Skip to Main content Skip to Navigation
Journal articles

Spherical Fibonacci Point Sets for Illumination Integrals

Ricardo Marques 1 Christian Bouville 1 Mickaël Ribardière 2 Luis Paulo Santos Kadi Bouatouch 1
1 FRVSense - FRVSense
IRISA-D6 - MEDIA ET INTERACTIONS
2 XLIM-SIC - SIC
Université de Poitiers, XLIM - XLIM
Abstract : Quasi-Monte Carlo (QMC) methods exhibit a faster convergence rate than that of classic Monte Carlo methods. This feature has made QMC prevalent in image synthesis, where it is frequently used for approximating the value of spherical integrals (e.g. illumination integral). The common approach for generating QMC sampling patterns for spherical integration is to resort to unit square low-discrepancy sequences and map them to the hemisphere. However such an approach is suboptimal as these sequences do not account for the spherical topology and their discrepancy properties on the unit square are impaired by the spherical projection. In this paper we present a strategy for producing high-quality QMC sampling patterns for spherical integration by resorting to spherical Fibonacci point sets. We show that these patterns, when applied to illumination integrals, are very simple to generate and consistently outperform existing approaches, both in terms of root mean square error (RMSE) and image quality. Furthermore, only a single pattern is required to produce an image, thanks to a scrambling scheme performed directly in the spherical domain.
Document type :
Journal articles
Complete list of metadata

https://hal.inria.fr/hal-01143347
Contributor : Rémi Cozot <>
Submitted on : Friday, April 17, 2015 - 1:40:30 PM
Last modification on : Wednesday, June 16, 2021 - 3:42:13 AM

Links full text

Identifiers

Citation

Ricardo Marques, Christian Bouville, Mickaël Ribardière, Luis Paulo Santos, Kadi Bouatouch. Spherical Fibonacci Point Sets for Illumination Integrals . Computer Graphics Forum, Wiley, 2013, 32 (8), pp.134-143. ⟨10.1111/cgf.12190⟩. ⟨hal-01143347⟩

Share

Metrics

Record views

556