ·
dxi + dα,xi λxi

1 + λxi


where λxi is a scaling factor that avoids giving too much importance
to dα,xi when the enforcement of the screen positioning is not pos-
sible (typically when the camera crosses the line-of-interest (AB));
this factor is computed as a sinusoid taking as input the angle be-
tween the vantage vector vxi and the line (AB) separating the two
targets. Figure 10 illustrates this first interpolation process.

The second trajectory τ ′ is computed in a similar way, linking key-
positions p0 and p1 by interpolating the respective visual properties
related to targets (A′, B′) between times t0 and t1.

Controlling the camera motion along time. We now have two
camera paths τ and τ ′ between the two same camera positions.
Each path minimizes the change over visual properties of a given
pair of targets. We then combine these two paths along time,
through a non-linear interpolation function gp(t) (with t ∈ [t0; t1])
defined over time and returning a value x ∈ [0; 1] – gp is defined
so that gp(t0) = 0 and gp(t1) = 1. The final interpolated camera
position p(t) at time t is given by the formula

p(t) = F(A,B) (gp(t)) .(1− gp(t)) + F(A′,B′) (gp(t)) .gp(t)
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Figure 10: Composition-based interpolation of the camera posi-
tion around a pair of targets (A,B). For two key camera posi-
tions and a key framing to enforce on a pair of targets, we alge-
braically interpolate the camera position as a path which provides
linear changes over their on-screen appearance. The path is de-
fined through a function F(A,B)(x) such that any intermediate po-
sition (i.e. for x ∈]0; 1[) is computed by relying on a linear inter-
polation of all visual properties of the pair of targets.

This function aims at controlling when and how the camera moves
between both viewpoints (see Figure 11(c)).

Controlling the framing along time. Unlike classical interpola-
tion methods, we interpolate camera orientations along time not
in terms of low-level rotations but in terms of how to frame tar-
gets. For a given camera position computed by the previous step,
we compute the two camera orientations qt(A,B) and qt(A′,B′) which
respectively enforce the framing of the first and second pair of tar-
gets at time t; these orientations are computed by using the formula
given in Equation 1. In a way similar to the position, we combine
these two orientations along time through a non-linear interpolation
function gf (t) (defined similarly to gp(t)). The final interpolated
camera orientation q(t) at time t is given by the formula

q(t) = q(A,B).(1− gf (t)) + q(A′,B′).gf (t)

This function aims at controlling when and how the camera moves
between both framings (see Figure 11(c))

Tuning the camera viewpoint along time. In our model, both
functions gp and gf are parametrized by (i) the pair of key-
viewpoints k0 and k1, (ii) the number of static frames following t0,
during which the properties of viewpoint k0 (either in position or in
framing) are enforced, (iii) the number of static frames preceding
t1, during which the properties of viewpoint k1 are enforced. These
functions also rely on default ease-in and ease-out functions, that al-
low to specify how much the camera will accelerate or decelerate
between viewpoints k0 and k1. This model allows an intuitive and
efficient control of the timing of the interpolation and the speed of
the camera in terms of both position and framing. Figure 11 illus-
trates how, using our interpolation method, both the camera motion
and framing can be parametrized and tuned through very few con-
trollers.

To illustrate the power of our interpolation method, we extracted
7 key viewpoints from the shots of a scene of the original movie
Back to the future (R. Zemeckis, 1985). We reproduced these shotd
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Figure 11: Overview of the interpolation pipeline, between two key
viewpoints. (a)(b) The user drafts two viewpoints at times t0 and t1.
(c) (S)he controls interpolation curves over the camera motion and
re-framing along time; (s)he is required to handle few controllers,
encompassing the duration of enforcement, as well as ease-in/ease-
out values controlling the speed of the camera. (d) For each key
framing, we compute a camera path (τ and τ ′ respectively) that
smoothly moves the camera between key positions while enforcing
this framing. We finally interpolate both paths (in terms of the cam-
era position and orientation) by relying on the interpolation curves.

by using our interactive viewpoint manipulation tool. We then con-
structed a long take (or plan-sequence) of that scene, reproducing
the viewpoints of the original shots, while enforcing smooth camera
movements between viewpoints (see accompanying videos). The
generated camera path is also displayed in Figure 1(d). A second
and more complex motion was generated with 15 key viewpoints
and without any other manipulation that controlling the time spent
in each viewpoint. Given the low number of inputs, the generated
result is a considerable improvement on standard interpolation tech-
niques (see accompanying video).

