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Abstract: This work proposes a fluid-solid interaction model. It is formulated for a laminar
flow modeled by the incompressible Navier-Stokes equations in which we consider the presence
of a rigid moving solid. The model is formulated inside an immersed boundary method based
on a penalization technique. The penalization technique imposes the body effects on the flow.
The velocity field is extended inside the solid region and a penalty term enforces the rigid motion
inside the solid region. This technique offers a great flexibility to modify the geometry of the solid.
The forces and angular momentum needed for the fluid-solid interaction model are computed
with an innovative method suitable for the penalized equations method. The method is validated
successfully for an oscillating airfoil in large flapping motion. Effects of different geometries on
aerodynamic coefficients can then be explored. The fluid-solid interaction model is also verified for
solid motions governed by the flow, such as falling cylinder and plate.
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Modèle novateur pour le mouvement d’un solide entraîné
par l’écoulement basé sur la pénalisation et le calcul des

forces et moments aérodynamiques
Résumé : La méthode d’interaction fluide-solide proposée dans ce rapport est formulée pour un
écoulement laminaire. L’écoulement est modélisé par les équations de Navier-Stokes incompress-
ibles modifiées, dans lesquelles nous considérons la présence d’un corps rigide en mouvement. Le
modèle est formulé dans le cadre d’une méthode de frontières immergées basée sur une technique
de pénalisation pour tenir compte du corps. Le champ de vitesse est étendu dans la région
du corps rigide et un terme de pénalisation impose le mouvement rigide à l’intérieur du solide.
Cette technique offre une grande souplesse pour modifier la géométrie du corps. Une méthode
innovante appropriée pour le calcul des forces et des moments angulaires basée sur les équations
pénalisées est proposée et validée pour une aile oscillante dans un grand mouvement de batte-
ment. Les effets de différentes géométries peuvent ensuite être explorés. Le modèle d’interaction
fluide-solide est aussi vérifié pour des mouvements de solides gouvernés par l’écoulement, comme
le cas d’un cylindre ou d’une plaque en chute libre.

Mots-clés : Pénalisation, Méthode des frontières immergées, Forces aérodynamiques, Moment
aérodynamique, Schéma VIC, Profil oscillant, Interaction fluide-structure
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1 Introduction

The goal of most external flow analysis in engineering is the evaluation of aerodynamic forces
and moments. For complex flows, with massive separations for example, computational fluid dy-
namics (CFD) is often the only way to reach this goal. CFD simulations are usually performed
using two types of grids: body-fitted grids and embedded grids. For body-fitted grids, external
mesh faces match up with the body surfaces and external boundary faces. On the contrary, flow
simulations by immersed boundary methods (IBM) use a grid that does not fit the body geome-
try, thus avoiding most of the difficulties associated with grid generation. IBMs can easily model
flows around complex geometries in large motion [1] and are well suited for simulating complex
fluid-solid interactions. The Cartesian grid, most widely used with the IBM, limits the applica-
tion to Euler or Laminar flow, unless a local grid refinement strategy [2] or a specific turbulent
wall model is used [3]. Methodological advances on IBM allow the simulation of compressible
flows at high Reynolds numbers [4] and therefore enable its use for aeronautic applications, such
as computation of droplet impingement [5].

As discussed by Mittal et al. in [1] and most recently by Sotiropoulos et al. in [6], IBMs can
be classified into two categories: sharp interface methods and diffused interface methods. In the
first category the presence of boundaries is taken into account at the discrete level. The goal
is to insure properties conservation closed to the boundaries and improve the accuracy at the
interface. The ghost-cell approach [4, 7, 8] belongs to this category and uses, at ghost points,
values that are extrapolated from the fluid to impose the appropriate boundary conditions at the
interface. The sub-mesh penalty method [9], the immersed interface method [10] and the cut-cell
method [11] are other approaches belonging to this class. In the second category, the diffused
interface methods avoid the difficulties associated to the accurate tracking of the fluid-solid in-
terface position. The presence of boundaries is modeled by adding a continuous forcing term
directly to the flow equations. Immersed nodes exert a force in the momentum equations. The
effect of immersed boundaries is distributed on surrounding nodes using delta or mask functions.
Penalization method [12, 13] and its recent developments [14, 15, 16] belongs to this category.
With penalization, solid bodies are represented as porous media with a very small permeability
[17].

