
HAL Id: hal-01146050
https://inria.hal.science/hal-01146050

Submitted on 18 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyzing the exhaustiveness of the synapse protocol
Bojan Marinkovic, Vincenzo Ciancaglini, Zoran Ognjanovic, Paola Glavan,

Luigi Liquori, Petar Maksimovic

To cite this version:
Bojan Marinkovic, Vincenzo Ciancaglini, Zoran Ognjanovic, Paola Glavan, Luigi Liquori, et al..
Analyzing the exhaustiveness of the synapse protocol. Peer-to-Peer Networking and Applications,
2015, Includes a Special Issue on Cloud, Grid, P2P, and Internet Computing, 8 (5), pp.793–806.
�10.1007/s12083-014-0293-z�. �hal-01146050�

https://inria.hal.science/hal-01146050
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Analyzing the Exhaustiveness of the Synapse Protocol

Bojan Marinković · Vincenzo Ciancaglini · Zoran Ognjanović · Paola Glavan ·
Luigi Liquori · Petar Maksimović

the date of receipt and acceptance should be inserted later

Abstract The Synapse protocol is a scalable protocol de-
signed for information retrieval over inter-connected hetero-
geneous overlay networks. In this paper, we give a formal
description of Synapse using the Abstract State Machines
framework. The formal description pertains to Synapse ac-
tions that manipulate distributed keys. Based on this formal
description, we present results concerning the expected ex-
haustiveness for a number of scenarios and systems main-
tained by the Synapse protocol, and provide comparisons
to the results of the corresponding simulations and experi-
ments. We show that the predicted theoretical results match
the obtained experimental results, and give recommenda-
tions on the design of systems using Synapse.

Keywords Peer-to-peer · DHT-based overlay networks ·
Abstract State Machines · Retrieval probability

1 Introduction

Overlay networks have recently been identified as a promis-
ing model that could cope with the current issues of the In-
ternet, such as scalability, resource discovery, failure recov-
ery, routing efficiency, and, in particular, in the context of

The work presented in this paper was supported by the Serbian Min-
istry of Education, Science and Technological Development, projects
ON174026 and III44006, through Matematički Institut SANU and by
Ministarstvo znanosti, obrazovanja i športa republike Hrvatske.

Bojan Marinković · Zoran Ognjanović · Petar Maksimović
Mathematical Institute of the Serbian Academy of Sciences and Arts -
MISANU, Serbia E-mail: bojanm@mi.sanu.ac.rs

Vincenzo Ciancaglini · Luigi Liquori · Petar Maksimović
National Institute for Research in Computer Science and Control - IN-
RIA, France

Paola Glavan
Faculty of Mechanical Engineering and Naval Architecture - FSB,
Croatia

information retrieval. Today, one can notice that not only
many disparate overlay networks co-exist across the Inter-
net, but that there are scenarios in which they also compete
for the same resources on shared nodes and underlying net-
work links.

One of the main problems of overlay networking is how
to allow different overlay networks to interact and co-operate
with each other. When it comes to the overlay networks that
have already been developed, one can perceive a great ex-
tent of heterogeneity between them. In most cases, this het-
erogeneity renders them unable to co-operate, communicate,
and exchange resources with one another without resorting
to the costly, non-scalable, and security-compromising op-
eration that is overlay merging.

On the other hand, there are many situations where dif-
ferent overlay networks could benefit from co-operation for
various purposes, such as collective performance enhance-
ment, larger shared information, better resistance to loss of
connectivity (network partitions), improved routing perfor-
mance in terms of delay, throughput, and packets loss (by,
for instance, co-operative forwarding of flows). In the con-
text of large-scale information retrieval, several overlays may
wish to offer an aggregation of their resources to their poten-
tial common users, without relinquishing control over them.

In terms of fault-tolerance, co-operation can increase the
availability of the system – if one overlay were to become
unavailable, the global network would only undergo partial
failure, as other different resources would still be usable. A
solution could be found in using a meta-protocol that allows
a request to be routed through multiple heterogeneous over-
lay networks, thus increasing the success rate of every re-
quest.

The ready-to-market Distributed Hash Tables (DHT) -
based technology of structured overlay networks is enriched
with the new capability of crossing different overlays through
co-located nodes, i.e. by peers who are, by user’s choice,

2 Bojan Marinković et al.

member of several overlays. Such nodes are themselves not
only able to query multiple overlays in order to find a match,
but can also replicate requests, passing them through from
one network to another, and collecting the multiple results.

One of the possible solutions for the inter-connection of
heterogeneous overlay networks is the Synapse protocol, in-
troduced in [2], [5] and [8]. It is a generic and flexible meta-
protocol that provides simple mechanisms and algorithms
for easy interconnection of overlay networks. The first con-
tribution of this paper, motivated by the ever-growing need
for formal correctness, will be the formal specification of
Synapse within the formalism of Abstract State Machines.

Abstract State Machines (ASM), introduced in [1], [3]
and [4], are versatile machines which are able to simulate
arbitrary algorithms (including programming languages, ar-
chitectures, distributed and real-time protocols, etc.) in a di-
rect and essentially coding-free way. The simulator is not
supposed to implement the algorithm on a lower abstraction
level; the simulation should be performed on the natural ab-
straction level of the algorithm. A vast literature on ASMs
shows how to model closely and faithfully real complex sys-
tems and how to use models in order to verify their proper-
ties. Some well known algorithms, like Bakery algorithm,
Rail road crossing problem, Kerberos algorithm, Java Vir-
tual Machine, etc., were described using ASM.