In terms of computational cost, the technique spends an average
value of 2ms per second of a movie at 30fps (91ms for a 7 key view-
points sequence of 45 seconds, and 160ms for a 15 key viewpoints
sequence of 80 seconds). This is due to the fact that the camera
trajectories are all constructed using algebraic computations.

7 Discussion

An aspect that is only partially addressed in this contribution is the
visibility of targets. While interpolating camera paths or during in-
teractive manipulations, we do not check for visibility. In the tasks
we address, this has not been pointed out as an issue by our users.

Though, visibility could be handled directly in the Toric space by
computing and intersecting a visibility map (computed with ray cast
or hardware rendering techniques) with the set of Toric manifolds;
expressing such a constraint in our Toric space in an efficient way
is a challenging problem and is our next objective.

While expressive, our viewpoint manipulation technique is limited
to handling two targets at a time. One can however interactively
change the targets to easily create layouts involving three or more
targets. In such case, the user selects two targets on which to per-
form manipulations, then changes one or two of the targets and
continues the interaction in a seamless way. Furthermore, the user
is not restricted to interacting with targets that fully appear on the
screen; by using an extended frame that displays off-screen or par-
tially off-screen targets, one can easily create viewpoints where tar-
gets are vertically cut by the frame (e.g. in over-the-shoulder shots).

In a similar way, our viewpoint computation method is limited to
the case of two targets. In case of a single target, it simply re-
duces to choosing a pair of points on the target. Our viewpoint
computation tool could also handle over-constrained cases consid-
ering three or more targets. In the case of three or more targets, our
methods could also be adapted. By expressing such a problem as
a set of two-target problems, one could derive a method that com-
putes viewpoints which solves a first two-target sub-problem, then
incrementally checks other constraints satisfaction. A more elegant
solution would however require new research.

Finally, our viewpoint interpolation model enables the creation of
camera motions that target minimizing changes on the on-screen
layout (e.g. dolly-in, dolly-out, arcing around targets, or following
targets). It enables the construction of complex cinematographic
motions such as long-takes or trackings of characters which require
many efforts when manually crafted. On the other hand, for some
other, often linear-shaped, camera motions such as travellings, new
results are required to express such paths in the Toric Space.

8 Conclusion

In this paper, we have introduced a novel camera viewpoint repre-
sentation. The central benefit of our Toric space representation is its
compact nature: any viewpoint computation problem that involves
at least two targets can be expressed with a triplet of variables
(α, θ, ϕ). It casts simple camera optimization problems mostly
conducted in a 7DOF space into a search inside a 4DOF space.
Our Toric space representation thus provides as really powerful
means on which to build high-level and efficient camera control
techniques.

We have provided the algebraic expression, in the Toric space, of
most classical visual properties employed in the literature. Coupled
with an interval-based resolution algorithm, we have then proposed
a very efficient viewpoint computation technique, that performs bet-
ter than the existing state of the art techniques both in terms of com-
putation time and consistent production of desirable viewpoints.

Building upon our Toric space representation, we have proposed in-
tuitive viewpoint manipulators controlling the visual result directly
in screen space. The combination of these manipulators shows
strong benefits in the task of crafting viewpoints and is easier to use
for beginners. We consequently believe this screen-space manipu-
lation tool has the potential to be directly integrated in commercial
3D modelers.

Finally, we provided an effective camera motion planning algo-
rithm which allows an intuitive and efficient interpolation between
camera viewpoints, through very few operations. The benefit of
our technique is that it enables an easy control of both the camera



motion and the camera framing along time, and that the generated
paths preserve visual properties along time.
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