In this paper, we propose to extend the use of an IBM that combines the advantage of the
penalization and of the Vortex-in-Cell (VIC) methods [18]. The vorticity field can be seen as the
signature of bluff bodies flows. Therefore, a vorticity formulation of the Navier-Stokes equations
may appear as the natural framework to study these flows. Since the advection of vorticity is
predominant for moderate and high Reynolds number, Lagrangian or semi-Lagrangian schemes
are suitable to discretize such equations. Particle methods and VIC methods belong to this kind
of approaches. Particle methods have long been used to compute vortex flows [19, 20, 21, 22].
The difficulties of such methods rely on a delicate tuning of the velocity boundary conditions
especially for complex geometries. In such sense, immersed boundary methods and especially,
penalization, simplify the treatment of boundary conditions [23, 24, 25, 26]. Active research
is performed on such methods to improve their accuracy [27, 28], to increase the range of ap-
plications and physical flows modelled [29], and to remain competitive in terms of computing
performances [30].

It is well known that the fluid interacts with the solid through pressure and viscous stress
at the wall. However, for vorticity-based numerical simulation, the pressure distribution is not
known. The forces can be computed from the velocity and vorticity following the method pro-
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4 Beaugendre & Morency

posed by Noca et al. [31], as done by Ploumhans et al. [20]. Recently, some authors have
expressed some doubt about the validity of the forces predicted by this method for unsteady
flows when pressure and vorticity are not uniform at infinity [32]. Moreover, for vortex flow
formulation, the method does not allow the computation of moments on rigid body. Eldredge
[33] proposes a method to compute both forces and moment on body, based on integration along
the surface of the vorticity derivative in the normal direction. For penalization, this method is
not easy to apply because the vorticity is not defined at the surface but rather at cartesian grid
points near the surface. Instead, we propose an innovative forces and moment computational
method based on the global momentum change and angular momentum change inside the body.

The first specific objective of this paper is to propose a mathematical model for the fuid-solid
interactions within IBM. The second objective is to validate the forces and momentum calcu-
lations within the VIC-IBM scheme using static and moving bodies. The flexibility offered by
the use of IBM and the level-set description of the geometries are then demonstrated. IBMs are
well suited for parametric study of geometry effects on the flow because no remeshing is needed
when the geometry is modified [34]. The third objective is to verify the fluid-solid interaction
model. This is done by using IBMs for the computation of flow induced body motions, such as
the free fall of a solid in a fluid [35, 36, 37]. IBMs are particularly attractive to study motion of
non spherical bodies, such as the autorotation of flat plate [38, 39].

The paper is organized as follows, first, the penalized Navier-Stokes equations are presented
in section 2, together with the numerical method based on a VIC scheme. The new model used
to compute the forces and moment exerted by a fluid on a solid body is proposed in section 3,
along with appropriate governing equations for fluid-solid interactions. In the fourth section, test
cases are presented to validate forces and moments computations against literature results and
examples of fluid-solid interactions are presented.

2 Penalized Navier-Stokes equations and VIC scheme

2.1 Physical model

The fluid-solid interaction flow model proposed in this work is based on an incompressible laminar
Newtonian flow around a body considered as rigid (without any deformation) and delimited by
level-set functions. The mass and momentum conservation equations are

∇ · u = 0 in Ω (1a)
∂u

∂t
+ (u · ∇) u− ν∇2u +

1

ρ
∇p = 0 in Ω. (1b)

where u is the velocity vector, ν = µ/ρ is the kinematic viscosity, ρ is the density, and p is the
pressure. Now we consider, in Ω, the presence of a rigid moving solid Si. The boundary of Si

is computed from a level set function Φsi . Φsi is the signed distance function to Si, typically
Φsi will be negative inside the object and positive outside, see figure 1 for an illustration of the
signed distance function, embedded into a Cartesian grid, corresponding to a wing and an ice
debris.

The penalization technique extends the velocity field inside the solid body, as illustrated in
figure (2), and solve the flow equations with a penalty term to enforce rigid motion inside the
solid as proposed by [24]. Let usi be the rigid moving body velocity vector of Si. Inside Si, the
momentum equation becomes u = usi and remains equation (1b) outside Si.