In addition to the specification of Synapse in ASM, we
will provide a probabilistic estimate on the exhaustiveness
of the Synapse protocol across a number of scenarios. To
summarize, in this paper we aim to:

– Give a specification of the Synapse protocol using the
formalism of ASM,

– Theoretically analyze the exhaustiveness of the Synapse
protocol, and

– Describe and run the corresponding experiments, in or-
der to validate the obtained theoretical results.

In doing so, we provide a starting block from which further
formal analysis of the Synapse protocol can be performed,
as well as an easy mechanism for estimation of the exhaus-
tiveness of the Synapse protocol, justified by the performed
experiments and simulations.

1.1 Outline of the paper

The rest of paper is organized as follows. Section 2 contains
the basic introduction to the Synapse protocol. In Section
3, we describe the Synapse protocol using the formalism
of ASM. In Section 4, we present the expected results con-
cerning exhaustiveness of the Synapse protocol and compare
them to the results obtained through corresponding simula-
tions and experiments. In Section 5, we introduce several
possible improvements to the original protocol and com-
pare the expected exhaustiveness of an improved version of

Synapse with the original one. Finally, we present our con-
clusions and outline directions for further work in Section
6.

2 Introduction to the Synapse Protocol

The Synapse protocol is a scalable protocol for information
retrieval over inter-connected (heterogeneous) overlay net-
works. Synapse is based on a set of co-located nodes, also
called synapses, serving as low-cost natural candidates for
intra-overlay bridges. In the simplest case, where overlays to
be interconnected are ready to adapt their protocols to the re-
quirements of inter-connection, every message received by a
co-located node can be forwarded to other overlays to which
that node belongs. In other words, the node, upon receipt
of a search query, in addition to its forwarding to the next
hop in the current overlay according to its routing policy,
can potentially start a new search, according to some given
strategy, in some or all of the other overlay networks it be-
longs to. This implies that a mechanism that limits the lifes-
pan or lifetime of a query, Time-To-Live (TTL), needs to be
provided and the detection of already processed queries im-
plemented, so as to avoid infinite looping in the networks,
as is the case in unstructured peer-to-peer systems. Applica-
tions of top of Synapse see the inter-connected overlays as
an unique overlay.

The inter-overlay network induced by the Synapse pro-
tocol can be considered as an aggregation of heterogeneous
sub-overlay networks (hereinafter referred to as intra-overlay
networks). Each intra-overlay consists of an instance of, e.g.,
Chord or any structured, unstructured, or hybrid overlay,
equipped with a 〈key, value〉 distribution and retrieval mech-
anism. We recall that an overlay network for information re-
trieval consists of a set of nodes on which information con-
cerning certain resources is distributed. Each intra-overlay
has its own logical topology, search complexity, as well as
routing and fault-tolerance mechanisms.

As such, we have developed two models of the Synapse
protocol; the first, white box model, is suitable for intra-
connecting overlays whose standards are open and collabo-
rative, meaning that the protocol and the software client can
be modified accordingly. The second, black box model, is
suitable for inter-connecting overlays that, for different rea-
sons, are not collaborative at all, in the sense that they only
route packets according to their proprietary and immutable
protocol. The white box allows the adding of extra parame-
ters to the current intra-overlay we are connecting, while the
black box deals with those extra parameters by means of a
synapse control network, i.e. a distributed overlay that stores
all the synapse parameters that cannot be carried on by the
overlay we are traversing.

The white box Synapse connects heterogeneous network
topologies under the assumption that each node is aware of

Analyzing the Exhaustiveness of the Synapse Protocol 3

the additions made to existing overlay protocols. The new
parameters for handling the game-over strategy and repli-
cation are embedded into the existing protocols. One impor-
tant requirement of the White box Synapse model w.r.t. other
hash-based protocols is that the addresses of keys and nodes
circulate unhashed from hop to hop, so that it can be re-
hashed once a synapse is encountered. Hash functions have
no inverse: once a sought key is hashed, it is impossible to
retrieve its initial value for rehashing during the forward-
ing of the request across overlays. Naturally, hash functions
may vary (in implementations and keysize) from overlay to
overlay. Both the hashed and the original key can be carried
within the message, or a fast hash computation can be per-
formed at each step. Standard cryptographic protocols can
be used to protect the unhashed key in case of strong confi-
dentiality requirements, without affecting the overall scala-
bility of the Synapse protocol itself.

Interconnecting existing overlays made up of, so called,
“blind” peers that are not aware of any additional parame-
ters (the Synapse black box) seems to be a natural Synapse
evolution and it constitutes a problem worth investigating.
The assumption is that an overlay can be populated by blind
peers (e.g. nodes previously in place) and synapses at the
same time. Both interact in the same way in the overlay and
exchange the same messages. Moreover, those synapses can
be members of several overlays independently (thus being
able to replicate a request from one overlay to another) and
can communicate with each other exclusively through a ded-
icated overlay Control Network. The Control Network is ba-
sically a set of DHTs allowing each synapse to share routing
information with other synapses without being aware of the
routing of the undergoing message. So far the DHTs imple-
mented are the following: (i) a Key table, responsible for
storing unhashed keys circulating in the underlying over-
lays, every synapse accessing this table can easily retrieve
the unhashed value of a key by using only the information
it is aware of; (ii) a Replication table, in which is stored the
number of times the key should be replicated across all of
the the overlays; (iii) a Cache table, used to implement the
replication of GET requests, and cache multiple responses
and control the flooding of foreign networks.

