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The work presented here is motivated by the studies of agricultural and archaeological
soils. The investigation of the thermal properties of the soil can have significant practical
consequences such as evaluation of optimum conditions for plant growth and development and
can be utilized for the control of thermal-moisture regime of soil in the field | ]. These
properties influence how energy is partitioned in the soil profile so the ability to monitor them
is a tool to manage the soil temperature regime that affects seed germination and growth. It
can also provide information about the use of fire by ancient civilizations whether for cooking
or heating... [ ]. The present work focuses on the study of archaeological hearths.

The report is basically divided into two main parts. In the first part, we introduce a numeri-
cal strategy in both 1D and 3D-axisymmetric coordinate systems to estimate the thermophysical
properties of the soil (volumetric heat capacity (pC)s, thermal conductivity As and porosity ¢)
of a saturated porous medium where a phase change problem (liquid/vapor) appears due to in-
tense heating from above. Usually ¢ is the true porosity, however when the soil is not saturated
(which should concern most cases), ¢ may be taken equal to the part of water in the pores.
This is of course an approximation which is correct for the energy balance but which neglects
the capillary forces and the migration flow of the liquid inside the porous media; a complete
model of such an unsaturated model is out of the scope of this work. In the second part, we
present a similar strategy to approximate the value of diffusivity a and the sensors’ positions
in the case of dry porous medium where no phase change is present.

The inverse problem, presented here, consists of the estimation of thermophysical properties
of the soil knowing the heating history curves at selected points of the altered soil | ]. In
general, the mathematical formulation of inverse problems leads to models that are typically ill-
posed [ ]. In such problems, we usually minimize a discrepancy between some experimental
data and some model data [ ]. In our problem, we use the least square criterion in which the
sensitivity coefficients appear and where we try to minimize the discrepancy function which is
expressed as the norm of the difference between the experimental temperature and the numerical
data obtained by our approximated model [ |. The system composed of the energy equation
together with other boundary initial problems resulting from differentiating the basic energy
equation with respect to the unknown parameters must be solved | ].

At the stage of numerical computations, the Damped Gauss Newton method and the Lev-
enberg Marquardt algorithm are used to minimize the least square criterion; that requires the
solution of a system of highly nonlinear ordinary differential equations. It is important to note
that in our new configuration, the solution is reached after taking into consideration the tem-
perature history at selected points of the domain and at different time steps which was not
the case in | | where the authors reached the solution by taking the temperature history
at the final time only and at all the points in the computational domain. Also, we used a
scaling technique which sounds to be inevitable since our unknown parameters have different
order of magnitude. This global approach is based on the method of lines, where time and
space discretizations are considered separately. The space discretization is performed using a
vertex-centered finite volume method; the discretization in time is performed via an ODE solver
that uses a backward differentiation method (BDF') which is an implicit method for numerical
integration of differential equation that requires the calculation of a Jacobian matrix. The ad-
vantage of our configuration to that presented by [ | is that we propose a model which
is more realistic and closer to the experimental setup i.e. our synthetic data consists of the
calculation of the temperature at few sensors (around 5) during the whole heating duration.



Identification of the thermophysical properties of the soil during
phase change in 1D

1 Forward problem (1D)

The physical problem consists of heating the soil by a fire. To model this problem, we replace the
soil by a perfect porous medium with constant and uniform properties heated from above by a
constant temperature T, (temperature of the fire between 300 C and 700 C). T, must be greater
than T, (the evaporation or phase change temperature which is normally 100 C). In order to
model the heat conduction transfer in the soil, we use the energy equation and we neglect the
convection term so that the energy conservation equation for the unknown temperature T is
expressed as:

oT ) -
(pC)ea = div ()\e gradT) (1)
with the following initial and boundary conditions:

T(x,0) = To(x) in Q

T(z,t) = TP (x,t) on TP x (0,tenq] (Dirichlet)

VT (x,t).v =0 on I x (0, temqg] (Neumann)

where T represents the temperature, Tp is the initial temperature at tg = 0, 77 is T, at the
fire and Tj elsewhere; p is the density, C' is the specific heat capacity, A is the conductivity, ¢
is the porosity, the subscripts e, f and s indicate the equivalent parameters of the medium, the
properties of the fluid and the porous matrix properties respectively. v indicates the outward
unit normal vector along the boundary of 2. Note that the thermophysical properties of the
fluid are temperature dependent and that is why the problem is highly nonlinear.

The effective volumetric heat capacity and the effective conductivity are defined by the
equations (2) and (3):

(PC)e = d(pC) s + (1 = ¢)(pC)s (2)
_ (1-9)8
)\e = )‘f ¢ + i\\% 1o (3)

The effective conductivity in equation (3) is calculated using Kunii and Smith model | ]

To avoid the tracking of the interface of the phase change problem (liquid/vapor) which
appears when the water existing in the soil turns into gas, the Apparent Heat Capacity (AHC)
method is used (see [ D).

1.1 Numerical strategy

We need to solve the heat diffusion equation (PDE) so we choose the method of lines which
is a way of approximating PDEs by ODEs where space and time discretizations are consid-
ered separately. The spatial discretization is performed using the vertex-centered finite volume
method which conserves the mass locally and preserves continuity of fluxes. To apply the spa-
tial discretization, the computational domain is divided into a finite volume grid or mesh with
equal length h = Az as shown in figure 1. In fact, the spatial variable is discretized into N
discretization points and each state variable T is transformed into N variables corresponding
to its value at each discretization point. It is important to mention that the end points of

each interval (x,_ 1 and x; 1 ) are computed as exactly the middle of two consecutive nodes, i.e.
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Figure 1: 1D control volume

T 1= %(ml +x;41). The spatial derivatives are approximated by using a finite volume formula
2

on three points so we end up with a semi-discrete system of ODEs which can be written in the

form: p
— = B(TT 4

The ODE coefficient matrix B(T") has a tridiagonal structure due to the 1D Laplacian dis-
cretization. It is evident that the precision of computation in AHC method is sensitive to the
value of phase change temperature interval AT chosen to approximate the dirac distribution.
In fact, our phase change problem becomes more and more stiff as the value of AT approaches
zero. The difficulty with stiff problems is the prohibitive amount of computer time required
for their solution by classical ODE solution methods, such as the popular explicit Runge-Kutta
and Adams methods. The reason is the excessively small step sizes that these methods must
use to satisfy stability requirements due to the high non-linearity of the apparent capacity of

the fluid Cf | ]. For this reason, we use an implicit ODE solver based on a BDF scheme
which possesses the property of stability and therefore does not suffer from the stability step
size constraint | ]. The BDF implicit scheme requires the calculation of a Jacobian matrix

which is calculated and generated by a Computer Algebra System (CAS, Maple or Maxima) and
then stored in a sparse format. Note that the numerical calculation is performed with ddebdf
routine of the SLATEC Fortran library which was modified to use the UMFPACK sparse linear
solver | |]. The ODE solver performs time integration by adjusting automatically the time
step in the BDF scheme (order is automatic and varies between 1 and 5) and all these primary
libraries are grouped in the easy-to-use Fortran MUESLI library [Can].

2 Inverse problem (1D)

In order to solve the parametric inverse problem consisting of finding the volumetric heat ca-
pacity (pC)s, the conductivity s and the porosity ¢ of the saturated soil, it is necessary to
know the values of temperature Tgfi at selected points (sensors) of the porous medium domain
for times ¢/ (external time-steps different from internal time-steps calculated automatically by
the ODE solver): Tgfi = Tg(xi,tf) where i = 1,2,.... M and f =1,2,...,F. M and F are the
total number of sensors and time steps respectively. We use the least squares criterion to solve

this inverse problem so we try to find the soil parameters that minimize the error function which
is defined by:

1
S((pC)s, &, 1) = T ~ T3 (5)

where Tif = T(mi,tf ) are the temperatures being the solution of the direct problem for the
assumed set of parameters at the point z;, i = 1,2, ..., M for the time t/, f =1,2,..., F and Tgfi
is the measured temperature at the same point z; for time ¢/. It is important to mention that



the authors in | | calculated the temperature at the final time only and at all the points
of the domain.

2.1 Parameter scaling

In | ], the authors mentioned that the heat equation is not sensitive to the heat capacity
in comparison to the other parameters and that it almost remains at its initial guess. In reality,
it is due to the fact that the parameters we are investigating are of very different magnitudes
so it is necessary to perform parameter scaling or otherwise many searches would not converge.
Gradient search techniques generally require parameter scaling to obtain efficient search con-
vergence | ]

The first basic rule of scaling is that the variables of the scaled problem should be of sim-
ilar magnitude and of order unity in the region of interest. If typical values of the variables
are known, a problem can be transformed so that the variables are all of the same order of
magnitude. The most commonly used transformation is of the form :

p=Dp (6)

where p is the vector of original variables p;, p is the vector of scaled variables p; and D is a
constant diagonal matrix whose diagonal elements are set to be equal to the order of magnitude
of its corresponding variable. We have to keep in mind that when the variables are scaled then
the derivatives of the objective function are also scaled | ]

2.2 Method of resolution

To illustrate the method of resolution, we define the following vectors:

1,(k)
T Ty
Th 7"
- . - o [ ¥
1, = TF g(p( )) F,(k) p® /\ém
'1 cee
TfM T]\Z.;’.(k)

and
r(p®)) = g(p®) - T,

where 7(p*)) is the residual vector at the iteration k and N = M x F. In | ], the
authors used the Gauss-Newton method to solve the nonlinear least square problem which fails
to converge in our case when the temperature is calculated at few sensors only but for the whole
simulation time due to some lack of information. Moreover, Gauss-Newton method is not locally
convergent on problems that are very non-linear or have very large residuals which is the case in
our problem. Since the performance of the Gauss-Newton method is strongly dependent on the
residual size, we adopted the use of the Damped Gauss Newton method which is an improved
version of the Gauss-Newton algorithm | ]. Damped Gauss-Newton method is known to
be locally convergent on almost all nonlinear least squares problems including large residual or
very nonlinear problems [ ].