Inria



Computation of Aerodynamic Forces and Moments 5

Figure 1: Global level-set function of two rigid bodies (wing and ice debris) computed onto a
Cartesian grid.

This is summarized as follows: given a very large penalization parameter, λ � 1, and denoting
by χsi the characteristic function of the solid Si, i.e. χsi = 1 inside Si and χsi = 0 outside Si,
the penalized Navier-Stokes equations are

∂u

∂t
+ (u · ∇) u− ν∇2u +

1

ρ
∇p = λχsi(usi − u) for x ∈ Ω and t > 0, (2)

coupled with the incompressible mass conservation (1a). This model can easily be generalized
to multiple rigid bodies Si.

To solve our governing equations the following strategies have been chosen:

1. A vortex formulation of our governing equations is used: this formulation is especially well
adapted to study oscillatory motions that create large flow separation around aerodynamic
bodies.

2. A vortex in cell (VIC) scheme is used to solve the obtained equations: this scheme offers
less CFL restrictions than classical schemes.

3. A time splitting algorithm allows to take into account the specific requirement of each
equation term, for example the implicit treatment of the penalization term for accuracy
purpose.

Let us give more precision on each choice previously described.

RR n° 8718



6 Beaugendre & Morency

Figure 2: Penalization technique, the flow field is extended inside the bodies, u component of
the velocity, v component of the velocity and vorticity.

Inria
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2.2 Vortex formulation

Let us consider the penalized Navier-Stokes equation in the vorticity formulation by applying
the curl operator to equation (2), with ω = ∇× u in Ω

∂ω

∂t
+ (u · ∇)ω = (ω · ∇) u + ν∇2ω + λ∇× [H(Φsi)(usi − u)] (3)

with ∇ · u = 0 in Ω . (4)

In equation (3), χsi = H(Φsi), where H is the Heaviside function. In this paper, the vorticity
field is numerically determined by a particle discretization using the scheme presented in the
next section. Because the equations are not written in primitive variables, special treatments
are needed to recover the velocity field and to impose the boundary conditions. Since the
incompressible velocity field is divergence-free, from the vector field theory, we can define a
vector potential Ψ such that

u = ∇×Ψ . (5)

This potential vector is imposed to be solenoidal, that is ∇ ·Ψ = 0, and given ω the updated
vorticity field, the stream function field is computed by solving the linear Poisson equation,

∆Ψ = −ω, (6)

on the cartesian grid with boundary conditions on ∂Ω, using a Fast Fourier Transform (FFT)
solver.

2.3 VIC scheme

The Vortex-In-Cell (VIC) scheme computes the non linear advection by tracking the trajectories
of Lagrangian particles through a set of ODEs. An Eulerian grid is adopted to solve the velocity
field, the diffusive term, and the penalization term. Given D/Dt(·), the material derivative,
equation (3) becomes

Dω

Dt
= (ω · ∇) u + ν∇2ω + λ∇× [H(Φsi)(usi − u)] (7)

The domain Ω is meshed using a uniform fixed cartesian grid. We denote the time step ∆t,
such that tn = n∆t and Φn

si , un, ωn are grid values of the level set functions, velocity, and
vorticity. The vorticity field ω is represented by a set of particles

ω(x) =

N∑
p=1

vpωpζ (x− xp) , (8)

where N is the number of particles, xp the particle location, vp and ωp are the volume and the
strength of a general particle p. ζ is a smooth distribution function, such that

∫
ζ(x) dx = 1,

which acts on the vortex support. In vortex methods, the rate of change of vorticity is modeled by
means of discrete vortex particles, such that the solution of (7) is localized only in the rotational
regions of the flow field. This is the most important advantage of the vortex methods, that is,
the computational efforts are naturally addressed only to specific flow field zones.
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8 Beaugendre & Morency

2.4 Splitting algorithm
A viscous splitting algorithm solves the equation (3). Each time step ∆t is solved using three
sub-steps as follows.