3 Description of the Synapse Protocol Using the ASM
Formalism

We assume that the reader is familiar with the semantics of
the ASM. As part of this paper, we provide a brief overview
of ASM in Appendix A.

The paper [9] describes the DHT-based protocol Chord
in the setting of ASM, and gives proof of the conditions un-
der which a system maintained by the Chord protocol forms
stable and correct structure and distributes the keys over the
nodes. As the Synapse protocol is not fully exhaustive [5]

and its underlying structure depends on the protocols of all
overlay networks participating in the system, in this section
we restrict ourselves to extending [9] by presenting only a
specification of the Synapse protocol in ASM.

Specification of the Synapse protocol that is given here
follows pseudo-code given in [5].

Let K,J,N and M be three positive integers. We intro-
duce the following disjoint universes:

– the set Network = {net1, . . . , netN} denotes all of the
overlay networks present in the given system,

– the set Hash = {hash1, . . . , hashN} denotes hash func-
tions for each of the overlay networks,

– the set Node = {node1, . . . , nodeM} represents the set
of all of the nodes participating in the given system,

– the set Key = {key1, . . . , keyK} denotes identifiers of
objects that might be stored in the considered system,
and the set V alue = {value1, . . . , valueK} represents
the values of those K objects,

– the set Query = {query1, . . . , queryJ} denotes all pos-
sible queries in the given system,

– the set Action = {join, leave, syn get, syn put} rep-
resents the possible actions of a synapse node.

Each network in Network is equipped with its own spe-
cific JOIN, LEAVE, PUT and GET rules. As these rules de-
pend on the protocols in each of the intra-overlays, they can-
not be specified formally at this point. Also, we introduce
the following functions:

– action : Node → Action, which saves current action
of a node,

– networkList : Node → ListOfNetworks, which
maps every node ∈ Node into a list of overlays in which
that node participates,

– processed : Node→ ListOfQueries, which registers
already processed queries.

– keyTable : Node × Network × Hash → Key, for
connecting hashed and unhashed values of the keys for
every overlay network,

– cacheTable : Network × Key → ListOfV alues,
used for caching already returned values,

The last two functions will be used only for the Black Box
Synapse model.

3.1 Rules

During each execution of a Synapse agent Module, which
is defined in Section 3.2 below, the rules READMESSAGES,
SYNGET and SYNPUT will be applied. The responsibility of
the READMESSAGES rule is to process all of the messages
sent to a particular node:

4 Bojan Marinković et al.

READMESSAGES=

Read Messages D e d i c a t e d To Me ,
Change Loca l V a r i a b l e s I f I t I s
Reques t ed And C l e a r P r o c e s s e d
Messages

If a synapse node applies one of the SYNPUT or SYN-
GET rules, the main operation is to invoke the PUT or GET

rules of the underlying protocols, respectively. If a synapse
node is queried by some other node, the same procedure ex-
tends the search space and, possibly, returns more answers.
The White (Fig. 1) and Black Box (Fig. 2) models of these
rules slightly differ. Namely, in the case of the White Box
model, the functions KeyTable and CacheTable are not
used because all of the nodes are aware of the changes made
to the original protocol, while in the Black Box model the
synapses need those functions in order to access and manip-
ulate the unhashed keys. Here, we will give only the high
level version of these rules. For the detailed version of the
rules, we need to know all of the protocols that are used by
all overlay networks and then, also, to change the rules of
the basic protocols, i.e. to change all of the rules that are
given in Appendix of [9].

3.2 Synapse module

The main module (Fig. 3) contains actions executed by every
synapse node.

This module is executed in an infinite loop, with the ap-
propriate rule(s) being applied in each of the iterations. With
this module, we have formally defined the behavior of one
Synapse node using ASM.

4 Exhaustiveness of the Synapse Protocol

In this section, we state the probability of the exhaustiveness
of the Synapse protocol, under various assumptions.

We will be using “simple” probabilistic techniques to
solve our problems. An alternative approach could involve
the techniques developed in random graph theory, which
might seem as a natural path to take, given the complicated
inter-connected structure of the network. In the case of the
Synapse protocol the configuration is not fully random. On
the contrary, certain parts exhibit a high level of structure.
If we would like to avoid this situation and try to model our
problem using random multigraphs, then our focus would be
to obtain probabilities of the existence of the paths of certain
length, which is still an open problem.

First, we will use Lemmas 1 and 2, respectively, to give
the probabilities of avoiding synapses in one overlay and
avoiding all of the synapses which are members of another
particular overlay. Then, we will give the probability of ex-
haustiveness of the Pure White Box model of the Synapse

protocol, where there is no failure of the nodes, TTL is not
limited, and synapse nodes are members of exactly two dif-
ferent overlay networks. Afterwards, we will examine how
that probability changes if we allow failure of the nodes,
limit the TTL, and allow for higher degrees of connectivity
of the synapses. Also, the probability of exhaustiveness of
the Black Box model of the Synapse protocol will be calcu-
lated.

