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Abstract. Plants are essential elements of virtual worlds to get pleas-
ant and realistic 3D environments. Even if mature computer vision tech-
niques allow the reconstruction of challenging 3D objects from images,
due to high complexity of plant topology, dedicated methods for gen-
erating 3D plant models must be devised. We propose an analysis-by-
synthesis method which generates 3D models of a plant from both images
and a priori knowledge of the plant species.

Our method is based on a skeletonisation algorithm which allows to gen-
erate a possible skeleton from a foliage segmentation. Then, a 3D genera-
tive model, based on a parametric model of branching systems that takes
into account botanical knowledge is built. This method extends previous
works by constraining the resulting skeleton to follow hierarchical organ-
isation of natural branching structure. A first instance of a 3D model
is generated. A reprojection of this model is compared with the original
image. Then, we show that selecting the model from multiple proposals
for the main branching structure of the plant and for the foliage improves
the quality of the generated 3D model. Varying parameter values of the
generative model, we produce a series of candidate models. A criterion
based on comparing 3D virtual plant reprojection with original image
selects the best model. Realistic results obtained on different species of
plants illustrate the performance of the proposed method.

Fig. 1. On the left, an original image of a vine plant before and after a metric rec-
tification. In the middle, a possible architecture of the branching extracted with our
skeletonisation method. At the right, a 3D model of this plant.



1 Introduction

Procedural methods to generate plant models allow to build a complex plant
architecture from few simple rules [1]. For example, Lindenmayer in [2] is a
pioneer by proposing the formalism of L-systems as a general framework. By
carefully parameterising these rules, it is possible to achieve a large variety of
realistic plant shapes [3, 4]. However, a strict recursive application of rules leads
to self-similar structures and thus, to enhance realism, irregularities may be gen-
erated through probabilistic approaches [5, 1]. Adjusting stochastic parameters
to achieve realistic models requires intensive botanical knowledge [6]. Another
approach consists in modeling plant irregularities as a result of the competition
for space between the different organs of the plants [7]. In this case, the volume of
a plant is specified by the user and a generative process grows a branching struc-
ture with branches competing between each other. Competition can be biased
to favor certain types of structures. However, automatic control of competition
parameters to achieve a given shape is still complicated.

All these first works are derived from computer graphics community. Other
approaches use also information provided by images to increase the degree of
realism. A couple of research directions should be investigated. Clearly, a plant
should follow the biological property of its species and also ressemble a picture
of an existing instance. That is typically the subject of our work. Our idea is
not of exactly reconstructing the plant from an image, including its hidden parts
(which seems impracticable) but that of driving the instantiation of the plant
3D model by minimising the difference between its reprojection and the original
plant in the image.

Unlike existing methods detailed in section 2, ours must be able to get a 3D
model of a plant without any human interaction from images with possibly no
visible branches. By integrating biological knowledge of the plant species, we
propose a simple fully-automatic process to extract the structure of a plant from
the shape of its foliage in a picture taken with as few restrictions as possible
and so which may be of poor quality (for example, in the vine case, the image is
degraded after a metric rectification du to the assumption that all the principal
branches are contained in a same plane as shown at the left on the Fig. 1). We
start by presenting a new skeletonisation algorithm in section 3 in the vine case
(as we can see in the middle of the Fig. 1) and we explain a possible extension to
our skeletonisation method for other kinds of plants with 3D branching architec-
ture in section 3.5. Then a 3D model is generated thanks to our 3D generative
model (section 4). Finally, an analysis-by-synthesis scheme allows to improve
this reconstruction insuring that the foliage model reprojection matches closely
the original foliage like explained in section 5 (right on the Fig. 1). The last
section shows results and validation comparing with data provided by experts.

2 State of the art: generating plants from images

Realistic plants are challenging objects to model and recent advances in auto-
matic modeling can be explained by the convergence of computer graphics and



computer vision [8]. We start this state of the art with the first method of plant
modeling from images. Then, we continue with the ones starting by reconstruct-
ing clouds of 3D points. After, we talk about other methods using several images
to finish with approaches using a single image as ours.