The cost function S((pC)s, ¢, \s) defined by equation (5) can be re-written as:

S(p) = 2r(p®)r(p ) 7)

Such necessary condition for the minimization of S(p(¥)) can be represented in equation (8):

VS(p*) = J(")r(*) =0 (8)
(mk
where J(pk)iyj = 87‘5(]; ), i=1,2,...,N and j = 1,2,3. The sensitivity matrix, J(p*) is
Pj
defined by:
1,(k 1,(k 1,(k
W1() Rl() Zl()
WEE  RE® 7
J (k) ee cen cee 9
(™) WEE  RE®) ZE® (9)

wh® Rl 1)

WE®  REE) ZE®

The elements of the sensitivity matrix are called the Sensitivity Coefficients. The sensitivity
coefficient Jif ;18 thus defined as the first derivative of the estimated temperature at position ¢

and time f with respect to the unknown parameter p; | ], that is,
ot/
fo_ 2o (10)
! f f
fu _ 9T rw _ 9T rw _ 9T
where W; = a(p0)3|(p0)s=(p0)gk>’ R; |¢:¢(k) and Z; = o |)\S:>\gk). The

= 55

Damped Gauss Newton algorithm iteratively finds the minimum of 5. Starting with an initial
guess p© for the minimum, the method proceeds by the iterations:

pEFD Z pE) | (®) (11)

m®) is called the increment vector and is defined by:

1

m® = —ay [76%)"76H)] " T0H) ) (12)

ay, is the damping parameter (0 < o < 1). An optimal value of oy could be obtained using
a line search algorithm [ ]; in our case, we used trial and error to find a suitable constant
damping parameter.

2.3 Governing Equations

In the following, we present the heat equation together with the three sensitivity equations
resulting from the differentiation of the heat diffusion equation (1) with respect to the soil
parameters p; (In equation (13) the divergence operator and the partial derivative with respect
to the parameters could be interchanged because the former depends on the spatial derivatives
and the latter do not.

% [(pc)e%ﬂ — div (8?%' A grﬁdTD (13)

8



which leads to the general sensitivity equation below:

(pC)e(T) aUagfvt) N d(pS;;(T) 0T((9;§,t) )

div (Ae (T)grade(x,t)) + div <d2f) grad:r(x,t)> (14)

where U; = 0T/0p;. The general sensitivity equation is accompanied with the following bound-
ary and initial conditions:

t=0: Uj(z,00=Ujo=0 in§
Uj(z,t) = UjD(x,t) on I'P x (0, teng] (Dirichlet)

Uj(z,t).v = U]N(ac,t) on I'V x (0, teng] (Neumann)

The derivative of (pC'). and A, with respect to each soil parameter is given by:

d(pC)e  d(@(pC)y) dT B
d(pC)s T ’d(pC)er(1 2
B ac; dT dps dT
= P d(pC)s +9C PaT d(pC), +1-9)
do d’c dT do dT
= opy [(C Cl)dT LdTQ] 400, + ¢C(py Pl)ﬁ-m+(1—¢)
do 2 do
— ony [(Co— OO+ G| W 0Cs(o, — o) W + 1 0) (15)
d(pC)e  _ dl9(pC)s  d((1 = 9)(pC)s)
dp do do
C);
= (PC)f+¢((ZT))d¢—(pC)s
do Ao
= (pC)r = (pC)s + épy |(Co = Cl) o + Ls
b 0Cs ) (16)
d(pC)e o d(pc)e dT
d\s  dT d)
_d(¢(pC)y) dT
- dT dX,
do _d% do
= o¢py |(Cy — Cl)diT_’_LdTQ R+ ¢C¢(po pl)dfTR (17)
d\.  d\. dT
d(pC)s —  dT d(pC)s
_ ANFOAE 0N — (L) G AN 18)

(PAs + (1= @)Ap)?



dAe E

W onT AN (19)
where
d\¢ dT d\¢ dT
E= W ggllods + (1= M= s = A (1= 6) 2o
e F
Dy - T A= (20)
where
d\¢ dT d\¢ dT
Fo= W ao PN+ (= 0] = [0+ (1= ) ZE oA
and I\ do
UAf
dT = _)\l)dT

2.3.1 Elimination of the approximation used by | ]

In order to determine the sensitivity coefficients (W, R and Z) appearing in the sensitivity
matrix, we must solve the three sensitivity equations without using the approximation:

div ()\e grédT> ~ A, div <grédT) (21)
used by [ | and which allowed the authors to write:
(pc)e ai BT -
N o div <gradT) (22)

This approximation leads to an approximate sensitivity matrix (Jacobian) and thus the problem
will not converge to an exact solution ( maybe also due to lack of parameter’s scaling mentioned
before and studied later). Differentiating with respect to (pC)s, ¢ and A respectively:

aW 1 do  d2
o LA e e A L
do dT 1 9 oW
+ ¢C ( )dTW+( ¢)] % (pC) 333 < eax>
10 [ (NS @OA+ (1= d)Ap) — (1 - ¢) DEApA 29)
 (pC)e O (@As + (1= ¢)Ap)?
oT
W)&J
20'
%f + (pé)e [(pC)f — (pC)s + 9py [(C Cz) LZTZ] R
do dT 1 0 OR
+ ¢Cf(pv - Pl)dTR:| at (pc)e% <)‘38w>
1 9 E oT
(pC). O [(ws + (1= ¢)Ap)? 356} 2

10



0Z 1 do  d% do )] dT
ot + oC). [gbpf |:(C Cl)f +LdT2] Z 4 ¢Cy(po )dTZ:| "
S Lageny 1o F o -
(pC)e 0z \ "¢ 0 (pC)e 0z \ [dAs + (1 — @) Af]2 Ox

These three sensitivity equations (23), (24) and (25) are completed with adequate initial
and boundary conditions. W, R and Z are the unknowns of the sensitivity equations and 7' is
the temperature.

2.4 Numerical strategy

The obtained system of coupled equations (heat diffusion equation + 3 sensitivity equations)
is a nonlinear system of partial differential equations. To solve this system, we use the same
numerical strategy used in the forward problem (method of lines + finite volume method). After
spatial discretization, the system of coupled equations can be written in the form:

F(t,Y,Y') =0 with Y(t) = Yy (26)

where Y = (T'W R Z)'. The system in equation (26) can be solved by an ODE solver as in the
forward problem.

2.5 Algorithm

The aim of the inverse problem is the calculation of the vector parameters p that minimizes the
cost function S presented in equation (5). The Damped Gauss Newton (DGN) algorithm that
we chose to apply to our nonlinear least square problem is as follows:

1. Choose a constant damping parameter o (0 < a < 1).
2. Choose an initial value p(?); initialize the iteration k& = 0
3. Perform the parameters’ scaling to obtain p;

4. Solve the system (heat equation with phase change + sensitivity equations) using 75 to
define the parameters of the soil. The equivalent parameters of the system are calculated
by the apparent heat capacity method (AHC); Deduce Tif’(k), I/T/if’(k), R{’(k) and Zif’(k) for
i=1,...Mand f=1,...,F

5. Calculate r(*) and the Sensitivity matrix J
knowing that J = J.D

6. Solve the linear system .J(p")tJ(p())p*+D) = J(pE) T ("R — o J(p")r(®) for

ﬁ(k+1).

7. If the criteria of convergence are reached, end.
Calculate the original parameters’ vector p(ht1) = D pk+1),

If not, iterate:
%)+ pk+1) and go to 4.

11



2.6 Stopping criteria

Classically, there are three convergence tests used in the algorithms for nonlinear least square
problems (e.g | |). We chose to apply only two of them. The first test is the X-convergence
which is based on an estimate of the distance between the current approximation x and the
previous solution x* of the problem. If D is the current scaling matrix, then this convergence

test attempts to guarantee that:
|D(z — z*)|| < XTOL.|Dx*|| (27)

where XTOL is a user supplied tolerance (we used XTOL = 1076). The second test, the main
convergence test, is based on an estimate of the distance between the Euclidean norm || F(z)l|
of the residuals at the current approximation x and the previous value || F(z*)|| at the previous
solution x* of the problem. This convergence test (F-convergence) attempts to guarantee that:

I1F (@) < (1+ FTOL).[|[F(z7)] (28)
where FTOL is another user-supplied tolerance (we used FTOL = 1079).

2.7 Code verification

The code verification is based on choosing a plausible example where the soil parameters
{(pC)s, P, As} are given constant values. These values are used by the forward problem to
calculate the temperature at 5 different positions of the domain and are intended to show the
effect of parameter scaling on the convergence of calculations. These temperatures are recorded
every 24 seconds for 4 hours. In tables 1 and 2, we used the same number of mesh cells in the
forward problem (to create the synthetic data) and in the inverse problem. In both tables, we
removed the approximation (see equation (21)). In table 1, we did not use the scaling technique
while we used it in table 2. The results presented in the two tables prove that scaling is an
important factor to obtain the desirable results.

Table 1: Physical properties of the soil obtained by inverse problem without scaling.