To achieve statistical significance for the experiments
and simulations performed in this Section, each configura-
tion of the experiment or simulation was repeated between
1000 and 2000 times, depending on the experiment or simu-
lation. Where the settings of the experiment and simulation
corresponds the setting of a theorem we will use the results
of obtained in [5].

Lemma 1 Let there be b nodes in the overlay, where w of
them are not synapses, while the rest of them are. If the
search procedure were to contact up to l nodes (with uni-
form probability of choosing a number from {1, . . . , l}), the
probability of contacting no synapses is equal to:

P
(1)
w,b,l =

1

l

l∑
m=1

(
w
m

)(
b
m

) .
Proof The probability of not contacting any of the synapses
out of the m nodes that have been contacted is equal to:

Pm =

(
w
m

)(
b
m

) ,
because

(
n
k

)
is the number of combinations in which we

could contact k nodes out of the possible n. Since we can
choose uniformly the number from the set {1, . . . , l}, choose
the number of nodes to be contacted, the final probability
that we are looking for is equal to:

P
(1)
w,b,l =

1

l

l∑
m=1

Pm =
1

l

l∑
m=1

(
w
m

)(
b
m

) .
�

Lemma 2 Let the system contain a number of overlays, and
let M0 and M1 be two of these overlays. Let M0 contain
b = w + r + g nodes, where w, r and g are the number of
nodes that are not synapses, the number of synapses towards
the overlay M1, and the number of synapses to the remain-
ing overlays in the system, respectively. If the search proce-
dure were to contact up to l nodes (with uniform probability
of choosing the number from {1, . . . , l}), the probability of
contacting no synapses to M1, if we know that at least one
synapse has been contacted, is:

P
(2)
w,r,g,l =

1

l

l∑
m=1

∑m
i=1

(
g
i

)(
w

m−i

)∑m
i=1

(
g+r
i

)(
w

m−i

) .

Analyzing the Exhaustiveness of the Synapse Protocol 5

SYNPUT=
f o r a l l net wi th net ∈ networkList(Me)

Invoke PUT Of Network net To S t o r e 〈key, value〉

SYNGET=
i f query /∈ processed(Me) and ttl > 0 Check if the query is already

processed or TTL is reached
f o r a l l net wi th net ∈ networkList(Me)

p a r
Invoke GET Of Network net To Find key

wi th Reduces ttl

processed(Me).add(query)
e nd pa r

Fig. 1: White Box Synapse Get and Put in ASM

SYNPUT=
seq

Get Unhashed Value o f key From keyTable
f o r a l l net wi th net ∈ networkList(Me)

Invoke PUT Of Network net To S t o r e 〈key, value〉
endseq

SYNGET=
seq

Invoke GET In O r i g i n a l Network
Get Unhashed Value o f key From keyTable

i f query /∈ processed(Me) and ttl > 0 Check if the query is already
processed or TTL is reached

p a r
Get R e s u l t s From cacheTable Check if a similar query

got the result
f o r a l l net wi th net ∈ networkList(Me)

p a r
Invoke GET Of Network net To Find key

wi th Reduces ttl

processed(Me).add(query)
e nd pa r

e nd pa r
Add R e s u l t To cacheTable Store the result for future queries

endseq

Fig. 2: Black Box Synapse Get and Put in ASM

Proof If m nodes have been contacted, the probability of
not contacting any of the synapses leading to M1, if at least
one synapse has been contacted, is:

Pm =

∑m
i=1

(
g
i

)(
w

m−i

)∑m
i=1

(
g+r
i

)(
w

m−i

) .
Similarly to Lemma 1, as we can uniformly, from the set

{1, . . . , l}, choose the number of nodes to be contacted, the
final probability that we are looking for is equal to:

P
(2)
w,r,g,l =

1

l

l∑
m=1

Pm =
1

l

l∑
m=1

∑m
i=1

(
g
i

)(
w

m−i

)∑m
i=1

(
g+r
i

)(
w

m−i

) .
�

4.1 Exhaustiveness of White Box Synapse

Hereinafter, we will assume that the complexity of the search
procedure for any intra-/control overlay is log2(n). We will
also use the following notation:

– N, (N > 2) - total number of intra-overlays,
– n - number of nodes per intra-overlay,
– s - for the White Box model - percentage of nodes, that

have become synapses; for the Black Box model - per-
centage of synapses with respect to all of the nodes in
the system,

– pf - probability for a node/synapse to fail,
– c - number of connections per synapse,
– F - the event that the given key has been found,

6 Bojan Marinković et al.

seq
READMESSAGES Process messages
Choose An Ac t i on Choose next action
p a r

i f action(Me) = join

seq
Choose net To J o i n
p a r

JOIN ne twork net Invoke JOIN of net
networkList(Me).add(net) Add net to local list

e nd pa r
endseq

e n d i f
i f action(Me) = leave t h e n

seq
Choose net To Leave
p a r

LEAVE ne twork net Invoke LEAVE of net
networkList(Me).remove(net) Remove net from local list

e nd pa r
endseq

e n d i f
i f action(Me) = syn put t h e n

SYNPUT Invoke local SYNPUT
e n d i f
i f action(Me) = syn get t h e n

SYNGET Invoke local SYNGET
e n d i f

e nd pa r
endseq

Fig. 3: Synapse module

– KO - the event that the given key is stored at the same
intra-overlay as the starting node,

– S - the event that a synapse has been contacted,
– D - the event that a query passed a maximum of D intra-

overlays,
– Bc - the complementary event of some event B.