1−Advection:
Dω

Dt
=
∂ω

∂t
+ (u · ∇)ω = 0. (9a)

2− Stretching and diffusion:
∂ω

∂t
= (ω · ∇) u + ν∇2ω. (9b)

3− Penalization term:
∂ω

∂t
= λ∇× (H (Φsi) (usi − u)) . (9c)

sub-step 1: advection
Starting with ωn, grid vorticity above a certain cut-off value will create particles at grid point
locations [40], figure 3 a). Then, using equation (9a), particles are displaced with a fourth order
Runge-Kutta time-stepping scheme, figure 3 b). From the new vortex particles’ location, the
vorticity field is remeshed on the grid, ω?, by the M ′4 third order interpolation kernel introduced
by [41], figure 3 c).

Figure 3: Particles interpolation scheme. The circle’s size denotes the strenght of the particle and the
solid circles represent the advected particles. a) vortex particles and velocity field; b) advection step; c)
remesh-diffusion step.

sub-step 2: stretching and diffusion
The equation to solve for vortex stretching and viscous contribution is given by equation (9b)
applied to ω?. This equation is approximated onto the grid with an Euler explicit scheme, while
the Laplacian is evaluated with a second order accurate standard five points stencil. The results
is noted ω??.

sub-step 3: penalization
The penalization term is evaluated using equation (9c). In our simulations, λ is fixed to 108/∆t.
An implicit Euler time discretization is used to approximate un+1 in the penalization term:

un+1 =
u?? + λ∆tH(Φsi)u

n
si

1 + λ∆tH(Φsi)
. (10)

where u?? is the velocity computed using ω?? resulting of sub-step 2 (∆Ψ?? = −ω?? and u?? =
∇ ×Ψ?? ). The vorticity field at tn+1 is then evaluated on the grid by taking the curl of the
velocity, ωn+1 = ∇ × un+1, and computing the derivative through the second order centered
finite differences approximation. This method is unconditionally stable and enables to take a
very large penalization parameter to insure accuracy.

Inria



Computation of Aerodynamic Forces and Moments 9

3 Aerodynamic forces and moment computations and fluid-
solid interaction model

The penalization term in equation (3), the last term on the right hand side, can also be considered
as being the rigid body effect on fluid. At each time step, the penalization term forces the velocity
inside the rigid body Si to be equal to usi . In velocity formulation, the local momentum change
imposed by the penalization is computed by

∂u

∂t
= λH(Φsi)(usi − u) (11)

In our formulation, the velocity u is implicitly calculated by (10). Thus, the penalization term
become

∂u

∂t
= λH(Φsi)

(
un
si −

(
u?? + λ∆tH(Φsi)u

n
si

1 + λ∆tH(Φsi)

))
(12)

∂u

∂t
= λH(Φsi)

(
un
si(1 + λ∆tH(Φsi))− (u?? + λ∆tH(Φsi)u

n
si)

1 + λ∆tH(Φsi)

)
(13)

∂u

∂t
= λH(Φsi)

(
un
si − u??

1 + λ∆tH(Φsi)

)
. (14)

The global momentum change is obtained by integration over the computational solid domain
Si and the forces are defined as

F =

∫
Si

ρfλH(Φsi)

1 + λ∆tH(Φsi)
(un

si − u??)dx. (15)

In a similar way, the angular momentum change created by the penalization term requires
an integration over the solid domain Si and the instantaneous pitching moment is defined by

T =

∫
Si

ρfλH(Φsi)

1 + λ∆tH(Φsi)
r× (un

si − u?)dx. (16)

In 2D flows, the drag, lift and pitching moment coefficients are defined respectively as

CX =
Fx

1/2ρfU2
∞c

CY =
Fy

1/2ρfU2
∞c

Cm =
T

1/2ρfU2
∞c

2
. (17)

where the x axis is aligned with the far field velocity vector U∞, the y axis is perpendicular to
the far field velocity vector and c is the airfoil chord. For an imposed motion of the solid Si,
given usi we compute the aerodynamic coefficients given by equation (17).

The model for fluid-solid interaction is different from the one used in the previous paper [42].
For a fluid-solid interaction the forces acting on the solid Si induce its motion, the governing
equations are then given by

∂usi

∂t
=

F

Ma
+

(ρsi − ρf )

ρsi
G (18)

∂θ

∂t
=

T

Mi
(19)

where Ma is the mass of the solid Si, Mi its moment of inertia, ρsi its density, ρf the fluid
density and G the gravity vector. The formalism can be easily extended to multiple solids.