A pioneering work on the reconstruction of trees from images was made by
Shlyakhter et al. [9] who reconstruct the visual hull of the tree from silhouettes
deduced from the images. A skeleton is computed from the hull using a Medial
Axis Transform (MAT) and is used as main branches. Branchlets and leaves are
then generated with an L-system. The skeleton determined from the MAT does
not necessarily look like a realistic branching system. Also, the density of the
original tree is not taken into account.

Quan et al. [10, 11] and Tan et al. [12] also use multiple images to reconstruct
a 3D model of trees or plants. In order to avoid the features correspondances
in different images, they use views close to each other (more than 20 images
for any plants). Thus, they obtain a quasi-dense cloud of points by structure
from motion. For simple plants, a parametric model is first fitted on each set of
points representing a leaf. They then generate branches based on information
given by the user. For trees, they start by reconstructing visible branches to
create branch pattern that they combine in a fractal way until reaching leaves.
Reche-Martinez et al. [13] propose another reconstruction from multiple images,
based on billboards. Neubert et al. [14] construct a volume encompassing the
plant in the form of voxels using image processing techniques and fill it with
particles. Particles path toward the ground and a user given general skeleton are
used as branching system.

Wang et al. [15] model different species of trees using images of tree samples
from the real world which are analysed to extract similar elements. A stochastic
model to assemble these element is also parameterized from the image and make
it possible to generate many similar trees. The goal in this case is not necessarily
to reconstruct a specific tree instance corresponding to an image. Similarly, Li
et al. [16] propose a probabilistic approach to reconstruct a tree parameterized
from videos. For these methods, the only source of information is the given
images leading to template branching patterns. If the set of patterns is rich
enough, it will produce aesthetically pleasing results, but without garantee to be
representative of its species. Additionnally, user input are required to specify a
draft of the structure on the image to avoid segmentation. Talton et al., in [17],
propose to fit a grammar-based procedural methods using Markov Chain Monte
Carlo technique to model objects from a 2D or 3D binary shape. Their results
are aesthetically very convincing but optimization of their models requires long
computation time.

Other approaches explore the use of a single image [18, 19]. In [18], an outline
of the plant in the image is determined interactively to extract a skeleton. A
3D representation of the branches is consequently deducted from visible parts,
then the leaves are added. Here, an user sketching step is required. In [19], a
graph topology is first extracted from a single image of a branching system (a



tree without foliage). Then the 3D tree model is reconstructed by rotating the
branches. account too strong constraints about the plants.

In general, methods of the litterature, such as [12] and [18] require visible
branches to learn about the structure of the skeleton. In our case, branches are
directly from foliage structure. Indeed, the branching structure devised manually
by experts from image show that the branches are deduced on one hand from
the knowledge of a space filled by a branch and its attached leaves and on the
other hand the silhouette of the foliage (left on Fig. 16 on a vine example).
We propose a generalised recursive skeletonisation algorithm together with an
analysis-by-synthesis mecanism to determine the branches and their attached
foliage that is the 3D model. Our approach is fully-automatic, that is, does not
require any user interaction.

3 Skeletonisation

3.1 General field skeletonisation method

Skeletonisation is a classical topic in image processing. We have followed and
completed the analysis of different approaches as proposed in [20] and as illus-
trated in Tab. 1. This table summarises the different properties that skeletons
respect like the thinness or the robustness and compares them to our require-
ments shown in the left column. All these properties are detailed in [20].

In our case, the smoothness is very important to get realistic branches but
we do not need a centred skeleton. Morever, the connectivity is less important
because it can be ensured by an other way. For these reasons, we choose to adapt
the general field method, and in particular the work of Cornea [21], since their
approach fits the best our needs.

Medial
Axis

Thinning Distance
Field

Geometric General
Field

Our
needs

G: general G [22] G G [23] G [21]

Homotopic Y Y Y Y Y N N N

Transf. Invariance Y N Y Y Y Y Y

Reconstruction Y N N N N N N N

Thin Y N Y Y Y Y

Centred Y Y Y N N

Reliable Y Y N N N

Junction Detection Y Y Y Y Y Y Y

Connected Y Y Y Y N Y

Robust N N N N N Y Y Y Y

Smooth N N N Y Y Y

Hierarchic Y N N Y Y Y Y
Table 1. Summary of properties achievable by different skeletonisation methods. In
green, the characteristics compliant with our needs.