(pC)s (J/kg.K) | As (W/m.K) 10)
exact 1.95 x 106 0.756 0.20
initial guess 2 x 10° 0.8 0.18
calculated 2 x 10° 0.7696 0.1979

Table 2: Physical properties of the soil obtained by inverse problem with scaling.

pCs (J/kg.K) | As (W/m.K) o
exact 1.95 x 10° 0.756 0.20
initial guess 2 x 10° 0.8 0.18
calculated | 1.9497 x 10° 0.7559 0.2000

The target of our work is to perform a numerical simulation that is the closest possible to
the real experimental case. For this reason, we generate the synthetic data using a very large
number of mesh cells (around 6000) to obtain accurate results. Moreover, these data play the
role of the experimental data in the inverse problem which is run using small number of mesh
cells (40, 80, 120, 160 ...). Figure 2 represents the variation of the final residue as function of the
number of mesh cells. We can easily notice that the residue decrease as number of mesh cells
increase which assures the consistency of our method. Figure 3 represents the convergence of the
conductivity for 120 mesh cells in the inverse problem (the figures representing the convergence
of the volumetric heat capacity and porosity are similar). We notice that convergence is achieved
after few tens of iterations (37 in this case).

12
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Figure 2: Variation of residue as function of number of mesh cells (absolute value in Celsius).
The method is consistent (the error decreases as number of mesh cells increase).
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Figure 3: Variation of the conductivity (in W/m.K) as function of iteration number. The red
line represents the exact value of Ag.
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2.8 Role of AT

As we have seen earlier, the choice of the phase change temperature interval AT in the AHC
method affects the temperature profile. Recall that AT is proportional to h | | (AT =
kh) where h is the mesh size and k is a constant chosen in a way to obtain good accuracy
with fewer fluctuations in the temperature profile. As a consequence, the value of AT plays
an important role in the results of the inverse problem. If the initial values of parameters
are far from the exact solution then the damped Gauss Newton method might not converge
using the optimal value of AT | ]. To study the effect of this important parameter,
we chose the example chosen earlier {(pC)s = 1.95 x 105, ¢ = 0.2, As = 0.756} and we run
the inverse problem using different values of AT with 120 as number of mesh cells. We notice
that the inverse program fails to converge for % = 1 or 2 and when % > 11 whereas it
converges for 3 < % < 10. We notice that the values of (pC)s, ¢ and A recede from the exact
solution and the value of residue increases from 9.588 to 26.7198 as the value AT increases from
3 X AToptimum t0 10 X AT pptimum (see table 3). The results in table 3 are obtained by using

Table 3: Values of soil parameters and residue obtained by varying %. Results become less
accurate as % increases.
il
\p DLparameter |\ o ko i) | A(W/mK) | 6| residue
‘kh
3 1.149 x 108 0.5362 0.2319 | 9.5889
4 8.654 x 10° 0.4748 0.2436 | 11.5282
5 6.42 x 10° 0.4306 0.2526 | 13.5174
7 3.351 x 10° 0.3770 0.2640 | 18.0604
10 6.159 x 10% 0.3400 0.2724 | 26.7198

(pC)s = 3 x 10%, A\s = 0.4 and ¢ = 0.12 as initial guesses. If the results obtained in the first
row (AT = 3 x AT,ptimum) are used as initial guesses then the inverse problem will converge to
the exact values using AT,ptimum if we use the same mesh size in both the forward and inverse
problems and toward acceptable values if we use huge mesh size to generate the synthetic data
and 120 mesh cells in the inverse problem (check table 4).

Table 4: Physical properties of the soil obtained by inverse problem using AT = AT, ptimum
using the calculated values in table 3 as initial guesses.

pCs (J/kg.K) | As (W/m.K) o
exact 1.95 x 108 0.756 0.20
initial guess | 1.1493 x 10° 0.5362 0.2319
calculated | 1.9387 x 108 0.7328 0.2001

3 Levenberg Marquardt Algorithm (1D)

In section 2, we explained that our inverse problem can be viewed as a nonlinear least square
minimization problem which is solved by the Damped Gauss Newton Algorithm. In this section,
we present a more robust algorithm to solve the nonlinear least square minimization problem
known as Levenberg Marquardt Algorithm (LMA). LMA is the most widely used optimization
algorithm for the solution of nonlinear least square problems. It outperforms simple gradient
descent and other conjugate gradient methods in a wide variety of problems. It is a blend of
original gradient descent and Damped Gauss Newton iteration.

14



3.1 Introduction to LMA

Levenberg | | and Marquardt | | proposed a very elegant algorithm for the numerical
solution of equation (5). However, most implementations are either not robust, or do not have
a solid theoretical justification. Moré | | presented a robust and efficient implementation

of a version of the Levenberg-Marquardt and show that it has strong convergence properties. In
addition to robustness, the main features of this implementation are the proper use of implicitly
scaled variables and the choice of the Levenberg-Marquardt parameter via a scheme due to
Hebden | ]. The implementation of LMA by Moré that is contained in Minpack [ ]
has proven to be very successful in practice. Several factors make LMA preferable to DGN: first
is that LMA possesses an embedded scaling technique, second it is well defined even when J
doesn’t have full column rank and finally is that when the Gauss-Newton step is too long, the
Levenberg Marquardt step is close to being in the steepest-descent direction —J!r and is often
superior to the DGN step. We use the LMDER1 Minpack subroutine for numerical solution
of nonlinear least square problems. LMDERI] is based on Moré’s LMA version where the user
must provide a subroutine to calculate the functions 71, 79, ... 7, and the Jacobian matrix
3317[)(5’). LMDERI1 follows the convergence criteria mentioned in section 3.6.

3.2 Applying LMA to our Inverse Problem: Results

Using the LMDER]1 Minpack subroutine (which is embedded in the easy-to-use MUESLI library
[Can]) and providing the Jacobian matrix, we obtain the results summarized in table 5. The
Jacobian matrix is calculated using Maple.

Table 5: Physical properties of the soil obtained by inverse problem using LMA. Scaling is used
implicitly and approximation (21) is removed. Same number of mesh cells is used in both the
forward and inverse problems (321 mesh cells).

pCs (J/kg.K) | As W/mK) | ¢
exact 1.95 x 10° 0.756 0.20
initial guess 2.0 x 10° 0.8 0.18
calculated 1.957 x 108 0.758 0.1996
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Figure 4: Variation of the volumetric heat capacity (in J/kg.K) as function of iteration number
using LMA (Same number of mesh cells in both the forward and inverse problems). The red
line represents the exact value of (pC')s.
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Figure 5: Variation of the porosity as function of iteration number using LMA (Same number
of mesh cells in both the forward and inverse problems). The red line represents the exact value

of ¢.

16



0.95

o
©

Conductivity

0.8

0.75

5 6
Iteration Number

Figure 6: Variation of the conductivity (in W/m.K) as function of iteration number using LMA
(Same number of mesh cells in both the forward and inverse problems). The red line represents
the exact value of Ag.

In figures 4, 5 and 6 we notice that the calculated values are very close to the exact ones
due to the fact that we used same number of mesh cells in both direct and inverse problems.
Moreover, we notice that convergence is obtained after about 10 iterations.

Identification of the thermophysical properties of the soil during
phase change by inverse problem 3D-axisymmetric coordinate
system

4 Forward problem (3D with axial symmetry)

The physical problem consists of heating the soil by a fire. To model this problem, we replace
the soil by a perfect porous medium with constant and uniform properties heated from above
by a constant temperature T, (temperature of the fire between 300 C and 700 C). T, must be
greater than T, (the evaporation or phase change temperature which is normally 100 C).

The energy equation in 3D-axisymmetric coordinate system (independent of 6) is given by:

oT 1d dr d dT
(Pc)ea = ar <r)\ed7“> + e <)\edz> (29)

with the following initial and boundary conditions:

T(ri,25,0) = To(r4, 25) = To, 1<i<N, 1<;j<M

T(ri,zj,t) = TP (ri,z,t) =TH(t) i€ {1,N} and j € {1, M}

17
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Figure 7: Cylindrical Coordinate System (in our case # is assumed constant).

VT(r;, zj,t).v =0 (Null Neumann) ¢ € {1, N} and j € {1, M}

where T represents the temperature, Tp is the initial temperature at ty = 0, T° is T, at the
fire and T} elsewhere; p is the density, C is the specific heat capacity, A is the conductivity, ¢
is the porosity, the subscripts e, f and s indicate the equivalent parameters of the medium, the
properties of the fluid and the porous matrix properties respectively. v indicates the outward
unit normal vector along the boundary of €.

The computational domain is represented in figure 8 where we use Dirichlet and Neumann
boundary conditions. In reality, all the boundary conditions except that of the fire should
be of Robin type because heat exchange always exists with the external medium (air). Some
numerical tests using Robin boundary condition have been performed showing slight differences
in temperature especially near the fire.

The effective volumetric heat capacity and the effective conductivity are defined as in the
1D configuration.

As in 1D, to avoid the tracking of the interface of the phase change problem (liquid/vapor)
which appears when the water existing in the soil turns into gas, the apparent heat capacity
(AHC) method is used.

4.1 Numerical strategy

We need to solve the heat diffusion equation (PDE) so we choose the method of lines which is
a way of approximating PDEs by ODEs where space and time discretizations are considered
separately. The spatial The discretization is done using the finite volume method, the equation
is integrated over a control volume. We use N discretization points in the r direction and M in

18
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Figure 8: The computational domain in 3D-axisymmetric coordinate system. The red part
represent the fire. N represents Neumann boundary condition (Null flux) while D represents
Dirichlet boundary condition

the z direction so that after discretization the heat equation becomes:
dli;  (ritrie) Ny + X)) (L — 1)
dt 4(pC)eri A2r
(ri +ri1)(Nij + Ai1)(Tij — Tivn,j)
4(pC)eri A2r
(Aiy + Xiyj+1) (g1 — Tiy)
2(pC) A2z
(Aij +Aij—1) (T — Tij1)
2(pC)e A2z

=0 (30)

where Ar = r;41 —r; and Az = zj11 — z;. (see figure 9). In our configuration, we used
Ar = Az = h. In fact, the spatial variable is discretized into N x M discretization points and
each state variable T is transformed into N x M variables corresponding to its value at each
discretization point. After spatial discretization, the system formed using equation 30 is written

in the form of an ODE system:
dT
— =BT 31
= B(T) (31)
As in 1D case, we use an automatic ODE solver based on a BDF scheme which possesses the

property of stiff stability to overcome the stiffness of AHC method at phase change temperature.