RR n° 8718
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Table 1: Static cylinder, values of mean CD

(
CD

)
and St obtained at Re=150 with three different

grids
h Methods CD St

1/128 Noca 1.475 0.173
Momentum 1.523 0.173

1/256 Noca 1.381 0.173
Momentum 1.386 0.172

1/512 Noca 1.347 0.173
Momentum 1.356 0.173

4 Numerical results
In this section, forces and moments computations are validated using a static cylinder and an
oscillating flapping wing motion. Examples of fluid-solid interactions are presented to show the
capabilities of the IBM.

4.1 Static cylinder test case
The computations are done on a square domain of size [−1.85, 6.15]× [−4, 4]. The centre of the
cylinder, whose diameter D is 0.3, is at (0, 0). The far field velocity is U∞ = 1. The fluid viscosity
is selected to achieve the desired Reynolds number Re = 150. The potential flow solution around
a cylinder defines reliable values of the flow field at domain boundaries. For example, on the top
and bottom boundaries a Dirichlet condition is enforced. That is

Ψ = U∞y

(
1− (D/2)2

x2 + y2

)
top, bottom. (20)

This is equivalent to impose a symmetry condition on top and bottom boundaries. Neumann
boundary conditions are imposed at upstream and downstream locations, that is

∂Ψ

∂x
=

2U∞(D/2)2xy

(x2 + y2)2
upstream, downstream. (21)

Three meshes with h = 1/128, 1/256 and h = 1/512, where h is the grid spacing, are used
for computations. The time step dt for computation is evaluated by

dt = (0.5h)2Re (22)

where the Reynolds number is defined as Re = U∞D/ν.
Table 1 compares some results obtained with the three meshes to evaluate grid sensitivities of

the results. The forces Fx and Fy are obtained with the Noca formulation [31] and Momentum
formulation equation (15). The mean drag coefficient CD, CX averaged over one period and the
Strouhal number St are tabulated. The St value depends on the shedding frequency f or on the
dimensionless time period Tp

St =
fD

U∞
= 1/Tp .

Inria



Computation of Aerodynamic Forces and Moments 11

The dimensionless time period is evaluated by looking at the lift coefficient, CY , evolution in
time. For three significant digits, the St values do not depend on the force formulation or on
the mesh size. It is expected that for a fine enough mesh, the two formulations should give the
same results. The average mean drag coefficient values are between the values of 1.44 from Lai
and Peskin [43] and 1.334 from Liu al. [44]. The Strouhal number are close to the value of 0.184
computed in [43].

4.2 Validation of forces through an oscillating airfoil
Flapping wing motions are extensively studied for engineering applications in low Reynolds num-
bers flow where classical fixed wing geometry performance decreases, [45]. According to previous
works, around ten parameters influence the power extraction in flapping wing motions, such as
oscillation frequencies and amplitudes (translational and rotational), phase difference between
plunge and pitch motion, viscosity, free stream velocity, flapping pattern and airfoil geometry. In
this section, we will study the effect of the pitching position and of the geometry’s shape, after
the validation of unsteady forces calculations.

For validation, an oscillating airfoil experiencing simultaneous pitching θ(t) and heaving h(t)
motions is modelled. The infinitely long wing is based on a NACA 0015 airfoil. The pitching axis
is located along the airfoil chord at the position (xp, yp) = (1/3, 0). The airfoil motion, described
by Kinsey and Dumas [46], is defined by the heaving h(t) and the pitching angle θ(t) as follows{

h(t) = H0 sin (ωt+ Φ)
θ(t) = θ0 sin (ωt)

(23)

where H0 is the heaving amplitude and θ0 is the pitching amplitude. The angular frequency is
defined by ω = 2πf and the phase difference Φ is set to 90o. The heaving velocity is then given
by

Vy(t) = H0ω cos(ωt+ Φ) . (24)

Based on the imposed motion and on the upstream flow conditions, the airfoil experiences an
effective angle of attack α(t) and an effective upstream velocity Veff (t) defined by{

α(t) = arctan(−Vy(t)/U∞)− θ(t)
Veff (t) =

√(
U2
∞ + V 2

y (t)
)
,

(25)

where the freestream velocity far upstream of the oscillating airfoil is U∞ = 1.

