A. Attali, D. Lieutier, and . Salinas, EFFICIENT DATA STRUCTURE FOR REPRESENTING AND SIMPLIFYING SIMPLICIAL COMPLEXES IN HIGH DIMENSIONS, International Journal of Computational Geometry & Applications, vol.22, issue.04, pp.279-303, 2012.
DOI : 10.1142/S0218195912600060

URL : https://hal.archives-ouvertes.fr/hal-00785082

-. Boissonnat and C. Maria, The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes, Algorithmica, vol.132, issue.23, pp.406-427, 2014.
DOI : 10.1007/s00453-014-9887-3

URL : https://hal.archives-ouvertes.fr/hal-01108416

S. Andersson and . Nilsson, Improved behaviour of tries by adaptive branching, Information Processing Letters, vol.46, issue.6, pp.295-300, 1993.
DOI : 10.1016/0020-0190(93)90068-K

H. Acharya, K. Zhu, and . Shen, Adaptive Algorithms for Cache-efficient Trie Search, Workshop on Algorithm Engineering and Experimentation ALENEX 99, 1999.
DOI : 10.1007/3-540-48518-X_18

W. Appel and G. J. Jacobson, The world's fastest Scrabble program, Communications of the ACM, vol.31, issue.5, 1988.
DOI : 10.1145/42411.42420

-. Boissonnat, C. S. Karthik, and S. Tavenas, Building Efficient and Compact Data Structures for Simplicial Complexes, Algorithmica, vol.92, issue.1
DOI : 10.1007/s00453-016-0207-y

URL : https://hal.archives-ouvertes.fr/hal-01145407

M. Eppstein, D. Löffler, and . Strash, Listing All Maximal Cliques in Sparse Graphs in Near-Optimal Time, pp.403-414, 2010.
DOI : 10.1007/978-3-642-17517-6_36

S. Grohe and S. Kreutzer, Siebertz: Characterisations of Nowhere Dense Graphs, FSTTCS 13, pp.21-40, 2013.

. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 2004.

J. Billera and A. Björner, Face Numbers of Polytopes and Complexes, Handbook of Discrete and Computational Geometry, pp.291-310, 1997.
DOI : 10.1201/9781420035315.ch18

. Hopcroft, AN n log n ALGORITHM FOR MINIMIZING STATES IN A FINITE AUTOMATON, Theory of machines and computations, pp.189-196, 1971.
DOI : 10.1016/B978-0-12-417750-5.50022-1

N. Sgarbas and G. Fakotakis, Kokkinakis: Optimal insertion in deterministic DAWGs, Theoretical Computer Science, pp.103-117, 2003.

S. Daciuk, B. Mihov, R. Watson, and . Watson, Incremental Construction of Minimal Acyclic Finite-State Automata, Computational Linguistics, vol.91, issue.1, pp.3-16, 2000.
DOI : 10.1162/089120100561601

. Maletti, Notes on hyper-minimization, Proceedings 13th International Conference Automata and Formal Languages, pp.34-49, 2011.

V. Badr, I. Geffert, and . Shipman, Hyper-minimizing minimized deterministic finite state automata, RAIRO Theoretical Informatics and Applications, pp.69-94, 2009.
DOI : 10.1051/ita:2007061

N. Câmpeanu, S. Sântean, and . Yu, Minimal cover-automata for finite languages, Theoretical Computer Science, vol.267, issue.1-2, pp.3-16, 2001.
DOI : 10.1016/S0304-3975(00)00292-9

R. Comer and . Sethi, Complexity of Trie Index Construction, Proceedings of Foundations of Computer Science, pp.197-207, 1976.