5 Inverse problem (3D with axial symmetry)

In order to solve the parametric inverse problem consisting of finding the volumetric heat ca-
pacity (pC)s, the conductivity As and the porosity ¢ of the saturated soil, it is necessary to

know the values of temperature Tgfi ; at selected points (sensors) of the porous medium domain
for times t7: Tfi’j = Tg(n,zj,tf) where i = 1,2,...,.N, j=1,2,.... M and f =1,2,....F. Fis
the total number of time steps. We use the least squares criterion to solve this inverse problem

so we try to find the soil parameters that minimize the error function which is defined by:

1
S((pC)s: 8, As) = SIIT; = T); 113 (32)
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Figure 9: 3D-axisymmetric control volumes

where Tzf ;= T(r, 24, tf ) are the temperatures being the solution of the direct problem for the

assumed set of parameters at the point (r;,2;), i = 1,2,..., M, j = 1,2,..., N for the time ¢/
(external time-steps different from internal time-steps calculated automatically by the ODE

solver), f =1,2,..., F and Tgfi,j
tl.
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5.1 Method of resolution

To illustrate the method of resolution, we define the following vectors:

i
Tl
gl,1 1,(k)
T1%)
17
Tgli,M T5)
T
92,1
1,(k)
. T2,M
TgQ,M .
1,(k)
1 TN,1
TgN,l
1,(k)
Tl TN,M
glz\f,M T2,(k)
Tgl,l 1,1
2,(k)
T921,M 'y
T2 T27(k)
92,1 2,1 )
; . . (pC)s
Ty=| Toum | 90" =| o2 | »® N
. )
2
gN,1 T]%,’(lk)
T 2,(k)
9.1T7.7M TN,M
TF cee
91,1 F.(k
T1,1( )
TF
gLM F.(k)
Tipa Tl%)
o T2,1
TQZ,M : ( )
F.(k
I Ty
TgN,l cee
F.(k)
TNy
Tyn
F.(k)
TN,M

and

r(p™) = g(™) - T
where 7(p*®)) is the residual vector at the iteration k and N’ = N x M x F. We adopted the
use of the Levenberg Marquardt Algorithm | | which is known to be locally convergent on
almost all nonlinear least squares problems including large residual or very nonlinear problems

[Bj690].

The cost function S((pC)s, ¢, As) defined by equation (5) can be re-written as:
S(p") = %T(p(’“))tr(p(’“)) (33)

To minimize the least square norm, we need to equate to zero the derivatives of S (p(k)) with
respect to each of the unknown parameters [p1, p2, p3] = [(pC)s, @, A5, that is :

ds _ds _ds _

/e _2Y 34
dpr  dps  dps (34)
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Such necessary condition for the minimization of .S (p(k)) can be represented in matrix notation
by equating the gradient of S (p(k)) with respect to the vector of parameters p to zero, that is,

VS@F) = J@M)r) =0 (35)
where J(p")y j = PO i'=1,2,....,N" and j' = 1,2,3. The Sensitivity matrix, J(p") is
P
defined by:
1,(k 1,(k 1,(k
wi? m 2y

N1 N1 N1
1.k 1k 1.(k
g
Wiy R 274
2. (k 2. (k 2. (k
Wil P 2
Wy Ryy" Zyy
2k)  p2k) 2k
Wy RN,l) ZN1
2. (k 2 (k 2 (k
WEE g g

8 pF®)  FE)
Wy By 2N
The elements of the sensitivity matrix are called the Sensitivity Coefficients. The sensitivity
coefficient J S » ; s thus defined as the first derivative of the estimated temperature at position

i"=(i,7) and time f with respect to the unknown parameter p; | |, that is,
T
Jh = 37
L= o 7
oT/ . or! oT/ .
fi(k) _ 77 (i) 7 h(k) _ (Z:J fi(k) _ 77 ()
where Wan = 8(pC)S‘(PC)5:(PC)gk>’ (i) — |p=gt and R = N, |,\5:,\gk).
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In theory, LMA is based on a trust region approach which is: find m®*) that minimizes
| (p™®)) + J*) .m )|y subject to |m*) || < A where A is called the step bound | ]. On the
other side, in Moré’s implementation it is m®*) that minimizes

(™) + J® m®E ||y subject to || D.m® |, < A (38)

where D is a diagonal matrix which takes into account the scaling of the problem. The basis
for Levenberg-Marquardt method is that if mx is a solution of equation 38, then px = p(«) for
some « > 0 where:

m(a) = —(J'J +aDD") L'y (39)

The Levenberg Marquardt Algorithm iteratively finds the minimum of S. Starting with an
initial guess p(© for the minimum, the method proceeds by the iterations:

P Z 8 (k) (40)

5.2 Governing Equations

In the following, we present the heat equation together with the three sensitivity equations
resulting from the differentiation of the heat diffusion equation (1) with respect to the soil
parameters pj.

0 or 0

C — di [\ gradT | 41
o |00): 55| = aiv (5 [resriar]) (a)
which leads to the general sensitivity equation below:

(pC)e(T) an'a(txvt) n d(pC)e(T) 0T (7, 2,t) _

- dre(T) -
div ()\e (T)gradUj(r, z, t)) + div ( de( )gradT(r, z, t)> (42)
Py
where Uy = 0T/0pj. The general sensitivity equation is accompanied with the following

boundary and initial conditions:

t=0: Uj(r,z,0)=U; =0 inQ

Jo

Uj(r,z,t) = Uj[,)(r, z,t)  on TP x (0,tenq] (Dirichlet)

Uji(r,z,t).v = UfY(r, zt)  on TV x (0,teq] (Neumann)

Similar to the 1D case, the heat diffusion equation must be differentiated with respect to
the soil parameters (pC)s, ¢ and s respectively. The derivative of (pC). and A, with respect
to each soil parameter is as given in section 2.3.

The sensitivity equations in the 3D-axisymmetric coordinate system are as follows:
Differentiating with respect to (pC)s

ow 1 d(pC)dT 1 10 D o, 87W)
ot (pC)e d(pC)s dt — (pC)er Or or
1 0 8W
T (p0)e 2.5,
1 9 dhe OT
T 00). o a0, o)
1 0, dx 0T

(00 02 \d(p0), 07
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Differentiating with respect to ¢ :

OR L dlpO)edT 110 OR,
ot (pC)e do dt  (pC)er Or or
1

dqb or
1 8 dX. OT
(0C). 0= \d(6 9

(44)

Differentiating with respect to As :

ot 0. dn. At (0. or )
1 9, 0z

m@@\eg)

1 9, d\OT

(w0 or " dx, Br)

1 9 d\ OT

(pC)e 02 d(Ag 8,2)

0z 1 dpC)dr 1 9§ . 07

(45)

These three sensitivity equations (43), (44) and (45) are completed with adequate initial
and boundary conditions. W, R and Z are the unknowns of the sensitivity equations and T is
the temperature.

5.3 Numerical strategy

The obtained system of coupled equations (heat diffusion equation + 3 sensitivity equations)
is a nonlinear system of partial differential equations. To solve this system, we use the same
numerical strategy used to solve the 1D inverse problem.

5.4 Algorithm

The aim of the inverse problem is the calculation of the vector parameters p that minimizes the
cost function S presented in equation (5). The Levenberg Marquardt algorithm is summarized
below:

1. Given A® > 0, find o®) > 0 such that if
(J(k))tj(k) + a(k)D(k)D((kz)) )m(k — (k:))
then either a¥) = 0 and || D®) .m®*) H2 < A
or al®) > 0 and |[D®).m®*)||y = AK),

2. 1 [lr(p® + m®)[lo < |lr(p™)]2
set p ) = p(k) 4 m*) and evaluate J*#+1); otherwise
set p(k+1) = p(k) and J(k+1) = J(k)

3. Choose A®) and Dk+1)

The choice of A is explained in details in [ ].
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The implementation of LMA by Moré that is contained in Minpack [ ] has proven to
be very successful in practice. Several factors make LMA preferable to DGN: one is that LMA
is well defined even when J doesn’t have full column rank and another is that when the Gauss-
Newton step is too long, the levenberg Marquardt step is close to being in the steepest-descent
direction —.J'r and is often superior to the DGN step. We use the LMDER1 Minpack subroutine
for numerical solution of nonlinear least square problems. LMDERI is based on Moré’s LMA
version where the user must provide a subroutine to calculate the functions rq, ro, ... 7, and
the Jacobian matrix 83"71)(;)). LMDERI1 is the easy-to-use driver for the core subroutine LMDER
where Dy and Ag are set internally. There are two convergence tests used in the algorithm.
The first test is the X-convergence which is based on an estimate of the distance between the
current approximation x and the previous solution x* of the problem. If D is the current scaling
matrix, then this convergence test attempts to guarantee that:

|D(z — 2z*)|| < XTOL.|Dx*|| (46)

where XTOL is a user supplied tolerance (we used XTOL = 107°). The second test, the main
convergence test, is based on an estimate of the distance between the Euclidean norm || F(z)]|
of the residuals at the current approximation x and the previous value || F(z*)|| at the previous
solution x* of the problem. This convergence test (F-convergence) attempts to guarantee that:

I1F (@) < (1+ FTOL).[|F(z7)| (47)
where FTOL is another user-supplied tolerance (we used FTOL = 1079)

5.5 Code verification

The code verification is based on the same plausible example used in the 1D case. In tables
6 and 7 below, we used the same number of mesh cells in the forward problem (to create the
synthetic data) and in the inverse problem.