Cornea et al. original method [21] consists in computing the skeleton (Fig.
2 (c)) from a vector field (Fig. 2 (b)). For each interior pixel pi of the binary

shape B, a force vector
−→
fi is computed as a weighted average of unit vectors to

the boundary pixels:

−→
fi =

∑
mj∈Ω

1

||−−−→mjpi||2
−−−→mjpi

||−−−→mjpi||

where Ω contains the contour pixels mj of B (Fig. 2 (a)). Then, points where
the magnitude of the force vector vanishes, so-called critical points (Fig. 2 (b)),
are connected by following the force direction pixel by pixel. The results of this
method can be seen in Fig. 2. The problem here is that this method is not robust
to the holes in the binary shape. Furthermore, sometimes only one branch grows
when two or more are required.

(a) (b) (c)

Fig. 2. Cornea et al. original method. (a) shape B with contours pixels ∈ Ω represented
in red. (b) vector field with critical points in blue. (c) extracted skeleton in green.

3.2 A new computation of the vector field

By redefining the set of contour points, we manage to use Cornea’s vector field
method to get a realistic skeleton in 2D.

Based on botanical expertise, we assume that different branches of relatively
similar size coexist and share the space of the crown of a plant. A large convex
silhouette may in fact be the sum of all this branching system. For the skeleton
reflects this hierarchy of branches, we propose a strategy to partition silhouette
space into subsets by positioning artificial contour points in the shape. Fig. 3
shows that by adding contour points within the shape, we define an appropriate
branch set.

We compute a probability map P on B containing, for each interior point

pi, the probability to be considered as a contour point. The new force vector
−→
fi

does not depend only on the points mj ∈ Ω but on all the points of B. The new
formula to compute the vector field is:

−→
fi =

∑
mj∈Ω

1

||−−−→mjpi||2
−−−→mjpi

||−−−→mjpi||
+

∑
pj∈B\Ω
j 6=i

Pj
||−−→pjpi||2

−−→pjpi

||−−→pjpi||
(1)



Fig. 3. At the left, the skeleton (in green) extracted with Cornea’s original method. A
spatial partition can be generated (red lines) to constraint skeleton computation to a
more branched shape. At the right, the skeleton computed by Cornea’s method when
all red points are considered as contour points.

We can see that if Pj = 0 for all the interior points, we find Cornea for-
mula whereas the points with a high probability act as a repulsive force on the
positioning of the branches.

3.3 Definition of the probability map

We assume here that n the number of branches is given. We compute the prob-
ability map P with an iterative algorithm. The first step is the choice of cuts
in B. The cuts are segments with one starting point and one ending point and
represent the possible positions of the separations between the n branches in
the shape. Assuming that the shoots grow vertically from the cane, we propose
to place trivially the ending points ei, i = 1..n − 1 of the cuts uniformly in the
bottom of B (Fig. 4). Then, the starting points are computed one by one. To
do that, we compute the DCE (Discrete Curve Evolution) of Ω as in [24]. It
provides a simplified polygonal boundary composed of N vertices (sl),l=1..N like
shown in Fig. 5. Usually, we choose N = 2n. An angle αl can be associated with
each vertex, representing clockwise angle between the 2 segments around the
vertex. A set of points (ck),k=1..K uniformly discretises the polygon.

Then a new probability ρk to be a starting point is computed for each point
ck taking into account two values:

– the proximity to an inward angle:

ρ1k ∼
N∑
l=1

1

d(ck, sl)
(1− αl

2π
)

– the distance along a boundary to the set H of already chosen starting points:

ρ2k ∼ min
c∈H

d(ck, c).

The mix probability ρk is proportionnal to φ(ρ1k, 1, σ) + φ(ρ2k, 1, σ) where
φ(., 1, σ) represents the gaussian function with a mean equals to 1 and a standard
deviation equals to σ (here, σ = 0.4).



Fig. 4. At the left, examples of cuts with n = 4 and n = 5 branches. Ending points
are represented in blue and starting points in green. At the right new vector fields.

Fig. 5. DCE algorithm examples. At the left, the original image with the contour
points around the foliage. The two other images show the DCE algorithm with a 24-
point polygon in the middle and a 8-point polygon on the right. The inward angles are
represented in blue.