To validate our simulations, a regime corresponding to the parameters Re =
U∞c

ν
= 1100,

H0/c = 1, f = 0.14, xp/c = 1/3 and θ0 = 76.33o has been computed. A view of the motion is
sketched in figure 4. Our numerical results, obtained using dx = dy = 1 × 10−3, dt = 5 × 10−4

and λ = 1 × 108, are then compared to the forces predictions presented by Kinsey et al. [46]
and by Campobasso et al. [47]. Results of instantaneous forces, equation (17), CX , CY and
pitching moments Cm, figure 5, are in good agreements with literature results. Our solution
slightly overestimates the drag coefficient amplitude and the minimum/maximum of the lift
coefficient but correctly predicts the curve shape of those coefficients. The momentum coefficient
is correctly predicted as well, our curve is slightly shifted to the left compared to literature results
(corresponding to a time lag), figure (5c).
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12 Beaugendre & Morency
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Figure 4: Oscillating airfoil, sketch of the airfoil motion for H0/c = 1, f = 0.14, xp/c = 1/3 and
θ0 = 76.33o.

A mesh sensitivity study using different mesh sizes and different domain sizes has been per-
formed to verify the sensibility of the force predictions. All the simulations used the same time
step fixed to dt = 5× 10−4. Figures 6 (a), (b) and (c) compare CX , CY and Cm obtained with
three different meshes corresponding to a coarse mesh dx = dy = 5 × 10−3, a medium mesh
dx = dy = 2× 10−3 and a fine mesh dx = dy = 1× 10−3 and demonstrate the consistency of the
method. Each mesh allows to compute a good approximation of the forces and moment evolution
through a time period. As the mesh becomes finer the solution converges to the solution obtained
on the finest mesh.
Simulations using the medium grid scale dx = dy = 2 × 10−3 and two different domains, one
domain of size [−3, 8] × [−4, 4] referenced as dom1 and the other one of size [−3, 8] × [−6, 6]
referenced as dom2, have also been performed to investigate boundary conditions effects and
more especially blocking effects on the solution. Figure 6 (d) demonstrates that a small blocking
effect is observable on this test case. Indeed, reducing slightly the height of the domain leads to
an amplitude increase of the CX coefficient. Since the comparisons with the literature results
have been done on the smallest domain, the blocking effects are most probably responsible of the
overestimation noticed on the CX curve. However, even the coarse mesh on the small domain
exhibits the correct behavior of the solution. The following studies are then performed using the
smallest domain and the medium grid scale to ensure a good compromise between the quality of
the solution and cpu time.

4.3 Flexibility offered by penalization

Penalization technique offers a simple way to consider different geometries for the solid Si because
the same mesh can be used for all simulations. To illustrate this capability of the method three
kind of geometries have been selected. The NACA 0015 profile, a rounded edge rectangular plate
with a ratio chord/thickness = 15% and a NACA 0040 profile. Those geometries are sketched
on figure (7a). The method enables also to easily modify the position of the pitching axis, thus
two different positions have been selected (xp, yp) = (1/3, 0) and (xp, yp) = (1/2, 0). Those
geometries evolve using the same motion as described in section 4.2.

For the first position of the pitching axis (1/3, 0), the motion of tow of the three geometries
is sketched on figures 4 & 7(b). Figure (8) compares CX , CY and Cm for the three geometries.

Inria
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Figure 5: Oscillating airfoil, comparison with the results obtained by Kinsey et al.[46] and
Campobasso et al. [47] (a) Drag coefficient, (b) Lift coefficient, (c) Pitching moment.

As expected for such a low Reynolds number flow the results obtained with the NACA 0015
airfoil and the rectangular plate of the same thickness are very similar. The thicker airfoil on
the contrary exhibits a different behavior. As in the work done by Ashraf al. [48], depending on
the Reynolds number, flow around thicker flapping airfoils can be radically different than flow
around thin geometries. Indeed, results of the mean power, table (2), show that thin geometries
extract 1.5 to 3 times more power than thick geometry. The instantaneous power results from
the sum of the heaving contribution FyVy(t) and the pitching contribution Tθ̇(t), where T is the
resulting torque about the pitching axis xp. The mean power extracted over one cycle can thus
be computed using equation (26).