Table 6: Physical properties of the soil obtained by inverse problem (5 iterations).

pCs (J/kg.K) | As (W/m.K) ¢
exact 1.95 x 106 0.756 0.20
initial guess 2 x 106 0.8 0.18
calculated | 1.9499 x 10° 0.75596 0.200003

Table 7: Physical properties of the soil obtained by inverse problem (6 iterations).
pCs (J/kg.K) | As (W/m.K) ¢
exact 1.95 x 106 0.756 0.20
initial guess 3 x 106 0.4 0.12
calculated | 1.9499 x 10° 0.75595 | 0.200004

The target of our work is to perform a numerical simulation that is the closest possible to
the real experimental case. For this reason, we generate the synthetic data using a very large
number of mesh cells (around 150000 = 300 x 500) then we run the inverse problem with small
number of mesh cells. Figure 10 represents the variation of the final residue as function of the
number of mesh cells. We can easily notice that the residue decrease as number of mesh cells
increase. Table 8 shows that values of the parameters for different mesh sizes knowing that the
synthetic data is generated by 150000 mesh cells.
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Figure 10: Variation of temperature residue (absolute value in Celsius) as function of number
of mesh cells.

Table 8: Physical properties of the soil obtained by inverse problem using different number of
mesh cells where the synthetic data are generated by 150,000 mesh cells.

Mesh pCs (J/kg.K) | As (W/m.K) ) Residue
30 x 50 1.23 x 106 0.403 0.232 | 463.9
60 x 100 1.97 x 106 0.651 0.198 | 173.8
90 x 150 2.05 x 106 0.712 0.195 | 97.2
120 x 200 | 2.045 x 10° 0.735 0.195 | 62.9
150 x 250 | 1.95 x 10° 0.725 0.199 | 45.6

6 Comparison between 1D and 3D axisymmetric inverse prob-
lems

As we see in table 7, the inverse problem succeeds to converge in 3D-axisymmetric coordinate
even if the initial guess is far from the exact solution which was not the case in 1D. In table 9,
we present some examples using different initial guesses where we notice that for certain initial
guesses the 3D-axisymmetric inverse problem converges while the 1D inverse problem fails to
converge using LMA knowing that we used the same number of mesh cells in both the forward
(to generate the synthetic data) and inverse problems. This is due to the fact that the inverse
problems become more stable as the space dimension of the problem increase.

7 Influence of noised measures on the convergence of the inverse
problem

In reality, the experimental measurement of temperatures will include some errors. To be close
to reality, we perturbed the synthetic values of temperature by adding a Gaussian noise of
null average and standard deviation equal to 5° C. Tables 10 and 11 represent the convergent
values of the heat capacity, the thermal conductivity and the porosity of the soil, estimated by
taking into consideration the noised measures in 1D and 3D-axisymmetric coordinate systems
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Table 9: Comparison between the results obtained by 3D-axisymmetric and 1D inverse prob-
lems. We vary the initial guess to notice the advantage of the axisymmetric configuration.

pCs (J/kg.K) As (W/mK) | ¢

exact 1.95 x 10° 0.756 0.2

initial guess 1 1.0 x 10° 1.1 0.1
calculated by 1D Fails to converge using AToutimum

calculated by 3D-axi 1.949 x 108 0.7559 0.2

initial guess 2 1.5 x 10° 0.35 0.3
calculated by 1D Fails to converge using AToptimum

calculated by 3D-axi 1.949 x 108 0.7559 0.2

respectively.

Table 10: Physical properties of the soil obtained by inverse problem taking into consideration
the noised measures in 1D. The same number of mesh cells is used in both the forward (to
generate synthetic data) and inverse problems.

pCs (J/kg.K) | As (W/m.K) o
exact 1.95 x 106 0.756 0.20
initial guess 2 x 100 0.8 0.18
calculated 1.952 x 10° 0.879 0.189

Table 11: Physical properties of the soil obtained by inverse problem taking into consideration
the noised measures in 3D-axi. The same number of mesh cells is used in both the forward (to
generate synthetic data) and inverse problems.

pCs (J/kg.K) | A\s (W/m.K) | ¢
exact 1.95 x 10° 0.756 0.20
initial guess 2 x 10° 0.8 0.18
calculated 1.954 x 106 0.767 0.20

We can see clearly that the inverse problem converges in both 1D and 3D-axisymmetric
coordinate system but toward different converging values which are not very far away from the
values obtained without taking the noise into consideration. Figure 11 reveals that the residue
decrease as function of the iteration number when noise is taken into consideration.

8 Sensitivity study of the thermophysical parameters

Sensitivity analysis can split model parameters in two sets: sensitive and insensitive parameters.
Sensitive parameters are characterized as parameters where variation in the parameter values
invoke a significant change in the model output, while a change of insensitive parameters has a
negligible impact on the model output.

Sensitivity Analysis

In our model, the parameters have different order of magnitude so it is better to use scaled
parameters. Also, since our model parameters (pCs, s, ¢) and model output (temperature)
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Figure 11: Variation of residue as function of iteration number.

have different units, it may be advantageous to compute relative sensitivities defined as:

oT p
~ P 48
In this study, we present a method (discussed in [ ]) uses singular value decomposition

of the sensitivity matrix J followed by QR factorization. The sensitivity matrix in our model
(see equation (36)) need to be reformulated to match with equation (48). After that, the
singular value decomposition of J (J = USVT) is used to obtain a numerical rank for J. This
numerical rank is then used to determine p parameters that can be identified given the model
output T'. To estimate the number of uncorrelated parameters we used an error estimate in our
computation of the Jacobian as a lower bound on acceptable singular values. For example, in
the study analyzed here we used ODE solver with an absolute error tolerance of 1079 | i.e., the
error of the numerical model solution is of order 107% and the error in the Jacobian matrix is
approximately v10=6 = 1073. Consequently, singular values should not be smaller than 1073.
Once the number of identifiable parameters has been determined, we find the most dominant
parameters by performing a QR decomposition with column pivoting on the most dominant
right singular vectors. Below we summarize subset selection method as an algorithm.

Subset selection algorithm:

1- Given an initial parameter estimate, py , compute the Jacobian, J(pg) and the singular
value decomposition J = USVT | where S is a diagonal matrix containing the singular
values of J in decreasing order, and V is an orthogonal matrix of right singular vectors.

2- Determine , the numerical rank of J. This can be done by determining a smallest allowable
singular value.

3- Partition the matrix of eigenvectors in the form V' = [V,V,,_,].

4- Determine a permutation matrix P by constructing a QR decomposition with column
pivoting, for VpT . That is, determine P such that: VpTP = @R; where @ is an orthog-
onal matrix and the first p columns of R form an upper triangular matrix with diagonal
elements in decreasing order.
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5- Use the matrix P to re-order the parameter vector p according to p = PTp. The first p
elements of p are identifiable. They are in ordered from most sensitive to less sensitive.

Applying the algorithm described above on our inverse problem in 3D-axisymmetric coor-
dinate system using synthetic data using J as the final sensitivity matrix before convergence,
the singular values of J are oy = 4.86 x 103, o9 = 4.24 x 10? and o3 = 26.79. This means that
the 3 parameters are identifiable. Applying a QR decomposition with column pivoting for V7
we find the permutation matrix P

0 01
P=|1 00
010

From all what preceded, we deduce that ¢ is the most identifiable parameter then \; and
finally (pC')s. Figure 12 represents the singular value ratio for the 3 parameters.

Singular value ratio
© o © o o o o
w H [¢)] o ~ oo ©

o
N

0.1

o 2 3

(PC)s, 5 As

o
Figure 12: Sensitivity Analysis: ratio of singular values k.
o1

9 Inverse problem in 3D-axisymmetric coordinate system using
real experimental data
9.1 Experimental hearth: materials and design

Modeling the evaporation of water in the soil (due to phase change) is not an easy procedure.
We need to perform an experimental hearth where we replace the soil by a perfect porous

medium. Figure 13 represents the experimental setup performed by Szubert and Bergonzi in
2010 | .

Materials needed:
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Figure 13: Experimental hearth.

A stainless-steel box of size 50 x 50 x 30 cm.

Thermocouples of type K (Chromel/Alumel).

e An acquisition card.

Labview software (we specify the number of thermocouples and measurements time inter-
val and a stop watch displays total duration of measures and their numbers).

A heating plate.

A voltage converter for feeding the plate.

Length measurement tools.
e Fontainebleau sand.

Procedure: We weigh a certain amount of sand and then we add 22% water by mass.
We mix everything in a bucket then we pour it into the experimental box. The thermocouples
are placed on the vertical axis which passes through the center of the heating plate(i.e they
are plunged horizontally 25 cm) at different depths such that at least one of the thermocouples
is in contact with the bottom of the heating plate which is used to control its temperature.
We record the initial temperature Ty then we heat the plate till it attains 400 C and we set
the software to record the temperature every 30 seconds for 6 hours. When the experiment is
over, we delve carefully to locate the position of the thermocouples. We measure the distance
with respect to the two perpendicular walls of the box (x and y coordinates) and the height
from the upper edge in order to deduce the depth of the thermocouples. In this experiment,
thermocouples were found at the depths: 0cm, 1.4cm, 2.3cm, 3.2cm, 6.2 cm and 10.6 cm. Note
that the Cartesian coordinates are transformed into 3D-axisymmetric coordinates (r-z).
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9.2 Inverse problem

To solve the inverse problem consisting of finding the thermophysical properties of the saturated
soil: heat capacity (pC)s, the conductivity As and the porosity ¢ during phase change and
using real experimental data in 3D-axisymmetric coordinate system, we use the same numerical
strategy explained in section 5. We recall that the numerical method used in section 5 proved
to be efficient and accurate using synthetic data but unfortunately it is not the case with real
experimental data. In fact, the physical parameters attain negative values during the iterative
procedure of the LMA algorithm and as a consequence the algorithm fails to converge. To
overcome this obstacle, we used LMA with bound constraints over parameters to force the
parameters values to stay in a certain physical domain [ ]. In other words, given an
arbitrary point x, the projection of x onto the feasible bounded region is defined as follows. The

i*" component of the projection of x is given by:
i if x; < I;
P(x, l, u)z = x; if x; € [lz, ul] (49)

w; if x; > uy

where [; and u; represent the lower and upper bound of x; respectively.

