Dispersion and Collapse in Stochastic Velocity Fields on a Cylinder

Abstract : The dynamics of fluid particles on cylindrical manifolds is investigated. The velocity field is obtained by generalizing the isotropic Kraichnan ensemble, and is therefore Gaussian and decorrelated in time. The degree of compressibility is such that when the radius of the cylinder tends to infinity the fluid particles separate in an explosive way. Nevertheless, when the radius is finite the transition probability of the two-particle separation converges to an invariant measure. This behavior is due to the large-scale compressibility generated by the compactification of one dimension of the space.
Type de document :
Article dans une revue
Journal of Statistical Physics, Springer Verlag, 2010, 138 (4-5), pp.579-597. 〈10.1007/s10955-009-9875-1〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01144168
Contributeur : Sylvain Rubenthaler <>
Soumis le : mardi 21 avril 2015 - 10:38:07
Dernière modification le : jeudi 3 mai 2018 - 13:32:58

Lien texte intégral

Identifiants

Collections

Citation

Dario Vincenzi, Antonio Celani. Dispersion and Collapse in Stochastic Velocity Fields on a Cylinder. Journal of Statistical Physics, Springer Verlag, 2010, 138 (4-5), pp.579-597. 〈10.1007/s10955-009-9875-1〉. 〈hal-01144168〉

Partager

Métriques

Consultations de la notice

156