Pure White Box Synapse In this scenario, the nodes do not
fail, TTL is not limited, and synapse nodes are members of
exactly two different overlay networks.

Theorem 1 (Pure White Box Satisfaction Ratio) The prob-
ability for a node to get a value for a given key stored in the
system, where all the synapses are connecting exactly two
overlays, is:

P (F) = 1− N − 1

N

(
P

(1)
(1−s)n,(1+s)n,l+(

1− P
(1)
(1−s)n,(1+s)n,l

)(
P

(2)

(1−s)n, 2ns
N−1 ,2ns

N−2
N−1 ,l

)N−1)
,

where l = blog2((1 + s)n)c.

Proof The probability P (F) to find the given key is equal
to:

P (F) = 1− P (F c).

There are two possibilities: the given key and the starting
node are or are not stored in the same overlay. Therefore,
using the formula of total probability, we have that:

P (F c) = P (KO)P (F c|KO) + P (KOc)P (F c|KOc).

Due to the property of sub-overlays that if a key is stored
in a particular overlay it will always be found, we have that
P (F c|KO) = 0, so:

P (F c) = P (KOc)P (F c|KOc).

Next, we have that the probability that the given key and
the starting node are not in the same overlay is equal to:

P (KOc) =
N − 1

N
.

There are two cases in which we do not get the key that
is stored in a different overlay from the starting node. In the
first case, none of the synapses have been reached during the
search procedure at the starting overlay. In the second case,
at least one of the synapses was asked but anyway the key
was not found (because the query didn’t reach the overlay
where the key is stored). This is reflected by:

P (F c|KOc) =

P (Sc)P ((F c|KOc)|Sc) + P (S)P ((F c|KOc)|S),

Analyzing the Exhaustiveness of the Synapse Protocol 7

where P ((F c|KOc)|Sc) is equal to 1. Finally, we get:

P (F) = 1− N − 1

N
(P (Sc) + P (S)P ((F c|KOc)|S)). (1)

From Lemma 1, we can obtain P (Sc). We can consider
the situation that the overlay contains (1 + s)n nodes while
2sn of them are synapses, from which we get:

P (Sc) = P
(1)
(1−s)n,(1+s)n,l.

Also, we have that:

P (S) = 1− P (Sc).

Similarly, from Lemma 2 we can get P ((F c|KOc)|S)).
This time we can consider N − 1 overlays with (1 + s)n

nodes in total, while (1 − s)n are not synapses, and 2ns
N−1

are those synapses which lead to the particular overlay. We
have to adopt this for all N − 1 overlays that are not in the
starting network, yielding:

P ((F c|KOc)|S)) = P
(2)

(1−s)n, 2ns
N−1 ,2ns

N−2
N−1 ,l

N−1
.

Now, we have all of the components required for equa-
tion (1):

P (F) = 1− N − 1

N

(
P

(1)
(1−s)n,(1+s)n,l+(

1− P
(1)
(1−s)n,(1+s)n,l

)(
P

(2)

(1−s)n, 2ns
N−1 ,2ns

N−2
N−1 ,l

)N−1)
,

�

In Figure 4, we present the results of the deployment of
openSynapse and JSynapse, the applications of the Synapse
protocol developed and tested for the purposes of [5], as
well as the graph constructed from the result of Theorem
1. The lines represent various experiments where the given
number of nodes was uniformly distributed over the given
number of overlay networks, as described in the correspond-
ing legends. The percentage of the nodes that have become
synapses is given on the x-axis. We can see from the graphs
that there exists a substantial correspondence between the
theoretically predicted results and those obtained through
experimentation.

White Box Synapse with Node Failure In this scenario, with
respect to the previous one, we allow the possibility for a
node to fail.

Lemma 3 The expected number of nodes per overlay is:

E(n) = (1− pf)n

If we were to allow node failures in Theorem 1, the num-
ber of nodes we have per overlay would be E(n) rather then
n. Also, we have that the probability that a given key was
not stored on some of the nodes that have failed is 1 − pf .
With this, we obtain the following result:

Theorem 2 The probability for a node to get a value for a
given key stored in the system is:

P (F) = (1−pf)
(
1−N − 1

N

(
P

(1)
(1−s)(1−pf)n,(1+s)(1−pf)n,l

+
(
1− P

(1)
(1−s)(1−pf)n,(1+s)(1−pf)n,l

)
(
P

(2)

(1−s)n,
2(1−pf)ns

N−1 ,2(1−pf)ns
N−2
N−1 ,l

)N−1))
,

where l = blog2((1 + s)n)c.

White Box Synapse with Multiple Connectivity of Synapses
In this scenario, we allow synapses to connect more than
two overlays at the same time. Also, we do not take into
consideration node failures.

Theorem 3 The probability for a node to get a value for a
given key stored in the system, where all the synapses are
connecting exactly c overlays, is:

P (F) = 1− N − 1

N

(
P

(1)
(1−s)n,(1+(c−1)s)n,l+(

1− P
(1)
(1−s)n,(1+(c−1)s)n,l

)
P

(2)

(1−s)n, cns
N−1 ,cns

N−2
N−1 ,l

N−1
)
,

where l = blog2((1 + (c− 1)s)n)c.