9.2.1 Results

The results obtained using the experiment performed by Szubert during his Masters project
[ | are summarized in the table 12:

Table 12: Physical properties of the soil obtained by inverse problem using real experimental
data.

(pC)s (J/kg.K) | As (W/m.K) o residue
initial guess 1.95 x 10° 0.33 0.22
calculated(mesh: 50 x 36) 1.0 x 10° 0.1267 0.320 840
calculated(mesh: 100 x 72) 1.0 x 10° 0.1120 0.3003 834
calculated(mesh: 150 x 108) 1.0 x 10° 0.1124 0.3026 832

The bound constraints over the parameters used in this example are: (pC)s € [1.0x10°,1.0x
107], As € [0.1,9.0] and ¢ € [0.1,0.9]. We notice that (pC), converges to its lower bound whereas
the exact physical value is of order 10°, A, converges to 0.11 whereas the exact physical value
is of order 0.3. Moreover, changing the box constrained used to: (pC)s € [1.0 x 103,1.0 x 107],
As € [0.1,9.0] and ¢ € [0.1,0.9] gives totally different results which are summarized in the table
13.

(pC)s (J/kg.K) | As (W/m.K) ¢ | residue
initial guess 1.95 x 106 0.33 0.22
calculated(mesh: 150 x 108) 1.0 x 103 2.35 0.592 | 733

Table 13: Physical properties of the soil obtained by inverse problem using real experimental
data.

Comparing tables 12 and 13, we notice that the results are not homogenous and thus our
algorithm failed to converge in case experimental data is used. This failure is due to the fact
that the physical model used during phase change is not close enough to reality because:

e The natural convection term, gravity and capillary forces are neglected.

31



e Radiation is neglected although strong heating is used. It is known that Silica is semi-
transparent to certain wavelengths. Therefore, although conductive transfer is dominant
there is also a radiative transfer.

e A boiling model (temperature > 100 degree Celsius). There is a boiling zone constituted
of vapor bubbles (unstationary process) and a sensor inside this zone will remain at 100
degree Celsius. The boiling zone thickness could be deduced from the time duration of
the plateau of temperature curves.

As a consequence, a more complex model is needed in order to approximate the thermo-
physical properties of the soil during phase change but this is out of the scope of this work.
On the other hand, in the next part of this chapter we will study in details an inverse problem
to approximate the thermophysical properties in case of a dry porous medium where no phase
change is present.

10 Identification of the thermophysical properties of the soil in
a dry porous medium (No Phase Change)

The soil is treated as a continuous medium subject to a purely diffusive transfer. This last
hypothesis is a priori questionable because the heating is intense and the temperature gradients
can be significant (both vertical component and horizontal component), so we could have a
radiative or convective transfer. The energy balance is simply reflected as we have seen earlier
by the heat equation:

(0).5

Where T is the temperature, (pC)e is the heat capacity per unit volume and A, is the
thermal conductivity of the medium.

If the medium is homogeneous and isotropic, and that we neglect the variation of A, with
temperature then one obtains:

—f = div ()\e grédT) (50)

%1; = adiv <gr5dT> (51)
Where o = (p/é?)e is the thermal diffusivity. We see that through all these assumptions (ho-
mogeneous effective medium, transfer by conduction only with conductivity independent of
temperature T'), the transfer is completely defined by the geometry of the medium, its diffusiv-
ity, boundary conditions and initial conditions. For a dry medium, which constitute of a solid
phase of volumetric heat capacity (pC)s and thermal conductivity A\s and fluid phase (dry air)
of volumetric heat capacity (pC); and thermal conductivity As, the effective volumetric heat
capacity of the medium can be easily calculated by a simple linear formulation:

(PC)e = d(pC) s + (1 — ¢)(pC)s (52)

Where ¢ represents the porosity of the medium. The volumetric heat capacity of the medium
can be easily calculated using the previous equation. On the contrary, the expression of the
effective thermal conductivity as function of that of solid and fluid is unknown. Approximating
the diffusivity by an inverse problem similar to that used previously will be a good way to
approximate Ac.

10.1 Experimental hearth: materials and design

To perform an experimental hearth, we replace the soil by a perfect dry porous medium. Figure
14 represents the experimental setup.

The materials used are exactly the same described in the experiment done in the case of phase
change but we used the small heating plate (radius = 5c¢m) instead of the big one.
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Figure 14: Experimental hearth.

Procedure:

We weigh a certain amount of dry sand and pour it into the experimental box. The thermocou-
ples are placed randomly at different depths such that at least one of the thermocouples is in
contact with the bottom of the heating plate which is used to control its temperature. We record
the initial temperature Ty then we heat the plate till it attains 600 C and we set the software
to record the temperature every 30 seconds for 6 hours. When the experiment is over, we delve
carefully to locate the position of the thermocouples. We measure the distance with respect to
the two perpendicular walls of the box (x and y coordinates) and the height from the upper
edge in order to deduce the depth of the thermocouples. In this study we explore two different
experiments. Note that, porosity was estimated from the density of the sand (Fontainebleau
sand) and the density of the solid alone. The value of the latter (2540 kg/m?) was determined
from a measurement in water (measure of volume of solid for a given mass of sand). Porosity ¢
represents the volume of pores to that of the total volume.

10.2 Methods used to approximate diffusivity «
10.2.1 Laloy and Massard

In their paper [LM&4], Laloy and Massard presented a way to estimate the duration of fire.
They assumed that the medium is homogeneous and isotropic and that physical characteristics
such as conductivity, heat capacity and diffusivity are independent of temperature and of spatial
coordinates. In addition, the assumed that the dimension of fire is larger than the height of the
altered soil. These hypothesesthese allows a simple study of flat fire in a semi-infinite domain
and hence solving analytically the heat diffusion equation in the case of a 1D geometry (function
of the depth z).

The problem consists of finding 7" = f(z,¢) which is the solution of equation (51) where

div (gradT> = ?927:5 with a = constant. If T is the temperature of fire (at t = 0 and z = 0), T;
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is the initial temperature of the domain then:
T —T(z1) _ 2 /I e’ du  where = — (53)
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Figure 16: Variation of slope as function of time (extracted from A. Cordero postdoctoral report

[Corl3]) .
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To determine «, according to Laloy and Massard, we simply need to know the variation
of temperature in z-position at each instant t (7'(z,t)) and then plot, for different values of z,

2
2% as function of —in [1 — (%(Tzzt)) . If the assumptions are true, for each instant t, we

should get a straight line passing through the origin, of slope (gat). Normally only one of these
lines is enough to obtain « (if t is known). To improve accuracy and test hypotheses, we must

determine, at different times, the slope a = %at and verify that it is a straight line of slope %a.
Using this simple way, we can deduce the value of the diffusivity «. (see figure 16).

Discrepancy 1D / 3D-axi (isovalues: 1%, 2%, 5%, 10%, 20%, 35%)
0 T T T 35

30

10

0 0.2 0.4 0.6 0.8 1 1.2
r/R

Figure 17: The difference in temperature profile for 1D and 3D-axisymmetric cases.

Important Notes:

e Laloy and Massard method is valid in 1D only (see figure 17 to see the difference between
the 1D and 3D-axisymmetric cases).

e Laloy and Massard is accurate if the temperature is measured at a depth close to the fire.

Results

First Experiment | Second Experiment
Diffusivity « in m?/s 2.5 x 1077 2.34 x 1077

Table 14: The values of diffusivity (Fontainebleau Sand) obtained by Laloy and Massard
method. Figure 16 represents the second experiment.

The two experiments are done using small heating plate of radius 5 cm and a box of dimen-
sions 50cm x 50 ecm x 30 cm so the computational domain is in 3D-axisymmetric coordinate
system and hence Laloy and Massard method will not be accurate due to the fact that we lost
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the 1D property. Moreover, the sensors are not all close to the fire and to the axis and as we can
notice in figure 17, the error between 1D and 3D-axisymmetric configurations is reduced close
to the fire and next to the axisymmetric axis whereas it increases away from the axis and as the
depth increases. For all what proceeded, Laloy and Massard method is not accurate enough for
an experiment done in 3D-axisymmetric coordinate system.

10.2.2 Laplace Transform

In this part, we solve the heat diffusion equation in 1D using Laplace transform in time u(z,t) —
Ulx,p) = L{u(z,t)} (p)-
or 9T
ot~ “oa?
with T'(z,0) = 0 and 7'(0,t) = Tp(t). Using Laplace transform, the heat equation (55) becomes:

(55)

T 82T(Jj,p)
pT(z,p) = QW (56)
The solution of equation (56) is given by : T(z,p) = A(p) exp (—\/gx) (see | ]), where

A(p) comes from the boundary excitation Tp(t).

Methodology

Assume that we have two two sensors at two different depths z; and zo then we can say that
T1(p) and T5(p) at z; and z, respectively are given by:

i) = AG) exp (/221 (57)
To(p) = A(p) exp <—\/§@> (59)

then dividing equations 58 and 57 we get:

Top) ( N )

= =ratio(p) =exp | —4/ = (22 — 21 59
7y = ratioly) 2 (22— 21) (59)

(Az)%p = a[log (ratio(p))]> where Az =2y — 2z (60)

we end up with:

Simply, to approximate a, we plot the graph of (Az)?p as function of [log (ratio(p))]2 and we
calculate its slope.