A starting point {ck} is selected according to the probability ρk. Then it is
associated with an ending point ei and accepted if:∣∣∣∣#pixels ∈ B on the left of (eick)

#pixels ∈ B
− i

n

∣∣∣∣ ≤ τ (2)

where τ is a parameter allowing the created partitions of the binary shape to
have the same size or not. In the vines case, τ = 15%.

Finally, when all the cuts have been accepted, the new vector field is com-
puted like shown at the right part of Fig. 4.

3.4 Adjusting first order branches

We now have a vector field coherent with the n branches assumption. We want
to extract branches from this vector field. For each row i of the image and each
area p of the partition that we can see at the left part of Fig. 4, we extract the
attracting point ap

i which is the one with the smallest vector norm. Each branch
bp is a Catmull-Rom curve adjusted on the attracting points ap

i , using a least
square criterion.

An example of skeleton can be seen in Fig. 6.



Fig. 6. A final skeleton with 5 branches.

The following algorithm summarises the proposed approach:

ALGORITHM:
input: binary shape B and number of branches n.
output: a skeleton model of the plant consisting in n branches.

∗ Compute the DCE of B with N = 2n vertices and extract candidate {ck}
uniformly along the polygon.

∗ Initialise H = ∅.
∗ Place the ending points {ei, i = 1..n− 1} in the bottom of B.
∗ For i from 1 to n− 1
· Compute ρk for each (ck).
· while (!equation (2))
◦ Randomly select a starting point c among {ck}\H in function of ρk and

an ending point among {ei}.
· H = H ∪ c.

∗ Compute the probability map P.
∗ Compute the vector field using equation (1).
∗ Extract the points api for each row i of each area p of the partition.
∗ Ajust a branch in each area p of the partition.
∗ For each node of each branch, extract a foliage width.

3.5 Higher order branches and depth information

In the case of the vines, all the main branches are assumed in a same plane
and there are only first order branches. We adapt this planar setting to a more
recursive structure and to a 3D setting where rotational symmetry is assumed,
like in typical monopodial plants (i.e. plants organised around a main trunk).

Iterative skeletonisation algorithm



Automatic colour based segmentation extracts the 2D binary shape of the
foliage. Then, the branches are extracted using a modified version of our algo-
rithm presented above. The ending points are placed on the vertical line passing
through the trunk of the monopodial tree and the condition (2) is replaced by a
condition checking that the angle between the cut and the trunk is coherent (i.e.
around π

2 in the bottom of the tree, π
6 in the top and with an angle computed

linearly between these two values for an intermediate cut). This algorithm is
applied recursively to get second order branches for each partition. We can see
an example of cuts with a Liquidambar tree in Fig. 7.

Fig. 7. An exemple of skeleton for the Liquidambar tree.

Depth of branches
To generate 3D information, we drew inspiration from Zeng et al. [19] and

Okabe et al. [25]. The goal is to deduce depth information for the branches in the
2D skeleton to make a realistic plant from other views, preserving the appearence
from the original viewpoint as it is shown in Fig. 8. First, we compute the convex
hull of our 2D skeleton. Then, revolving this convex hull around the line passing
through the trunk, we obtain a encompassing volume of the plant. Considering an
orthographic projection onto the ground, for each branch which does not touch
the 2D convex hull, we change depth information for that the end of this branch
touches the boundary of the bounding volume. We have two possibilities, at the
front or at the back. We choose the one which maximises the angles between the
projections of all the branches to the ground, adding the branch one by one.

Fig. 8. At the left, we can see the 2D convex hull of the foliage, in the middle, the-
bounding volume and at the right, the final 3D skeleton of a Liquidambar tree.



4 3D Generative Model

Now we have a possible structure of the plant, the next step is to generate a 3D
model of this plant. To do that, we need to build a 3D generative model thanks
to all the a priori knowledge of the plant.

In our work, we combine procedural methods to generate a plant and image
based approaches. Procedural methods makes it possible to take into account
botanical constraints such as possible regular arrangements of organs (for in-
stance leaves). The procedural model uses stochastic parameters in the position-
ning of the branchlets and the leaves.

We choose to generate the constrained model with L-systems, using the L-
Py modeller [26]. An L-system [1] is a formal grammar, most commonly used to
model the growth processes of plant development. The main idea of L-systems is
to rewrite a string of modules representing the structure of the plant. Rewriting
rules express the creation and change of state of the various modules of the
plant over time. Our model include a deterministic part which is controlled by
the understanding of plant images and a stochastic part to allow a more realistic
result. The model is deduced by both learning from a large number of plants
and also knowledge given by specialists.

