Toward User-specific Tracking by Detection of Human Shapes in Multi-Cameras

Chun-Hao Huang 1 Edmond Boyer 2 Bibiana Do Canto Angonese 1 Nassir Navab 1 Slobodan Ilic 3
2 MORPHEO - Capture and Analysis of Shapes in Motion
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : Human shape tracking consists in fitting a template model to temporal sequences of visual observations. It usually comprises an association step, that finds correspondences between the model and the input data, and a deformation step, that fits the model to the observations given correspondences. Most current approaches find their common ground with the Iterative-Closest-Point (ICP) algorithm, which facilitates the association step with local distance considerations. It fails when large deformations occur, and errors in the association tend to propagate over time. In this paper, we propose a discriminative alternative for the association, that leverages random forests to infer correspondences in one shot. It allows for large deformations and prevents tracking errors from accumulating. The approach is successfully integrated to a surface tracking framework that recovers human shapes and poses jointly. When combined with ICP, this discriminative association proves to yield better accuracy in registration, more stability when tracking over time, and faster convergence. Evaluations on existing datasets demonstrate the benefits with respect to the state-of-the-art.
Keywords : Shape tracking
Type de document :
Communication dans un congrès
CVPR 2015 - IEEE International Conference on Computer Vision and Pattern Recognition, Jun 2015, Boston, United States. IEEE, pp.4027-4035, 2015, 〈10.1109/CVPR.2015.7299029〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01148449
Contributeur : Edmond Boyer <>
Soumis le : lundi 4 mai 2015 - 16:04:23
Dernière modification le : jeudi 9 février 2017 - 13:23:54
Document(s) archivé(s) le : lundi 14 septembre 2015 - 18:31:02

Fichier

huangc2015cvpr.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Chun-Hao Huang, Edmond Boyer, Bibiana Do Canto Angonese, Nassir Navab, Slobodan Ilic. Toward User-specific Tracking by Detection of Human Shapes in Multi-Cameras. CVPR 2015 - IEEE International Conference on Computer Vision and Pattern Recognition, Jun 2015, Boston, United States. IEEE, pp.4027-4035, 2015, 〈10.1109/CVPR.2015.7299029〉. 〈hal-01148449〉

Partager

Métriques

Consultations de
la notice

461

Téléchargements du document

283