Proof The total number of nodes in Lemmas 1 and 2 in-
creases with every new connection of a new synapse, so we
can consider every new connection as a new node of the un-
derlying overlay network. �

In Figure 5, we illustrate the situation where 10000 nodes
are uniformly distributed over 20 overlay networks. The lines
tell us the percentage of the nodes which are transformed to
synapses, while on the x-axis we present the degree of con-
nectivity of the synapses. Again, we can see that theoretical
predictions correspond to the obtained experimental results.

White Box with TTL In this scenario, we allow for a time-
to-live (TTL) stopping criterion for the issued request. If we
consider TTL as the number of overlays that can be reached
during one query, then we have the following theorem:

8 Bojan Marinković et al.

(a) openSynapse Tests (b) JSynapse Tests

(c) Theoretical Calculations

Fig. 4: Satisfaction Ratio - Experiments and Theory

Theorem 4 The probability for a node to get a value for a
given key stored in the system is:

P (F) = 1− N − 1

N

(
D

N

(
P

(1)
(1−s)n,(1+s)n,l+(

1− P
(1)
(1−s)n,(1+s)n,l

)(
P

(1)
(1−s)n,(1+s)n,l+(

1− P
(1)
(1−s)n,(1+s)n,l

)(
P

(2)

(1−s)n, 2ns
D−1 ,2ns

D−2
D−1 ,l

)D−1))
+

N −D

N

)
where l = blog2((1+s)n)c, and D is the maximum allowed
number of overlays for a query to pass.

Proof Similarly to the proof of Theorem 1, we can get that:

P (F) = 1− N − 1

N
P (F c|KOc),

where:

P (F c|KOc) =

= P (D)P ((F c|KOc)|D) + P (Dc)P ((F c|KOc)|Dc).

Next, since the probability P ((F c|KOc)|Dc) of not find-
ing the given key is 1, and P (D) = D

N , we have that:

P (F c|KOc) =
D

N
P ((F c|KOc)|D) +

N −D

N
.

Like in the proof of Theorem 1, the event (F c|KOc)|D
can be divided into whether the synapse in the starting net-
work has or has not been contacted, but this time taking into
account a system containing D overlays:

P (F c|KOc)|D) = P
(1)
(1−s)n,(1+s)n,l+

(1− P
(1)
(1−s)n,(1+s)n,l)P ((F c|KOc)|D)|Sc),

and

P ((F c|KOc)|D)|Sc) = P
(1)
(1−s)n,(1+s)n,l+(

1− P
(1)
(1−s)n,(1+s)n,l

)(
P

(2)

(1−s)n, 2ns
D−1 ,2ns

D−2
D−1 ,l

)D−1

,

which completes our equation. �

Analyzing the Exhaustiveness of the Synapse Protocol 9

(a) py-synapse Simulations (b) Theoretical Calculations

Fig. 5: Connectivity of Synapses - Simulations and Theory

In Figure 6, we examine a system of 1000 nodes uni-
formly distributed over 10 overlay networks. On the graphs
the scenarios with different percentages of nodes that have
become synapses and TTL are represented. Again, one can
notice a clear correspondence between the theory and the
experiments.

4.2 Exhaustiveness of Black Box Synapse model

Theorem 5 (Pure Black Box Satisfaction Ration) The prob-
ability for a node to get a value for a given key stored in the
system is:

P (F) = 1− N − 1

N

(
P

(1)
(1−s)n,n,l +

(
1− P

(1)
(1−s)n,n,l

))
P

(2)

(1−s)n, sn
N−1 ,sn

N−2
N−1 ,l

N−1
P

(1)
sn(N−1),snN,L.

where l = blog2(n)c and L = blog2(snN)c.

Proof Similarly as in the proof of Theorem 1, we obtain:

P (F) = 1− N − 1

N
(P (Sc) + P (S)P ((F c|KOc)|S)). (2)

We have that

P (Sc) = P
(1)
(1−s)n,n,l.

and also that P (S) = 1 − P (Sc). This time, besides the
N sub-overlay networks, we have one more control network
consisting of all of the synapses in the system. Therefore,
we have that:

P ((F c|KOc)|S)) =

=

(
P

(2)

(1−s)n, sn
N−1 ,sn

N−2
N−1 ,l

)N−1

P
(1)
sn(N−1),snN,L,

which completes equation 2. �

Similarly, like in the previous section, we can extend
Pure Black Box Model and obtained formula by allowing
synapse failures or their multiple connectivity and introduc-
ing TTL. In Figure 7, we show the results of the deployment
of jSynapse, as well as the graph illustrating the result of
Theorem 5. The lines represent various experiments where
the given number of nodes was uniformly distributed over
the given number of overlay networks, while the total num-
ber of synapses per overlay is given on the x-axis. Just as
in the previous three cases, we can notice a clear correspon-
dence between the graphs.

5 Improvements of Synapse

The implementation of the Synapse protocol implemented in
previous sections will be referred to as “opportunistic rout-
ing”, i.e., a request could transit to a other intra-overlay only
if a synapse node was reached during the routing request in
the original intra-overlay.

Furthermore, we shall remind, that in order to be reli-
ably performed, the inter-routing operation requires addi-
tional data (amongst which, the non-hashed version of the
requested key) to be exchanged between a node and a synapse.
This exchange happens according to two different mecha-
nisms, depending on the “openness” of the considered sys-
tem. Similarly like in the previous sections two models of
the protocol can be considered: the White and Black box.