We choose to generate our model in two stages: the branching system model
and the foliage.

Branching system model
Each branch is set by a number of 3D nodes which are the control nodes of

the branch. From each of these nodes one or more lateral branches of the same
nature may grow. Then, to model the 3D structure, each branch is a generalised
cylinder along a curve passing through all nodes. A B-Spline curve is built with
a local interpolation scheme of degree 3 [27]. A radius is assigned to each of
these nodes to determine the radius of the generalised cylinder in these nodes.
This radius is linearly interpolated between two nodes. Textures taken from real
images are then applied to branches.

Foliage model
We begin by extracting leaf textures from real images. At each node defining

the branches structure is also assigned a value R which is the radius of the
cylinder encompassing the leaves. Thus, to model the foliage, branchlets are
generated randomly along the branches. Stems are placed along main branches
and branchlets. Their density and their length is a random variable distributed
normally with mean R and standard deviation R

4 . On each of these stems a leaf
modeled by a Bezier surface is placed on which a randomly chosen texture is
mapped (Fig. 9b.).

5 Reprojection criterion

The last step goals to evaluate the quality of the 3D reconstructed 3D model.
We reproject the 3D model in an image with the same viewpoint of the original
image. We obtain a binary shape Ii (1 if foliage, 0 elsewhere). In the same



Fig. 9. Example with the case of vine. (a) Branch structure modelisation. (b) Textures
of vine leaves.

way, the original segmented foliage forms a second binary image B. The error
reprojection is computed as:

errori =
#((Ii − B)2 == 1)

#pixels(B)
(3)

Fig. 10 illustrates the comparison between the projections and the original
image.

Fig. 10. At the left, the original image. At the right, the reprojected model. In the
middle, the projection errors map. White pixels correspond to pixels where the original
image and the reprojected one are superposed and red pixels are wrong pixels.

The idea now is to improve the proposed 3D model using an analysis-by-
synthesis strategy which allows to merge information from the a priori botani-
cal knowledge and from the image. An increasing number of authors propose to
use external knowledge for easing reconstruction from images. Indeed providing
knowledge about the scene to be reconstructed simplifies the image processing
steps. In [28], Tu et al. define generative models for faces, text, and generic
regions which are activated by bottom-up proposals learnt using probabilistic
methods. These proposals are then accepted or rejected using a stochastic cri-
terion. Yuille et al. [29] claim that this approach, which allows to deal with
the complexity of natural images, has intriguing similarities to the brain. They
present a method where low level features are used to make bottom-up pro-
posals, finally validated by high-level models. In a similar analysis-by-synthesis
method where a priori knowledge consists in geometric and mechanical proper-



ties, Gupta et al. [30] iteratively make proposals for interpreting parts (blocks)
of the image. We use a similar approach, but not iterative.

In our case, we give more freedom to the generative model. For example,
we do not impose the number of branches of the plant that we do not a priori
know. Thanks to all the knowledge of the plant, we can model each parameter
(like the position of the cuts, the leaves densities or the number of branches) by
a random variable, and thus generate numerous models.

We select the best candidate proposed by the generative model using the
following formula:

Mi0 = argmax
Mi

p(Mi|Ii) = argmax
Mi

p(Mi)p(Ii|Mi) (4)

We choose p(Ii|Mi) = 1−errori = 1−#((Ii−B)2==1)
#pixels(B) and p(Mi) is a product

of terms which are probabilities function of all the knowledge of the plant. For
the vine case example, one of the term of p(Mi) is a gaussian representing the
probability of the number of shoots. Fig. 11 shows different error maps. White
pixels correspond to pixels where the reprojected model and the original image
are superposed.

Fig. 11. Different errors maps with different numbers of branches, different distribu-
tions of leaves and different densities. The map outlined in red is the error map of the
selected 3D model because there is the smallest percentage of gray pixels.