Cpower =
Ppower
1
2ρU

3
∞c
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Figure 6: Mesh sensitivity on the drag coefficient (a) on the lift coefficient (b) and on the pitching
moment (c). For the medium mesh, dx = dy = 2×10−3 influence of the domain size on calculated
forces and moment, dom1 = [−3, 8]× [−4, 4], dom2=[−3, 8]× [−6, 6].

Cpower =

∫ 1

0

(
CY (t)

Vy(t)

U∞
+ Cm(t)

θ̇(t)c

U∞

)
dt. (26)

Moving the pitching position from the leading edge to the middle of the wing increases the mean
power extracted for the thick airfoil and on the contrary decreases the mean power for thin
geometries, table 2.

The results related to the motion corresponding to the second pitching axis location (xp, yp) =
(1/2, 0) are presented in figures (10) and (11). First, the motion using this pitching axis loaction
is sketched in figure (9). Figure (10) compares the evolution over one cycle of CX , CY and Cm for
the three geometries. Again the NACA 0015 airfoil and the rectangular plate exhibit comparable
behaviors, the curves evolving with a similar pattern. The thick airfoil results remain different.

The modification of the pitching axis position reduces the CX coefficient for the three ge-
ometries, figures (11a-d-g). The pitching moment coefficient become antisymmetric as expected
thanks to the symmetry of the motion, figures (11c-f-i). For thin geometries, the modification of
the pitching location leads to related modification of the curves. CX , CY and Cm curves from
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Figure 7: a) Geometries of the NACA 0015 profile, NACA 0040 profile and the rectangular plate.
b) Motion of the rectangular plate for a pitching position at xp = 1/3, yp = 0.

Table 2: Mean Cpower for the three geometries and the two axis pitching position
Geometry (xp, yp) = (1/3, 0) (xp, yp) = (1/2, 0)
NACA 0015 0.945 0.830
NACA 0040 0.339 0.625

Rectangular plate 1.043 0.830

figures (11a and d), (b and e) and (c and f) respectively look similar. The flow around the thick
airfoil seems more affected by the position of the pitching axis, figures(11g-h-i).

4.4 Fluid-solid interaction

In this sub-section, trajectories of objects are computed using the proposed fluid-solid interaction
model. We will first validate our model against a 2D falling cylinder to compare with literature
results. Then we will use the rectangular plate described previously to study the effects of density
ratios on the trajectories.

4.4.1 Falling cylinder

This test case is representative of the sedimentation of a 2D cylinder on a flat plate. We consider
the case of a 2D cylinder in a square cavity, falling under gravity on a flat plane. The dimension
of the cavity is [0, 2] × [0, 6]. The viscosity is 0.01. The density inside and outside the cylinder
is, respectively, 1.5 and 1. The mesh spacing is dx = dy = 3.9× 10−3.The cylinder has a radius
of 0.125, no roughness, and its barycenter is initially located at the point (1,4). To impose wall
boundary conditions on each wall of the cavity we use a penalization layer of 10 cells all around
the cavity, this is the reason why the domain, in figure (12a) appears slightly larger and longer
than the cavity definition. A snapshot of the vorticity field, at time t = 0.3, is depicted in figure
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Figure 8: (a) CX , (b) CY , (c) Cm corresponding to the 3 geometries for a pitching axis at
xp = 1/3, yp = 0.

(12a). The vorticity along the cavity walls results from blocking effects. The falling cylinder
creates an upward flow to satisfy the mass conservation. The cylinder accelerates under gravity,
set to g = −980, then stabilizes its velocity around a steady velocity, due to equilibrium between
friction forces, buoyancy and gravity. Then it hits the bottom of the cavity and bounces, figure
(12b). Information on the collision model used can be found in [49], the parameters chosen
for the linear spring collision model are the Young modulus set to E = 1.083e9, the Poisson’s
coefficient set to 0.8235 and the friction coefficient set to 0.1. The evolution of the vertical
velocity component v as a function of time is plotted in figure (12) and is in agreement with
the solution of Coquerelle et al. [24]. The influence of the time step on the vertical velocity
is also presented in this figure showing the consistency of the model to simulate the physical
phenomenon.
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Figure 9: Motion of the geometries for a pitching position at xp = 1/2, yp = 0.