In this section, we present a set of several improvements
over the original system in order to provide, rather than a
simple routing protocol, a more general framework to al-
low the design of routing schemes and applications based
on multiple overlay networks interconnected via co-located
nodes. In particular, this new system, presented in [6] and
[7], differs from the one in [5] in the following aspects:

– instead of embedding sensitive inter-routing data in the
overlay messages, or sharing it via a DHT, the data is

10 Bojan Marinković et al.

(a) py-synapse Simulations (b) Theoretical Calculations

Fig. 6: TTL - Simulations and Theory

(a) jSynapse simulations (b) Theoretical Calculations

Fig. 7: Black Box Synapse - Simulations and Theory

now exchanged only between the requesting peer and a
gateway node via a dedicated encrypted message;

– peers can discover new gateway nodes, thus building an
unstructured overlay neightborhood on top of the struc-
tured one, by different mechanisms, namely: overlay mes-
sage analysis, explicit notifications or peer exchange;

– rather than relying on the sole opportunistic routing, the
system can now implement different routing strategies
that send inter-routing requests to gateway nodes in a
peer’s neightborhood at the same time as requests to the
structured overlays it is connected to.

Thanks to these major improvements, we now have an en-
tire new general architecture capable of orchestrating multi-
ple overlay networks as well as transparently interconnect-
ing existing overlays, with the possibility of designing new
inter-routing schemes that may vary depending on the appli-
cation or the networking conditions. We can choose, for ex-
ample, to explicitly select an overlay to route a request into
according to ustructured cryteria, (flooding, random walk,

etc.), or we can decide to arrange the IDs of each overlay
according to a structured model and perform inter-overlay
routing following a structured mechanism, being as such
able to emulate the behavior of certain hierarchical overlays.
Furthermore, we can still rely on the original mechanism of
routing if a synapse node is touched (opportunistic routing),
thus maintaining the same desirable properties of the first
protocol implementation.

Node discovery can also be performed in an opportunis-
tic way, by embedding additional information in the overlays
messages, or independently via a peer exchange mechanism.
The latter allows for a Synapse node to be completely inde-
pendent from the underlying overlay protocol, thus giving
the possibility of having existing overlay networks interact
with each other without breaking network compatibility, by
using the same protocol that we would use for a white box
scenario. As such, this new implementation aims to be a gen-
eralization and an extension of the original Synapse protocol
to multiple cooperation scenarios.

Analyzing the Exhaustiveness of the Synapse Protocol 11

Theorem 6 (Improved Synapse) The probability P (F) for
a node to get a value for a given key stored in the system is
equal to:

P (F) = 1− (1− s)
1

l

l∑
m=1

(
(1−s)n

m

)(
n
m

) .

Proof The probability to get an answer is equal to:

P (F) = P (S)P (F |S) + P (Sc)P (F |Ss),

where P (S) denotes the probability of a event that a query
starts from a synapse, and P (F |S) denotes the probability
to get an answer under that condition. Next, the probability
P (F |S) is 1 and the probability to pick a synapse is equal
to s, so:

P (F) = s+ (1− s)

(
1− 1

l

l∑
m=1

(
(1−s)n

m

)(
n
m

))
.

Finally, we have that:

P (F) = 1− (1− s)
1

l

l∑
m=1

(
(1−s)n

m

)(
n
m

) .

�

Figure 8 compares the results of Theorem 1 and 6 in the
situation when the system consists of 2000 nodes uniformly
distributed on the number of overlay networks given on x-
axis with different connectivity of the synapses, showing the
superiority of improved Synapse over the original one.

6 Conclusions

In this paper, using the formalism of ASM, we have pro-
vided the specification of the Synapse protocol. We have
given probabilistic assessments of the exhaustiveness of this
protocol under a variety of scenarios. We can conclude that
the exhaustiveness equations that have been proven are in
strong correspondence with the results obtained by running
the appropriate simulations and experiments. These equa-
tions have shown us that good exhaustiveness can be reached
with a relatively small percentage of strategically positioned
synapse nodes. It is always better to have a higher degree of
connectivity of the synapses and an unlimited TTL, but even
with relatively small numbers, reasonably good exhaustive-
ness can be achieved.

Possible directions for further work include the applica-
tion of similar techniques for solving some open problems in
the field of random multigraphs, especially when some parts
of those graphs are not fully random but very-well struc-
tured.

References

1. E. Börger, R. Stärk. Abstract State Machines A Method for High-
Level System Design and Analysis., Springer-Verlag, 2003.

2. V. Ciancaglini, L. Liquori, L. Vanni. CarPal: interconnecting over-
lay networks for a community-driven shared mobility., in Trustwor-
thy Global Computing 2010.

3. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In Specifica-
tion and Validation Methods, Oxford University Press, pages 9–36,
1995.

4. Y. Gurevich. Sequential Abstract State Machines capture Sequen-
tial Algorithms. In ACM Transactions on Computational Logic Vol-
ume 1, Number 1, pages 77–111, 2000.

5. L. Liquori, C. Tedeschi, L. Vanni, F. Bongiovanni, V. Ciancaglini
and B. Marinković. Synapse: A Scalable Protocol for Interconnect-
ing Heterogeneous Overlay Networks. In Networking 2010, Lecture
Notes in Computer Science, vol. 6091 (p. 410), pages 67–82, 2010.