6 Results and Validation

Our method has been tested on a large number of images and videos. Some
results are shown in Fig. 15, 14 and 12. To validate our model, a criterion which
can be used is the error given by the equation (3). The average error for the case
of vines is 6.9%, 7.2% for the Walnut and 8.5% for the Liquidambar. In Fig.
13, we show the reprojection error according to the number of tested models for
an example of vine (the third example of Fig. 12). It is interesting to note that



the greater is the number of tested models, the lower is the reprojection error.
The curve decreases very quickly between 1 and 15, fairly quickly until 100. This
proves the effectiveness of our skeletonisation method which restricts significantly
the search space. This curve illustrates the importance to test several models but
of course, the final selected model is not necessarily the last one.

Fig. 12. Vine plants modelisation. At the top the original images. At the bottom,
rendering of automatically generated vine models using our approach.

A second validation is to compare our solution to the one provided by viticul-
ture experts (Fig. 16). It seems difficult to find a significant measure by compar-
ing the ground truth to our skeletons. Furtheremore, for us, the most important
is the final appearence with leaves. Indeed, for the first example in Fig. 16, our
algorithm found a very similar skeleton to the expert one at the left but it is not
the one which has been validated by our method at the right. So, we used our
algorithm on the drawn ground truth skeletons with different leaves distribu-
tions and different leaves densities to find the best 3D model. The improvement
of the reprojection criterion in comparison to our automatically generated skele-
ton is only 0.2% in average. This small difference proves the performance of our
method which does not require human intervention.

In Tab. 2, we can see the number of shoots drawn by two differents experts
from vines images. The last row shows the number of shoots of the 3D models
generated with our method from the same images. We almost reconstruct a 3D
model with the same number of shoots drawn by one of the two experts.

For the 3D case, we have shown that our method can reconstruct realistic
3D trees from a single image. However, the branching system is mostly based on
branches.
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Fig. 13. Reprojection errors according to the number of tested models. Different varia-
tions are tested as the number of branches or the leaves density. For example, if we test
different 3D models with only one leaves distribution and 1 leaves density, the error
is almost 10%. Then, this error decreases when we add different leaves distibutions or
different leaves density.

Image 1 2 3 4 5 6 7 8 9

First expert estimation 3 6 5 5 6 5 3 7 7

Second expert estimation 2 6 4 5 4 4 2 5 4

Our method 2 5 4 5 6 6 3 5 6
Table 2. The first row represents the number of the vine image. The second and the
third rows represent the numbers of shoots drawn by the experts. The last row represent
the number of shoots of the 3D models generated with our method from these images.

7 Conclusion

Combining analysis and sythesis, we have proposed a new fully-automatic method
of plant modeling from a low resolution image without any branching pattern
unlike [12, 19].

The leading contribution of this paper is a new skeletonisation algorithm
able to extract the structure of a plant from an image of its foliage. Then, we
built 3D parametric generative models for different plants using the knowledge
about the species. A final analysis-by-synthesis step improves the quality of
the final 3D model by comparing the original image with a large number of
3D models generating varying different parameters of the 3D generative model.



Fig. 14. Walnut. At the left, the original image. At the right, the 3D model with the
same viewpoint.

Fig. 15. Liquidambar. At the left, the original image. In the middle, the 3D model
with the same viewpoint. At the right, the 3D model with an other viewpoint.

The skeletons are used to make proposals to the 3D generative model. The
reprojection criterion insures the similarity between the proposed 3D model and
the original image. We further validated our proposed model by comparing it to
ground truth given by experts in the case of vine.

In future work, we could investigate the automatisation of the use of a priori.
Indeed, the construction of the generative model could be done by learning from
a large data set avoiding the necessity prior knowledge on the branching structure
of the plant species. The process would be evolving in loop, where the analysis
could give feedback to the generative models.

References

1. Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Springer
Verlag (1990)

2. Lindenmayer, A.: Mathematical models for cellular interaction in development:
Parts i and ii. Journal of Theoretical Biology 18 (1968)

3. Weber, J., Penn, J.: Creation and rendering of realistic trees. In: Proceedings
of the 22nd annual conference on Computer graphics and interactive techniques.
SIGGRAPH ’95, New York, NY, USA, ACM (1995) 119–128



Fig. 16. Expert skeletons. At the top, a viticulture expert has drawn skeletons on vine
images (in red). At the bottom, the projections of the skeletons of our method (in
yellow).

4. Deussen, O., Lintermann, B.: Digital Design of Nature: Computer Generated
Plants and Organics. Springer-Verlag (2005)
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