4.4.2 Falling rectangular plate

We use the previous rectangular plate, from sub-section 4.3 for which the gravity center of the
plate is positionned at (0, 0) with a rotation angle of attack of π/3 with the horizontal axis, the
computational domain is set to [−3, 8] × [−4, 4]. First we compute the flow motion around the
fixed rectangular plate. The Reynolds number is set at Re = 1100 as in the previous study
using this solid body, see section 4.3. A snapshot of the vorticity field around the fixed plate is
presented in figure (13). At time t = 0.5, the fluid-solid interaction is started. Once the fluid-solid
interaction occurs, the aerodynamic forces and moment acting on the solid induce its motion.
During these simulations, the pivot axis of the rectangular plate coincides with its barycenter.
The first simulations consist in investigating the sensitivity of the trajectory according to the
mesh. In those simulations ρs = ρf and the time step dt is fixed to 5 × 10−4. Figure (14a)
presents the position of the plate every 400 steps using 5 meshes. The plate trajectory is very
stable according to the grid size. As can be seen through figures (14b-d) the evolution in time of
the velocities (u-component, v-component and angular velocity) is similar. The velocities value
evolves smoothly from the coarser mesh to the finer mesh. The angle of rotation with the initial
position, figure (14d) induce a similar motion of the plate for all the meshes. The range of the
trajectory and the reactivity of the rectangular plate to the flow is slightly affected by the grid
size.

To verify the influence of plate’s density on the trajectory, four density ratios have been se-
lected ρs/ρf = 2; 1.75; 1.5 and 1.25. The simulations have been performed using the medium
mesh dx = dy = 3.×10−3 with a time step of dt = 5×10−4 and a domain of [−3, 5]× [−9, 3]. As
expected, from previous work in literature [35], the plate starts to auto-rotate, figure (15a). The
auto-rotation starts sooner for larger density ratio. Again, figure (15a), shows the position of the
plate every 400 time steps for each density ratio. The falling velocity, v (figure 15d), of the plate
increases with the plate weight. The vertical acceleration of the plate destabilizes its orientation
and the plate starts to rotate around its barycenter axis, figure (15e). The modification of the
plate orientation with the flow reduces the falling velocity (the gravity force is compensated by
buoyancy and aerodynamic forces), figure (15d). Due to its initial orientation and its weight,
at the beginning of the fluid-solid interaction, the plate glides to the left (figures 15b & c). As
expected, the lighter plate is more affected by the flow and is pushed to the right by the flow.
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Figure 10: (a) CX , (b) CY , (c) Cm corresponding to the 3 geometries for a pitching position at
xp = 1/2, yp = 0.

For the cylinder and the rectangular plate test cases the fluid-solid interaction model behaves
consistently for varying density ratio, mesh size and time step.

5 Conclusions

This paper has presented an original way of computing aerodynamic forces and moments along
with the governing equations to use them in order to simulate fluid-solid interactions. Forces
and moments have been validated within the VIC-IBM scheme using static and dynamic bodies.
Predicted forces and moment agree with literature for a static cylinder and a flapping wing mo-
tion. The flexibility offered by the use of IBM and the level-set description of the geometries has
been demonstrated. The fluid-solid interaction model has been compared to another approach
for a falling cylinder test case and the falling velocity agrees with literature results. For varying
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Figure 11: Pitching axis position comparison (a-b-c) plate, (d-e-f) NACA 0015, (g-h-i) NACA
0040.

density ratio, mesh size and time step, the fluid-solid interaction model predicts realistic trajec-
tories for a rectangular plate. Further experimental results are needed to properly validate this
model. Since aeronautic applications will be considered with the computation of ice shedding
trajectories a specific turbulent wall model is under development.
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Figure 14: Grid sensitivity study on the rectangular plate trajectories: (a) position of the plate
along the trajectories; (b) evolution of u-velocity component (c) evolution of v-velocity component
(d) evolution of the angular velocity and (e) evolution of the rotational angle.
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Figure 15: Density investigation, the solid-fluid interaction starts at t = 5, mesh size h = 3×10−3

(a) trajectories; (b) position of barycenter; (c) u-velocity; (d) v-velocity; (e) angular-velocity; (f)
angle.
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