6. V. Ciancaglini, G.N. Hoang and L. Liquori. Towards a Common
Architecture to Interconnect Heterogeneous Overlay Networks. In
ICPADS 2011, IEEE, pages 817 – 822, 2011.

7. V. Ciancaglini, G.N. Hoang, P. Maksimović and L. Liquori. An
Extension and Cooperation Mechanism for Heterogeneous Overlay
Networks. In Networking 2012, Lecture Notes in Computer Science,
vol. 7291, pages 10 – 18, 2012.

8. B. Marinković, L. Liquori, V. Ciancaglini and Z. Ognjanović. A
Distributed Catalog for Digitized Cultural Heritage. In ICT Innova-
tions 2010, CCIS 83, pages 176 – 186, 2011.

9. B. Marinković, P. Glavan and Z. Ognjanović. Formal Description
of the Chord Protocol using ASM. At arXiv:1208.0712v1.

A Abstract State Machines

We assume that the reader is familiar with the semantics of the Abstract
State Machine defined in [1,3,4], and we quote here only the essential
definitions.

A Gurevich’s Abstract State Machine A is defined by a program
Prog - consisting of a finite number of transition rules, at most count-
able set of states and initial states. A models the operational behavior
of a real dynamic system S in terms of evolution of states.

A state S is a first-order structure over a fixed signature (which is
also the signature of A), representing the instantaneous configuration
of S. The value of a term t at S is denoted by [t]S . The basic transition
rule is the following function update

f(t1, . . . , tn) := t

where f is an arbitrary n-ary function and t1, . . . , tn, t are first-order
terms. To fire this rule in a state S evaluate all terms t1, . . . , tn, t at S
and update the function f to [t]S on parameters [t1]S , . . . , [tn]S . This
produces another state S′ which differs from S only in the new in-
terpretation of the function f (since states represent memory, function
update represents change in the content of one memory location).

Additionally, we have the following transition rules.
The conditional constructor produces “guarded” transition rules

of the form:

i f g t h e n
R1

e l s e
R2

e n d i f

where g is a ground term (the guard of the rule) and R1, R2 are tran-
sition rules. To fire that new rule in a state S evaluate the guard; if it is
true, then execute R1, otherwise execute R2. The else part may be
omitted.

The seq constructor produces transition rules of the form:

12 Bojan Marinković et al.

(a) Pure White Box Synapse (b) Improved Synapse

Fig. 8: Comparison of the Expected Results between Pure White Box Synapse and Improved Synapse

seq
R1

. . .
Rn

endseq

to apply R1, . . . , Rn sequentially. Note that the seq-constructor is orig-
inally defined without the endseq-line, but we add it to improve read-
ability.

The par constructor produces transition rules of the form:

p a r
R1

. . .
Rn

e nd pa r

to apply R1, . . . , Rn simultaneously, when possible, otherwise do noth-
ing.

If U is a universe name, v is a variable, g(v) is a Boolean term and
R is a rule then the following expression (choose constructor) is a rule
with the main existential variable v that ranges over U and body R:

choose v i n U s a t i s f y i n g g(v)
R

endchoose

If there is an element a ∈ U such that condition g(a) is true, fire rule
R (with a substituted for v), otherwise do nothing.

To express the simultaneous execution of a rule R for each x sat-
isfying a given condition ϕ (forall constructor):

f o r a l l x wi th ϕ do
R

e n d f o r a l l

A run/computation of A is a finite or infinite sequence S0;S1; . . .
where S0 is an initial state and every Si+1 is obtained from Si execut-
ing a transition rule.

In general runs may be affected by the environment. Environment
manifests itself via so-called external functions. Every external func-
tion can be understand as a (dynamic) oracle. The ASM provides the
arguments and the oracle gives the result.

In a distributed Gurevich’s Abstract State MachineA multiple au-
tonomous agents cooperatively model a concurrent computation of S.
Each agent a executes its own single-agent program Prog(a) as spec-
ified by the module associated with a by the function Mod. More pre-
cisely, an agent a has a partial view V iew(a;S) of a given global state

S as defined by its sub-vocabulary Fun(a) (i.e. the function names
occurring in Prog(a)) and it can make a move at S by firing Prog(a)
at V iew(a;S) and changing S accordingly. The underlying semantic
model ensures that the order in which the agents ofA perform their ac-
tions is always such that no conflicts between the update sets computed
for distinct agents can arise. The global program Prog is the union of
all single-agent programs. Nullary function Me, that allows an agent to
identify itself among other agents, is interpreted as a for each agent a,
and does not belong to Fun(a) for any agent a. It cannot be the subject
of an update instruction and is used to parameterize the agent’s spe-
cific functions. A sequential run of a distributed Gurevich’s Abstract
State machine A is a (finite or infinite) sequence S0;S1; . . . ;Sn; . . .
of states of A, where S0 is an initial state and every Sn+1 is obtained
from Sn by executing a move of an agent. The partially ordered run,
defined in [3], is the most general definition of runs for a distributed
ASM. In order to prove properties on a partially ordered run, the at-
tention may be restricted to a linearization of it, which is, in turn, a
sequential run (see [3] for more explanations). In the rest of the paper
we consider only regular runs in which a state is global and moves of
agents are atomic.