Results

As we mentioned earlier, we need a couple of sensors only to approximate «. To ensure the
validity of our method we use synthetic data where a = 1.0 x 1077 m?/s and we try to refind o
using Laplace transform. The computational domain is in 3D-axisymmetric coordinate system
where r = z = 45 ¢m and the fire radius is R = 15 ¢m. Figure 18 shows the variation of the
Laplace of the temperature at two different sensors as function of p, figure 19 is a check for the
validity of the ratio expressed in equation (59), figure 20 allows us to calculate the slope which
eventually equal to the diffusivity a. We can see clearly that the error between the exact and
the calculated solution is 0.4%.

Laplace transform method is valid for 1D configuration, so to check its precision in 3D-
axisymmetric coordinate system. We try to detect the variation of error obtained upon the
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Laplace transform curves (synthetic data for 3D-axi case)

10 F T T T T T T T T ]
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Figure 18: Laplace transform curves for two different sensors
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Figure 19: Ratio check

choice of different sensors’ positions. First, we study the effect of the sensor’s depth on the
accuracy for results. In figure 21, we took into consideration 8 sensors located on the axisym-
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Figure 20: Diffusivity Determination

metric axis at different depths such that the ratio of depth to that of fire radius varies from
0.033 to 1.333 (0.033 < % < 1.33). In figure 22, we notice that the error between the different
calculated values and the exact one (1.0 x 1077) is between 0.4% and 0.44%.

In figure 23, we took into consideration 8 sensors that share the same property (r = z) but
their positions vary from r = z = 4 ¢m to r = z = 18 ¢m, the values of o obtained using various
sensors combinations are shown in figure 24 where we can see clearly that as the sensor’s depth
and distance from axis increase the error increases where it varies from 0.27% to 33.58%.

Looking at the results obtained by synthetic data, we conclude that to obtain accurate result
while using Laplace Transform method in 3D-axisymmetric coordinate system, we must choose
the sensors close to the axis to avoid large errors. Table 15 and table 16 represent different
values of « obtained using different couples of sensors using real experimental data precisely
experiments number 1 and 2. In the first experiment, we choose 3 couples of sensors that are
not far from the axis where 0.32 < % < 0.46 and the same time not far from the fire where
0.24 < £ < 0.76. For the second experiment, we also choose 3 couples of sensors that are
not far from the axis where 0.28 < % < 0.42 and the same time not far from the fire where
0.3< 5 <0.6.

Sensors 1-2 2-3 7-8
Diffusivity a in m?/s | 3.21 x 1077 | 1.92 x 10~7 | 2.77 x 107

Table 15: The values of diffusivity (Fontainebleau Sand) obtained by Laplace transform method
using the first experiment.

The average value of o obtained using the first experiment is 2.63 x 10~"m?/s and that
using the second experiment is 2.44 x 1077.
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Laplace transform curves
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Figure 21: Laplace transform curves for different sensors at different depths
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Figure 22: Diffusivity Determination for sensors at different depths
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Laplace transform curves
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Figure 24: Diffusivity Determination for sensors having same r and z positions

10.3 Inverse Problem in 3D-axisymmetric coordinate system
Objective

Similar to the inverse problem visited earlier, we need to estimate the thermal diffusivity a of
the soil by inverse problem knowing the history46urves at selected few sensors of the domain. To



Sensors 10-14 7-11 11-13
Diffusivity a in m?/s | 3.28 x 1077 | 2.04 x 10~7 | 2.02 x 107

Table 16: The values of diffusivity (Fontainebleau Sand) obtained by Laplace transform method
using the second experiment.

do this, we use the least square criterion where we try to minimize the error function .S which
represents the difference between the experimental temperature and the numerical temperature:

M F
§(0) = 3 33 (T~ 1) (61)

i=1 j=1

where Tzf num = 1 (24, t/) are the temperatures being the solution of the direct problem for

the assumed parameter(«) at the point x;, i = 1,2,..., M for the time tf, f=1,2,...,F and

Tzf cap 1 the measured experimental temperature at the same point x; for time ¢7.

10.3.1 Forward Problem

The physical problem consists of heating the dry soil by a fire (no phase change). To model this
problem, we replace the soil by a perfect porous medium with constant and uniform properties
heated from above by a constant temperature 7,.. In this case, we assume that the thermal
conductivity A. is independent of temperature and that the heat diffusion equation simplify to:

OT _ [Ld (dr\ d (d )
ot~ “\rar \"ar dz \ dz
with the following initial and boundary conditions:

T(Tiyzjao):TO(Tiazj):TO,i,j 1§Z§N, 1§j§M

T (14, 2j,t) = TD(ri,zj,t) = Tzlg(t) i€ {l,N} and j € {1, M}

VT(r;, zj,t).v =0 (Null Neumann) ¢ € {1, N} and j € {1, M}

where T represents the temperature, Ty is the initial temperature at tg = 0, TP is T, at the fire
and Ty elsewhere; v indicates the outward unit normal vector along the boundary of 2. The
computational domain is similar to that presented in figure 8.
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10.3.2 Method of Resolution

The method of resolution is similar to that presented earlier in section 5.1 where p®) = (a(¥)
and the Jacobian(sensitivity) matrix ended up to be a vector:

1,(k
Uozl(7 1)

1k
e
Ua72,1

Jp®y =1 2" (63)

or/, .
where U/ = (1)

(i) D0 loea - We try to find o by minimizing S(«) using LMA.

10.3.3 Governing Equations and Numerical Strategy

As in 5.2, we need to differentiate the heat diffusion equation in dry case (62) with respect to
the unknown parameter a:

o |[oT 0 . -
%0 [01&} =9 ( div [gradTD (64)
which leads to the a sensitivity equation below:
W = div (gradT(x, t)) (65)

42



The initial and the boundary conditions for the sensitivity equation are similar to those
in 5.2. The obtained system of coupled equations (heat diffusion equation and the sensitivity
equation with respect to «) forms a system of partial differential equations. This system is
solved using the same strategy explained in 1.1 and 2.4.

10.3.4 Results

We test our inverse problem using real experimental data because using synthetic data we are
sure that the inverse problem will provide accurate results. The two experiments studied are
experiments number 13 and 12 performed by José Augustin Cordero in the archeology lab of
Rennes CREAAH. Both experiments are performed in the same manner as described in 10.1
using same box, heating plate and Fontainebleau sand but different sensors positions. The value
of porosity (measured in the laboratory) for both experiments is ¢ = 0.4. Using experiment 13
data, we obtained the results summarized in table 17.

Mesh a m?/s Residue
30 x50 | 3.909 x 10~° | 6.581 x 103
120 x 200 | 3.203 x 10~° | 6.584 x 103
300 x 500 | 3.060 x 10~° | 6.582 x 10°

Table 17: The values of diffusivity (Fontainebleau Sand) obtained by Inverse Problem using
different mesh sizes.

As we have seen in previous sections, using Laloy /Massard and Laplace methods, the value of
diffusivity is of order 10~7. Also, examining the literature, the value of a for Fontainebleau sand
is always found to be of order 10~7. In | ], it is reported that the density of Fontainebleau
sand is 1480 kg/m?3 and in other references, we can find that its volumetric heat capacity
is 1.041 x 10° J/kgK and its thermal conductivity is 0.32 W/mK so we can simply de-
duce that 3.07 x 10~7 m?2/s. Moreover, | | indicates that the thermal conductivity of
Fontainebleau sand ranges between 0.28 and 0.42 W/mK and hence its diffusivity will be of
order 10~7. Comparing the results obtained in table 17 and what we mentioned now, we can
see that the error is of order 102 which is huge.

We suspect that the error obtained is due to various experimental errors:

1. The thermocouples are flexible and long (50 ¢m). During filling the box with sand, perhaps
the thermocouple rod is curved down and upon removing the sand, to measure its position,
it goes back to its straight shape.

2. The position of the thermocouple is located by measuring the distance with respect to
two perpendicular walls of the box (coordinates x and y) and the height to the upper
edge thereof, with a string (having previously identified, in the same manner, the height
of the sand surface, we deduce the depth of the thermocouples). The sensors’ coordi-
nates measured in cartesian coordinates are transformed by hand into 3D-axisymmetric
coordinates.

3. Observing the measured initial temperatures, we notice that it is not uniform.
4. The circular heating plate used in the experiment do not have a uniform temperature.

To treat the error resulted from measuring the positions of sensors we propose to add the
sensors’ positions as unknowns in addition to diffusivity and we use a curve fit to treat the
problem of having non-uniform initial temperature.
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10.4 Estimation of a and sensors’ positions

The analytical solution of the heat equation in 1D semi-infinite domain | | is of the form:

Z
T(z,t) =k erf [ — 66
() =k at ) (60
where T is the temperature, k is a constant, z is the position, « is the diffusivity and ¢ is the
time. Based on equation 66, it is not possible to find both the diffusivity of a solid medium and
the position of the sensors, because there are an infinite number of solutions. This arise both
in 1D problems, but also in 2D or axisymmetric configurations.

_________________________ ——eeee—> isotherms

Huge X’—’f/—
sensitivity in

z-direction S

__—> sensor

Null sensitivity in
r-direction

Figure 25: Simple 1D heating, showing the horizontal isothermal lines; there is a null sensitivity
along the r-axis.

To obtain a unique solution, we must add some kind of constraints. As shown in figure 25,
the 1D inverse problem has a null sensitivity along the r-axis. For the axisymmetric configura-
tion, the isothermal lines during the heating process may be well approximated by a family of
confocal ellipsoidal curves (see figure 26). As a result, we introduce a constraint by imposing
the displacement normal to these isothermal lines. This writes:

sin(gy) 3, = cos(¢y) dx, (67)

for all sensors i. In equation 67, ¢; denotes the angle of the isothermal lines at sensor number 4.
Oy, (resp. d,) is the (unknown) displacement of the sensor ¢ in the r direction (resp. z direction).

Furthermore, we add new constraints about the unknown position of sensors, which specify
that their mean displacement is zero, both in r and z direction. This comes from the assumption

that the position errors obey a normal centered distribution law and it is generally true for a
great number of sensors. This writes:

" 9, =0 and Y 0, =0 (68)

for all sensors 3.

Lastly, we suspect that a bias may be present in the measures.In any statistical investigation,
we can always attribute some of the variation in data to measurement error, part of which
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Figure 26: In a 3D-axi heating, the isothermal lines are very close to ellipsoidal curves; there is
a null sensitivity in a direction tangent to these curves.

can result from the measurement instrument itself. But human mistakes, especially recording
errors (e.g., misreading a dial, incorrectly writing a number, not observing an important event,
misjudging a particular behavior), can also often contribute to the variability of the measurement
and thus to the results of a study. In our experiments, the way the sensors’ positions were
measured might be affected by a bias (see figure 27).

The bias is represented by a shift in both directions and it should also be added to the
unknowns of the whole inverse problem. The new positions of the sensors can write:

i = 1+ 0p, +shift,
Zi = zi+ 0y + shift, (69)

for all sensors . shift, and shift, are the also unknowns, but global to our problem.

Reformulation of our inverse problem

The unknowns of our inverse problem are:
e Diffusivity a.
e The displacement in both r-direction and z-direction for each sensor i (d,, and J,).
e The bias in both r and z directions (shift, and shift.).
The constraints applied to our inverse problem are:
e > " 0, =0 and >0, =0.

e For each sensor, sin(¢;) d,, = cos(¢;) ds,.
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Figure 27: A bias in the measures might result from the way the sensors’ position were calcu-
lated.

e Box constraints over the new sensors’ position to ensure that they are in the physical
domain under study.

e Box constraint over the value of « to assure that it will attain a positive value.

10.4.1 Numerical Strategy

The obtained system of coupled equations (heat diffusion equation 62 + sensitivity equation 65)
is a system of partial differential equations. To solve this system, we use the same numerical
strategy explained earlier (method of lines + finite volume method). After spatial discretization,
the system of coupled equations can be written in the form of a system of first order implicit
ODEs:

F(t,Y,Y') = 0 with Y(t9) = Yy (70)

where Y = [T, U,]. The system in equation (70) can be solved by an ODE solver as in 1.1.

The ODE solver will provide us with the values of T" and U, which are not enough to solve
our inverse problem where the sensors positions are unknowns. To approximate U,, = %—f and
U, = %—Z at each sensor ¢, we use an interpolation of order 2 based on a biquadratic interpolation

(9-point stencil).

10.4.2 Solving the constrained inverse problem

The Levenberg Marquardt algorithm used in previous sections solves non-linear least square
unconstrained problems. Our inverse problem here is a constrained non-linear least square
problem with linear constraints (Equality constraints): Y ;' ;6,, =0 and > 4, =0 and
sin(¢;) 6y, = cos(¢i) 0,,. By using simple variable substitution, we transform the constrained
non-linear Least Square problem into an unconstrained non-linear least square problem with
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less number of unknowns which can be easily solved using LMA with parameters’ scaling (see
5.4).

10.4.3 Results

As we mentioned earlier, we are going to apply our inverse problem to two experiments.

First Experiment: The thermocouples in the first experiment are presented in figure 28,
the fire radius is R = 5 ¢m, the dimensions of the computational domain are » = 25 ¢m and
z = 30 cm. We can see clearly that the sensors are close to the z-axis and their distance from
the axisymmetric axis with respect to fire radius is (0.18 < 1 < 0.54) where as their depths with
respect to the fire radius is (0.18 < % < 1.96). Figure 29 shows the initial temperature profile
for the first experiment: we can check that it is nearly uniform in space (the initial temperature
varies from 24 to 26.5C).

Experimental position of sensors
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3
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0 001 002 003 004 005 006 007 008 009 0.1

r

Figure 28: Experimental positions of 10 sensors in blue. The red bar represents the fire (unit
is meter for both axes).

Using a numerical mesh of 300x500, we obtain a diffusivity a = 1.73 x 10~7 m?/s which is
acceptable for Fontainebleau sand. The standard deviation for both §,, and d,, are respectively
0.8 mm and 5.5 mm, showing that the z position of the sensor is more difficult to be obtained
accurately.

Besides, the shifts in 7 and z directions are respectively 1.4 mm and 9.8 mm; the last value
appears to be somewhat too large to be attributed to an experimental protocol error. Therefore,
the inverse problem must be investigated further on. However, we are confident of the numerical
results, because the convergence curves during the iteration process are good (see figures 30 and
31).

Figure 32 represents the experimental (old) positions of sensors, the new numerical positions
and the direction of displacement.

Second Experiment: The thermocouples in the second experiment are presented in figure
33, the fire radius is R = 5 ¢m, the dimensions of the computational domain are » = 25 ¢m
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Variation of sensors’ initial temperature as function of their z—position
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Figure 29: Initial temperature profile of the first experiment, showing that the temperature is
nearly uniform.

-7 Variation of diffusivity as function of mesh size
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Figure 30: Variation of diffusivity as function of mesh size. The mesh size varies from 30 x 50 to
300 x 500. The value of diffusivity converges to 1.73 x 1077

and z = 30 cm. We can notice that the sensors are spread in the domain unlike the first
experiment where they were approximately close to the axisymmetric axis (0.28 < 5 < 1.44)
and (0.04 < £ < 1.9).

Figure 34 shows that the initial temperature for the second experiment is not uniform, it
varies from 25.5 to 32C). In figure 34 we modeled the initial temperature by constant mean
of temperatures and in figure 35 we modeled the initial temperature profile by an exponential
law. This kind of initial profile may reveal that the soil was not in equilibrium and that the
experiment occurred during a slow transient heating of the medium due to an increase in the
room temperature. Nevertheless, the fit of the temperature data to an exponential law works
quite well.
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Variation of residue as function of mesh size
300 T T

Residue

Mesh size x10°

Figure 31: Variation of residue as function of mesh size. The mesh size varies from 30 x 50 to
300 x 500. The value of residue converges to 106.4

Old position of sensors (blue) and new position of sensors (red)
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Figure 32: The experimental positions of sensors are in blue and the new calculated positions
are in red (unit is meter for both axes).
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Experimental positions of sensors
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Figure 33: Experimental positions of 19 sensors in blue. The red bar represents the fire (unit
is meter for both axes).

Variation of initial temperature at sensors as function of their z—position
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Figure 34: Modeling initial temperature by a constant temperature 7' = 27.28 C (length is in
meter)

Results: uniform initial temperature
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Variation of sensors’ initial temperature as function of their z—position
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Figure 35: Modeling initial temperature by exponential fit 5.93 exp(70.95 z) + 25.51 (length is
in meter, temperature in Celsius)

Figures 36 and 37 presents that variation of thermal diffusivity as function of mesh size
and the variation of residue as function of mesh size respectively for the case where we used a
uniform initial temperature. Unfortunately, the curves are not well-convergent which incite us
to use an exponential fit instead.

Results: Modeling initial temperature by an exponential fit

The use of an exponential fit to model the initial temperature results in very good converging
curves presented in figures 38 and 39 respectively.

Using a 300 x 500 mesh, we used the inverse problem to find the value of diffusivity, d,,,
0z, shift, and shift, (i.e. the new sensors’ positions). The values obtained using uniform
(constant) and non-uniform (exponential fit) initial temperature are shown in table 18

Uniform | Non-uniform

a(m?/s) 2.1x1077 | 242 x 1077
shift,(mm) —0.14 —6.64
shift,(mm) 4.73 1.87
Standard deviation for d,(mm) 6.58 1.97
Standard deviation for d,(mm) 5.44 4.44
Residue 816.5 787.6

Table 18: Results obtained using the second experiment.

The new value of diffusivity is a = 2.42 x 1077 m?/s which is acceptable, even if two
different values for the diffusivity have been obtained from experiment 1 and 2. Indeed, it is
not uncommon to get some variations from one experiment to another, which may come from
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Figure 36: Variation of diffusivity as function of mesh size using constant initial temperature.
Mesh varies from 30 x 50 to 300 x 500

Variation of residue as function of mesh size
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Figure 37: Variation of residue as function of mesh size using constant initial temperature.

the ambient humidity of the room. In this second experiment, we are confident of the numerical
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-7 Variation of diffusivity as function of mesh size
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Figure 38: Variation of diffusivity as function of mesh size using an exponential fit for initial

temperature.

Variation of residue as function of mesh size
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Figure 39: Variation of residue as function of mesh size using an exponential fit for initial

temperature.

results because we obtain diffusivity values close to the ones obtained by previously presented
methods. The experimental (old) positions of sensors, the new numerical positions and the
direction of displacement are presented in figure 40.
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Old position of sensors (blue) and new position of sensors (red)
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Figure 40: The experimental positions of sensors are in blue and the new calculated positions
are in red (unit is meter).

11 Conclusion

As a conclusion, we saw that the use of statistical and box constraints were unavoidable since
the thermocouples position is difficult to be measured accurately due to the experimental setup.
Moreover, each experiment has its own conditions and thus data should be treated accordingly.

In both experiments, the Fontainebleau sand has been used, so we expect to obtain the
same value for the thermal diffusivity. Unfortunately, we obtained different values (o = 1.73 x
107" m?/s and a = 2.42x 10~7 m?/s). We think that this discrepency comes from the fact that
it is difficult to have well controlled experiments. However, it is worth noting that the magnitude
order match quite well with our results obtained with other methods (Laloy & Massard, and
the Laplace transform) and also with literature data.
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